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A Science in Trouble
Asim Roy

Arizona State University

Can a whole body of science simply unravel
when confronted by a few simple challenges?
Can a large body of scientists overlook some
very simple facts for a long period of time?
From the current debate on how the brain
learns, the answer appears to be “yes” for at
least one body of science – artificial neural
networks or connectionism. A sampling of
some recent comments might be a good
indicator of this. The first open and public
admission that much of the existing science is
wrong came from Christoph von der Malsburg,
a German neurobiologist and computer
scientist affiliated with both the Ruhr
University of Germany and the University of
Southern California. In commenting on the
challenge I posed, which claimed that neural
networks do not embody brain-like learning,
he remarked, ”I strongly believe that the current
paradigm of neural network learning misses
very essential aspects of the learning problem,
and I totally concur with the assessment,
expressed in your expose, that specific prior
knowledge is required as a basis for learning
from a given domain...I am glad the issue seems
to start picking up momentum. Some Kuhnian
revolution is required here, and as he (T. Kuhn)
wrote, such scientific revolutions are always

trouble: Continued on page 10
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What about parallel
programming and high-end

systems?
Greg Astfalk

Hewlett-Packard Company
3000 Waterview Pkwy.

Richardson, TX 75080-1400
astfalk@rsn.hp.com

We are going to talk about parallel computing and
high-end systems.  Parallel processing does not
need any introduction, nor definition.  Despite this
we offer one; to invoke concurrent computations
for portions of a single application.  Key are the
words “concurrent” and “single application.”
There are many important applications that are so
blatantly parallel that they are not of concern or
interest to us here.  Also not of interest here is the
notion of the concurrent throughput of many
individual jobs.  Parallel processing is often
thought of as a new topic; it isn’t.  Parallelism has
been around for quite some time, yet despite this
we can not call it a mature technology.

High-end systems may need a bit of explaining.
The issue is that it means different things to
different people. Someone might, legitimately,
consider a cluster of PC’s (e.g., a Beowoulf
cluster) as a high-end system.  Others might say
that it is a classic Cray supercomputer
architecture.  Both can be correct depending on
the application and numerous other factors, some
of which are fiercely “religious” in nature.

Prime-time is that temporal window when most
people are watching television.  The key is large
numbers relative to any other time.  With a view
toward parallel processing, its prime-time will be
when large numbers of people are utilizing it.
Today this is, without debate, not the case.
Considering the universal set of computer users
and programmers it is a minority that use it,
understand it, have the time, charter and talent to
invoke it, or can benefit from it.  What is holding
it back?  Two things.  Ease of use and
affordability.

Owing to lack of space we are brief and thus make

Message from the Editors
S. Raghavan (U of Maryland)

Tom Wiggen (U of North Dakota)

This month, we are pleased to feature two
intriguing articles by Asim Roy of Arizona State
Univerity and Greg Astfalk of Hewlett-Packard.

Asim tries to expose some of the shortcomings of
neural-nets as they are presently implemented.  A
related article by Professor Roy will appear in the
December issue of OR/MS Today, and he plans to
offer a tutorial at the ICS Conference in Cancún in
January 2000.

Greg Astfalk writes about the present state-of-the-
art in our exploitation of parallelism.  Greg
concludes that this is not yet ready for prime-time.

We are also pleased to include a news item about
the presentation of the von Neumann prize to Fred
Glover.  As you may recall, Fred wrote the feature
article for the last issue of this newsletter.

As newsletter editors, we are continually on the
lookout for regular columns that the ICS
membership will enjoy.  One example of this is
the “Member Profile” series which comes about
through the initiative and efforts of associate
editor John Hooker.  There must be a number of
candidates for other regular columns that you
would enjoy reading (web-based applications,
web-based teaching and/or learning, views from
industry, etc.), and there may be some enterprising
individuals among our readers who would enjoy
producing columns in those special areas for the
ICS newsletter.   If you have an idea for a regular
newsletter column or a special column, please let
us know.

The front cover of this newsletter does not contain
any official ICS identifying marks.  As
INFORMS’ newest society, we are at present
without official logos of any sort.  The society’s
officers are working to remedy this situation.
Relay your suggestions to an ICS officer.

Finally, we welcome your letters and emails to the
editors containing news notes, opinions or
anything else you want to tell us.
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6-12 person-months in order to get a fully
functional parallel code.  An exception to this
point is that the practitioner could simply use a
pre-existing ISV (independent software vendor)
code that has already been parallelized and solves
the problem at hand.  Then item (3) is not relevant.

So what is different in the context of parallel
programming?  It is a fact that parallel
programming is (much?) more difficult than
sequential programming.  Thus it will take us
longer to code the application so it is important
that the application in question warrants the extra
effort.  The justification could be the sheer
importance of the code to the funding (i.e.,
developing) organization or the sheer size of the
computation that requires going to the extra effort
to get the time-to-solution down as low as
possible.

When an organization buys a computing resource
the inherent expectation is that it will enable
better, or more timely, products and product
development times.  This applies to database
systems, high-end technical servers, or desktop NT
systems.  Another characteristic of virtually all
organizations that have large IT budgets for
computing systems is that they have a community
of users.  Should the multiple processors of a
parallel system be used to serve multiple users, or
many independent tasks, in throughput mode.  If
the parallel system is dedicated to a single
application for concurrent solution then there are
two compounding factors.  First is that the p
processors being used concurrently are denied to
the p, or more, users that could be working on
their applications on the same system.  Thus
parallel computations represent a lost opportunity
cost to the organization unless the parallel
applications’ benefit outweighs it.  The
compounding factor is that parallel applications
never fully utilize all of the processors that they
are “using.”  We discuss this in the next section.

From the current President’s Information
Technology Advisory Committee (PITAC), “there
is substantive evidence that current scalable
parallel architectures are not well suited for a

only what we feel are the most important points.
To do either topic complete justice would require a
tome of epic proportions.  By its nature this note
may be considered subjective, despite our attempt
at an objective view.  We will address these two
points from a very pragmatic perspective.
Naturally since this note isn’t authored via a
consensus vote it will be viewed either favorably
or as heresy and BS.  This author claims full
responsibility either way.  Some might say this
note is cynical, we respond by saying it is honest.

The prerequisites

If the reader will permit the somewhat parochial
perspective we will focus on all endeavors in this
field, with the exception of research.  Our
justification is that research is by its nature
expected to take time, hard work, false starts, etc.
It is by research that the state of the art is
advanced.  In this note we are considering the
practical application of parallel computing.

To actually do parallel computing there are three
prerequisites; (1) the need, (2) the machine, and
(3) the charter and the time.  The need is that the
user is faced with a problem that is large enough
and important enough that it can justify the
expenses and efforts of items (2) and (3).  A
problem that can be accomplished in a reasonable
time on a workstation or server is not likely a
candidate.  What constitutes a “reasonable” time
means different things to different people.

To do parallel computation requires a parallel
machine.  Thus the user’s organization either has
to have such a system, be compelled enough by
the intended parallel applications to buy one, or to
buy time on one outside the organization.  Subtle
and implicit in this is that the job (i.e., the need)
must have some portion of, or the entire, system to
itself to actually run in parallel (there are
exceptions to this --gang-scheduling-- but this is
beyond the scope of this note).  This reinforces the
“need” part.  The application must warrant having
a rather expensive computing resource to itself.

The charter and time are necessary since the user’s
management must allow the programmers and
developers the time to make the code run in
parallel.  It is not uncommon to require efforts of
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number of important applications, especially those
where the computations are highly irregular or
those where huge quantities of data must be
transferred from memory to support the
calculation.”  At least the reader will realize it
isn’t just this author that has a less than optimistic
view of parallelism.

Measuring parallel programs

In the field of parallel programming there are any
number of measures of the parallel application;
number of processors used, sustained flops,
speedup, efficiency, isoefficiency, etc.  While
these measures do tell us something, they are all
off the mark regarding what really matters.  The
only important measure is that the time-to-solution
is less when the application is run in parallel.  We
should also point out that time-to-solution ought to
mean from the time the complete application is
started until it is finished.  Achieving, and
reporting on, linear speed-up on a kernel which
represents only a portion of the application’s total
time is misleading to the ultimate end-users
perspective.  Failing on this measure may hit the
mark in a research setting but not in the real-
world.

Let’s be honest about what performance we can
expect.  Without knowing anything about the
application or coding this author makes the
assertion that on a contemporary RISC processor
the application will get 10% of peak performance
in sustained, sequential execution.  Be advised that
the 3-σ on this number is large.  When parallel
execution is invoked the assertion, again by this
author, is that you lose 50%.  Specifically, if you
sum the 10% of peak over the p processors
involved in the computation and then divide that
by 2 you get a guesstimate on what will be
delivered from the parallel application.  The 50%
efficiency is for a moderate number of processors,
say 8-16.  It invariably gets lower with increasing
p.  We know of cases where only 1% (no typo, we
mean one (1) percent) of the aggregate
performance of the system is realized.  This is, by
any perspective, disappointing.  For emphasis, we
say again that these numbers can vary
substantially depending on the application,
algorithm, and coding.

Parallel programming

What is the “state of the art” in parallel
programming today?  It involves significant
neurons.  The actual effort of producing a parallel
code has a significant “human in the loop”
component. It would be nice and highly useful if
there were a way to automagically produce
efficient parallel code; Be advised; there isn’t!

We have worked on parallel computing for a long
time and where exactly are we today?  It still
requires careful programming, careful attention
paid to data locality and control decomposition,
and a rather thorough understanding of computer
architectures.  This is further complicated by the
many parallel architectures that are in use today.

If you step back far enough from the parallel
programming issue you have the sense that it is
practiced the same as it was 15 years ago.  The
primary method is explicit decomposition of the
application (data or control) via message-passing.
It is certainly true that MPI, and its forerunner
PVM, are much better in their syntax and
functionality than the old vendor specific
messaging libraries.  However, from the
programmer’s perspective the task is all too
familiar.

What MPI has done is significant it that it offers
the greatest common denominator for parallel
programming.  MPI’s portability is significant in
that a MPI application can run on any type of
architecture in use today.  This includes SMPs,
ccNUMA systems, clusters, Internet-based
systems, etc.  To be a bit more quantitative, we
have data that for this author’s company’s user
population something like 50-60% of the
applications are MPI-based.  This includes a
collection of systems that are mostly SMP
architectures.

Reports are available that show efforts in the 6-12
person-month range to parallelize a code. This is
done by smart people. The net result for this effort
is a far too large disparity between the theoretical
peak performance of the system and the
performance that the application delivers.
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The individual SMPs could also be connected is a
somewhat looser fashion by, for example, Myrinet.
Here the Myrinet connection allows for nearly
direct connection of memory in an individual SMP
to that in another.  While the latency and
bandwidth are not nearly so good as for the
ccNUMA systems, it is quite respectable.

After this level of hierarchy we have true clusters
of SMPs, ccNUMA systems or Myrinet-ed
systems.  These are connected by standard
interconnects such as Ethernet, FDDI, HiPPI, or
any other standard interconnect.  The distinction
here is that there are multiple autonomous
operating systems.   The resultant is that the global
view of memory and the i/o space is lost.

Hardware is converging to the ‘clustering’ of
SMPs.  It is with reluctance that we use the word
clustering since this term is overloaded in the
industry.  If you look at the next hierarchical level
in hardware above the individual processor it is
the SMP.  The size of the SMP varies from 2 to 32.
The processors constituting the SMP vary from
Pentium Pros to almost Gflops PA-RISC or other,
processors.  The important trait of the SMP is that
it offers shared memory.  While this sounds good
at first there are issues that aren’t all that
spectacular.

The days of custom designed (for the technical
only market) systems are gone and will unlikely
ever return. Bandwidth “costs” and if the price of
the resulting system is too high it won’t sell in
large enough volume.  Vendors must leverage the
volume commodity market space and products in
order to survive.  This dictates the use of RISC
processors.  Despite the somewhat less desirable
characteristics of RISC processors relative to
classic supercomputers, users will need to make
this transition in order to use the high-end systems
of the future.  Future high-end systems will  be
commodity processor based.

High-end vendor economics

At this point we leave the purely technical
confines of the preceding sections and discuss
what may well be the more important perspective.
The economics in the computer industry.  It is this
author’s opinion that the high-end systems

The difficulty lies in the ability of compilers to
automatically parallelize legacy code.  Much
research has been done in this area and there is
substantial progress.  To the average practitioner
this technology has shown little benefit.  If a new
software project is being undertaken there are now
quite a few explicitly parallel high-level languages
that could be used.  Using these languages avoids
the need for message-passing. The portability,
longevity, and support of these languages has
restricted their use to researchers willing and able
to endure the shortcomings.  The real test of a new
language’s acceptance and success is when
multiple vendors offer it with support, future
releases, documentation, etc.  Then, and likely
only then, will the independent software vendors
(ISVs) consider using it. Until that time it is not
prime-time for these languages.

There exists a tension between the computation’s
decomposition (data and control) and the
architecture’s forte.  At the end of the day it isn’t
uncommon to find that the parallel computation
efforts are more troubling than the efforts
associated with the original physics. Have we
turned physics into difficult programming
problems?

High-end hardware

Technology has driven the hardware used in the
parallel computing arena through several phases.
The good news is that there are indications that a
convergence is taking place in the parallel
hardware.  Despite this there are still multiple
choices and this naturally leads to several ways to
program parallel applications.

Machines today are hierarchical.  We start from
the single processor and then move to connected
sets of processors that share memory; the SMP.
Considering the SMP as a “node” then the nodes
can be tightly integrated into a ccNUMA system.
In a ccNUMA system any processor in any node
can directly address any byte of memory in any
other node by processor issued load/store
instructions.  That is to say the tightly integrated
set of nodes has the look and feel of a SMP, albeit
with different latencies and bandwidths to some
portions of the memory.
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marketplace is largely driven by business realities.

Rick Belluzzio, SGI’s Chairman and CEO, has
stated SGI is, “currently redefining its
supercomputing strategy by folding the traditional
vector technologies into its Origin server lines
because the current supercomputing model ‘is
bankrupt and it doesn’t work.’ ”   This is a strong
statement coming from the company that started,
defined, and leads the supercomputing industry.

The world-wide high-end server market is
approximately 2 billion dollars a year.  This is for
servers selling at 1 million dollars and higher.  In
the absence of any competition a vendor can thus
build a 2 billion dollar business.  A vendor that is
fiscally healthy can spend about 10% of its annual
revenue on research and development.  Is this
enough?  The answer is, “no.” The cost to develop
a high-end system can exceed this amount.  A
rather extreme example is Cray Computer
Company.  It spent 350 million to develop its
offering. Making it even more difficult is the
constraint that a high-end vendor really needs to
have more than one design team in place.  This is
required since the time to develop a system is
longer than the effective market life of a system.

The solution to this is what is practiced by all the
large vendors today; have alternate sources of
revenue other than just the high-end technical.
Systems are designed out of more and more
commodity parts and the design is targeted to
serve, for example, the technical and commercial
markets.  This provides a larger base to earn
revenue in order to sustain the development of
systems.

How this came to pass is a confluence of a number
of factors.  Among them are (1) the increasingly
expensive development costs of high-end systems,
(2) the shrinking high-end market space, (3) the
lack of clear differentiation between commodity
computers and true supercomputers, and (4) the
convergence between the technical and
“commercial” spaces.

On item (3) we make the point that when the Cray
1 was first introduced it was substantially better
than the status quo systems used. Specifically 160

versus 4 Mflops and 12.5 versus 100 nanosecond
latency.  Today it is not unusual to find that a high-
end commodity workstation can outperform a
high-end classic supercomputer (on some
applications).  Item (4) is typified by the
emergence of a new and broader usage model in
the commercial arena.  Commercial companies are
now doing decision support, financial modeling,
fraud detection, data mining, and other
applications. These often stress a system in ways
that are similar to technical computing rather than
the classic transaction processing.

Epilogue

So is parallel programming ready for prime-time
today?  No.  Is parallel programming ready for the
masses?  No. Is parallel programming going to
become so easy that it will be usable by the
masses?  Not for years.  Is parallel computation
important?  Yes.  Is there a future for parallel
processing?  Definitely!

The advances that are required to make the
preceding paragraph more optimistic are almost
exclusively in algorithms and software.  The levels
of spending and effort are not in step with the
importance of these areas.  Parallel hardware
while it is still maturing, developing, and
converging is further along in maturity than is the
parallel software.

The biggest issue that is inhibiting the main-
streaming of parallelism is its inherent difficulty,
combined with the mixed results.  After significant
hard work by talented people some applications
show impressive performance.  This statement
needs to read, “After programming by the average
programmer almost any application can achieve
good parallel performance.”  Alas this is some
time in the future.  When it is a true statement then
parallel procesing’s prime-time will have arrived.

We do look forward to the wider acceptance of
parallelism.  It will be interesting to participate in
the unfolding of the plot of this on-going saga.

Greg Astfalk is the Chief Scientist of Hewlett-
Packard’s High Performance Systems Division in
Richardson, TX.



8 INFORMS Computing Society Newsletter

ICS Member Profile: Richard E. Rosenthal

He never forgot the first lesson of Professor
Naddor’s class, which was that all the techniques
of OR exist for the purpose of solving real
problems.  The first real problem Rick worked on
was a consulting job as a graduate student.  “It
was offered to all the professors first, but they
thought the client was a flake and I wouldn’t have
known any better,” he says.  The job did not turn
out successfully and this was a defining incident
in his career.   The problem involved a furniture
factory that the client had recently purchased.
Through years of mismanagement, it had
accumulated extremely unbalanced parts
inventories.  “Imagine a plant with a week’s
supply of table tops and twenty year’s worth of
table legs.  To make matters worse, the finished
products are not particularly profitable.”  The
client wanted to know whether to buy more table
tops or to scrap the table legs or some
combination of the two.  There were 100 products
facing this dilemma, and he wanted answers
immediately.

“I went home after the first meeting and designed
a beautiful linear program.  Beaming with pride, I
went into the Georgia Tech computer center the
next day, opened a private account, and asked for
access to an LP solver.  After all my courses on
math programming algorithms at Hopkins and
Tech, how hard could it be to use someone else’s
software implementation of what I thought I
understood so well?  I figured it would take less
than an hour to master the software, so I made an
appointment with the client to meet a little later
and told him to bring the data.  I promised not to
go home before presenting him with the optimal
solution.”

The only LP software available was LP1108,
running on the Univac 1108.  “The manual was
twice the size of the Manhattan phone book, and
it required a lot of experience in Job Control
Language, which I had never heard of.  Suffice it
to say, I was not prepared for my meeting and did
not get that beautiful LP formulation even close to
running that day.  No one had ever taught or even
mentioned to me what was involved in creating a

I was very fortunate to get introduced to
operations research as an undergraduate at Johns
Hopkins University.  John Liebman was the first
to tell me about OR and Eliezer Naddor taught my
first class in it, using Harvey Wagner’s book.
After two weeks of Naddor’s great lectures and
Wagner’s fun problems, I was hooked.  The next
year, I had a two-semester
course in network flows and
graphs with Manny
Bellmore, using Ford and
Fulkerson and lots of
classic papers from the
literature.   Coming from
the first generation of my
family to go to college, I
had absolutely no idea of
what being an academic
was all about.  Those three
professors influenced me more than they could
have imagined.  Bellmore’s course introduced me
to the idea of research and it led me to choose
optimization as a specialty.”

That’s how Rick Rosenthal describes his start in
OR.  He graduated from Johns Hopkins in 1972
and then completed a Ph.D. at Georgia Tech in
1975.  His first faculty position was in
management science at the University of
Tennessee.  Then in 1984, he went for a one-year
visit to the Naval Postgraduate School at the
invitation of Jerry Brown and has been there ever
since.  He became Editor in Chief of Naval
Research Logistics in 1988.  A year and a half
ago, he took over as Chairman of the NPS
Operations Research Department, one of the
largest, oldest, and, according to NPS Dean Peter
Purdue, one of the strongest OR programs in the
U.S.

With over 40 faculty, close to 200 graduate
students, and $2.8 million in 1998 external
research funding, managing the OR department
takes a lot of time.  But Rick says he is counting
on avoiding administration “as a life sentence,” so
he is keeping a strong interest and involvement in
research.
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ICS member profiles are intended to keep us up to date on
what some of our members are doing.  Profiled persons come
from academia, industry, military and civilian government.

matrix generator for an LP.”

As a footnote of the story, credit must be given to
Bruce Schmeiser, a fellow Georgia Tech graduate
student, who had excellent computing skills and
industrial experience.  “Bruce was already on his
way to becoming a famous name in simulation
and couldn’t care less about LP.  He rigged up a
clever little FORTRAN program that saved my
neck.”

The result of this humbling experience was that
Rick’s research and teaching in optimization have
always contained an emphasis on implementation.
It also explains his joy and excitement when, first,
conversational solvers like LINDO came along
and then algebraic modeling languages like
AMPL and GAMS emerged.  Rick started
teaching a 4-day short course on optimization
modeling using GAMS in 1988, a course he still
offers twice a year.  Some companies send people
every year to the class.  Past students often
provide example models or come back as guest
speakers.  “I love to demonstrate to people with
real problems how algebraic modeling languages
make it possible to experiment with intricate
mathematical programming approaches very
quickly and effectively.”

Rick’s optimization research began with
algorithmic developments.  “I have a few
favorites from those days.  The paper on
nonlinear networks applied to hydropower [1] got
a lot of attention in the water resources
community.  My work with Steve Brady on an
interactive computer graphical solution to a
location problem [2] does not read too badly after
all these years.  Terry Harrison’s dissertation on
multi-objective optimization applied to forestry
[3] helped me learn about both fields.   Another
pet project related to my favorite result from
Bellmore’s networks class: the basis-tree theorem
for pure network flows.   Thanks to the work of
my then-future NPS colleagues Jerry Brown and
Gordon Bradley, among others, everyone knew
that this theorem lets you do fantastically efficient
computing with labeling algorithms on the basis-
tree instead of linear algebra on the basis matrix.
In a paper that probably no more than three
people have read, I showed there exists another
tree corresponding to the basis-inverse and you
can implement the same algorithms just as well

with this inverse-tree [4].”

Current research is focused on military
applications of optimization, jointly with students
and colleagues at the Naval Postgraduate School,
such as [5].  “Our students are very special.  They
have already figured out what they want to be
when they grow up, and have come to us after
already proving they are first-rate performers at
their chosen professions.  They enable the faculty
to develop expertise in military problem areas to
which OR and computers can be applied.”   One
recent example of student research supervised by
Professor Rosenthal is Navy Lieutenant Scott
Kuykendall’s thesis [6], which grew directly out
of a situation that had frustrated the lieutenant
several times in his previous assignment as the
Tomahawk strike officer on an Aegis cruiser.
Lt.Col. Steve Baker of the Air Force recently
completed a Ph.D. dissertation [7], which is a
finalist for the INFORMS George B. Dantzig
Prize.  With Professors Laura Melody Williams
and Rosenthal of NPS, and David Morton of the
University of Texas at Austin, Baker developed
an airlift optimization model that has been used
by the Air Force to answer questions about
aircraft fleet selection, airfield infrastructure
investment, and airlift concepts of operation.

Rick Rosenthal summarizes his career:  “I have
been extremely lucky to have found OR at an
early age, and to have worked with great teachers,
colleagues and students all along the way.  Dr.
Naddor passed away several years ago, but I think
he would be very happy to see the applications
focus of my work.”
[1]. Rosenthal, Richard E., “A Nonlinear Network Flow Algorithm for

Maximization of Benefits in a Hydroelectric Power System,” Operations
Research, Vol. 29, 763-786 (1981).

[2]. Brady, Stephen D. and Richard E. Rosenthal, “Interactive Computer Graphical
Solutions of Constrained Minimax Location Problems,” AIIE Transactions,
Vol. 12, 241-248 (1980).

[3]. Harrison, Terry P. and Richard E. Rosenthal, “An Implicit/Explicit Approach to
Multiobjective Optimization with an Application to Forest Management
Planning,” Decision Sciences, Vol. 19, 190-210 (1988).

[4]. Rosenthal, Richard E., “Representing Inverses in Pure Network Flow
Optimization,” European Journal of Operational Research, Vol. 23, 356-366,
(1986).

[5]. Rosenthal, Richard E. and William J. Walsh, “Optimizing Flight Operations for
an Aircraft Carrier in Transit,” Operations Research, Vol. 44, 305-312, (1996).

[6]. Kuykendall, Scott D., “Optimizing Selection of Tomahawk Cruise Missiles,”
MS thesis in Operations Research, Naval Postgraduate School, March 1998.

[7]. Baker, Steven F., “A Cascade Approach for Staircase Linear Programs with an
Application to Air Force Mobility Optimization,” Ph.D. dissertation in
Operations Research, Naval Postgraduate School, June 1997.
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preceded by rising unrest in the community..”
And Malsburg is one of the founders of this
field. Another founder of this field and a past
president of the International Neural Network
Society (INNS) confided to me that “the neuro-
boom is over.” But many other scholars have
kept on fighting the arguments against the
current science on brain-like learning. Another
founder of the field and a past president of
INNS publicly disagreed with me at the recent
debate in Alaska, saying: “In brief, I disagree
with everything he (Asim Roy) said.”

Many distinguished scholars have
participated in the two open, public debates
at the last two international conferences on
neural networks. These debates centered on
various aspects of brain-like learning as
discussed later in this article. The first debate
at the International Conference on Neural
Networks (ICNN’97) in Houston, Texas in
June, 1997, included four past presidents of
INNS and five of the plenary speakers. The
second debate at the World Congress on
Computational Intelligence (WCCI’98) in
Anchorage, Alaska in May, 1998, included
five past presidents of INNS, founders and
gurus of the field. A summary of the first
debate has been published in the INNS
Newsletter of May, 1998, and on the Internet
through the various neural network-related
mailing lists. A summary of the second
debate is under preparation.

The debate about connectionism is nothing new.
The argument between the symbol system
hypothesis of artificial intelligence and the
massively parallel system conjecture of artificial
neural networks or connectionism has still not
abated. Marvin Minsky of MIT characterized
connectionism as “naïve” at the first international
conference on neural networks in San Diego in
1988. And Minsky and Seymour Papert not only
showed the limitations of the earlier simple neural
networks, the perceptrons, but were also the first
ones to raise the deeper question of computational
complexity of learning algorithms (“Epilogue:

The New Connectionism” in [8]). But the neural
network field moved along heedlessly with its
research agenda, ignoring all the deeper and
more disturbing questions raised by thoughtful
critics.  However, a scientific field is destined to
stumble sooner or later when it tries to skirt
legitimate questions about its founding ideas.
Now faced with fundamental challenges to the
assumptions behind their brain-like learning
algorithms, prominent researchers in the field are
finally calling for a “shake up of the field of
neural networks” and for its “rebirth.”

Some background information on
artificial neural networks

Connectionism or artificial neural networks
is the field of science that tries to replicate
brain-like computing. The brain is
understood to use a parallel computing
mechanism where each computing element
(a neuron or brain cell in the terminology of
this science) in this massively parallel system
is envisioned to perform a very simple
computation, such as y

i
 = f(z

i
), where z

i
 is

assumed to be a real valued input, y
i
 is either

a binary or a real valued output of the ith

neuron, and f a nonlinear function (see
Figure 1). The nonlinear function f, also
called a node function, takes different forms

in different
models of the
neuron; a
typical choice
for the node
function is a
step function or
a sigmoid
function. The
neurons get
their input
signals from
other neurons
or from
external
sources such as

various organs of the body like the eyes, the
ears and the nose. The output signal from a

trouble: continued from page 1
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neuron may be sent to other neurons or to
another organ of the body.

Studies in neuroscience and neurobiology
show that different parts of the brain perform
different tasks such as storage of short or
long term memory, language comprehension,
object recognition and so on. A particular
task is performed by a particular network of
cells (hence the term neural networks)
designed and trained for that task through the
process of learning or memorization. These
networks, when invoked to perform a
particular task, then send their outputs to
other parts of the brain or to an organ of the
body.

A network can have many layers of neurons,
where the outputs of one layer of neurons
become the inputs to the next layer of
neurons. And a network can have more than
one output signal; thus the output layer can
have more than one neuron. Different neural
network models assume different modes of
operation for the network, depending
somewhat on the function to be performed. A
neural network model for pattern
classification is often conceived to be a
feedforward type network where the input
signals are propagated through different
layers of the network to produce outputs at
the output layer. On the other hand, a neural
network model for memory is often
conceived to be of the feedback type (also
called recurrent networks or nonlinear
dynamical systems) where the outputs of the
network are fed back to the network as
inputs. This process of feedback continues
until the network converges to a stable set of
output values or continuously cycles among a
fixed set of output values.

Let xi = (x
i1
, x

i2
, ... , x

in
) be the vector of input

signals to the ith neuron, the inputs signals
being from other neurons in the network or
from external sources. Neural network
models assume that each input signal x

ij
 to ith

neuron is “weighted” by the strength of the ith

neuron’s connection to the jth source, w
ij
. The

weighted inputs, w
ij
x

ij
, are then summed to

form the actual input z
i
 to the node function f

at the ith neuron: z
i 
= Σ w

ij
x

ij
 + θ

i
, where θ

i
 is

a constant, called the threshold value. As
mentioned before, some typical node
functions are (1) the step function, where
f(z

i
) = 1 if z

i
 ≥ 0, and f(z

i
) = 0 otherwise, and

(2) the sigmoid function, where
f(z

i
) = 1/(1 + e- zi).

A network of neurons is made to perform a
certain task (memory, classification and so
on) by designing and training an appropriate
network through the process of learning or
memorization. The design of a network
involves determining (a) the number of
layers to use, (b) the number of neurons to
use in each layer, (c) the connectivity pattern
between the layers and neurons, (d) the node
function to use at each neuron, and (e) the
mode of operation of the network (e.g.
feedback vs. feedforward). The training  of a
network involves determining the connection
weights [w

ij
] and the threshold values [θ

i
]

from a set of training examples. For some
learning algorithms like back-propagation
[14,15], the design of the network is
provided by the user or some other external
source. For other algorithms like Adaptive
Resonance Theory (ART) [5], reduced
coulomb energy (RCE) [10], and radial basis
function (RBF) networks [9], the design of
the network is accomplished by the algorithm
itself, although other parameter values have
to be supplied to the algorithm on a trial and
error basis to perform the design task.

The training  of a network is accomplished
by adjusting the connection weights [w

ij
] by

means of a local learning law. A local
learning law is a means of gradually
changing the connection weights by an
amount ∆w

ij
 after observing each training

example. A learning law is based on the
general idea that a network is supposed to
perform a certain task and that the weights
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have to be set such that the error in the
performance of that task is minimized. A
learning law is local because it is conceived
that the individual neurons in the network are
the ones making the changes to their
connection weights or connection strengths,
based on the error in their performance.
Local learning laws are a direct descendent
of the idea that the cells or neurons in a brain
are autonomous learners. The idea of
“autonomous learners” is derived, in turn,
from the notion that there is no homunculus
or “a little man” inside the brain that “guides
and controls” the behavior of different cells
in the brain. The “no homunculus” argument
says that there couldn’t exist a distinct and
separate physical entity in the brain that
governs the behavior of other cells in the
brain. In other words, as the argument goes,
there are no “ghosts” in the brain. So any
notion of “extracellular control” of synaptic
modification (connection weight changes) is
not acceptable to this framework. Many
scientists support this notion (of cells being
autonomous learners) with examples of
physical processes that occur without any
external “control” of the processes, such as a
hurricane.

So, under the connectionist theory of
learning, the connection weight w

ij
(t), after

observing the tth training example, is given
by: w

ij
(t) = w

ij
(t-1) + ∆w

ij
(t), where ∆w

ij
(t)  is

the weight adjustment after the tth example
and is determined by the local learning law.
Donald Hebb [6] was the first to propose a
learning law for this field of science and
much of the current research on neural
networks is on developing new learning
laws. There are now hundreds of local
learning laws, but the most well-known
among them are back-propagation [14,15],
ART [5] and RBF networks [9]. To give an
example, the back propagation learning law
is as follows: ∆w

ij
(t) = - η(∂E/∂w

ij
(t)) +

α∆w
ij
(t-1). Here η is the learning rate (step

size) for the weight update at step t and α is a

momentum gain term. E is the mean-square
error of the whole network based on some
desired outputs, in a supervised mode of
learning, where a teacher is present to
indicate what the correct output should be for
any given input. Back-propagation is a
steepest descent algorithm and -∂E/∂w

ij
(t) is

the steepest descent direction (negative of the
gradient).

The distinction between memory and
learning

Two of the main functions of the brain are
memory and learning. There are of course
many categories of memory (short term,
medium term, long term, working memory,
episodic memory and so on) and of learning
(supervised, unsupervised, inductive,
reinforcement and so on). In order to
characterize the learning behavior of the
brain, it is necessary to distinguish between
these two functions. Learning generally
implies learning of rules from examples.
Memory, on the other hand, implies simple
storing of facts and information for later
recall (e.g. an image, a scene, a song, an
instruction). Sometimes these terms are used
interchangeably in the literature, and in
everyday life: memory is often confused with
learning. But the processes of memorization
are different from that of learning. So
memory and learning are not the same.

Learning or generalization from examples

Learning of rules from examples involves
generalization. Generalization implies the
ability to derive a succinct description of a
phenomenon, using a simple set of rules or
statements, from a set of observations of the
phenomenon. So, in this sense, the simpler
the derived description of the phenomenon,
the better is the generalization. For example,
Einstein’s E = MC2 is a superbly succinct
generalization of a natural phenomenon. And
this is the essence of learning from examples.
So any brain-like learning algorithm must
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exhibit this property of the brain - the ability
to generalize. That is, it must demonstrate
that it makes an explicit attempt to generalize
and learn. In order to generalize, the learning
system must have the ability to design the
appropriate network.

The problems of connectionism - some
major misconceptions about the brain

A misconception - no synaptic change
signals are allowed to the cells from other
sources within the brain

The notion that each neuron or cell in the brain
is an “autonomous/independent learner” is one
of the fundamental notions in this field. Under
this notion, it is construed that individual cells
modify their synaptic strengths (connection
weights) based solely on their “input and output
behavior.” The input and output information
of a cell may include information about the
error in the performance of the given task by
the network and an individual cell’s
contribution to that error; see for example the
back-propagation learning law in the last
section. This notion implies that no other
physical entity external to the cell is allowed
to “signal” it to adjust its connection strengths.
All of the well-known local learning laws
developed to date most faithfully adhere to this
notion [2, 3, 5, 6, 7, 9, 10, 14, 15]. However,
there is no neurobiological evidence to support
this premise. In fact, there is a growing body
of evidence that says that extrasynaptic
neuromodulators influence synaptic
adjustments “directly” [7]. The neurobiological
evidence shows that there are many different
kinds of neurotransmitters and receptors and
many different cellular pathways for them to
affect cellular changes. Cellular mechanisms
within the cell are used to convert these
“extracellular” signals into long-lasting
changes in cellular properties. So the
connectionist conjecture that no other physical
entity directly signals changes to a cell’s
behavior is a major misconception about the

brain. Beyond the neurobiological evidence,
this conjecture is also logically inconsistent,
as discussed later.

Another misconception - the brain does not
collect and store any information about the
problem prior to actual learning

In connectionism, brain-like learning
algorithms cannot store any training examples
(or any other information, for that matter)
explicitly in its memory (in some kind of
working memory, that is, that can be readily
accessed by the learning system in order to
learn) [2, 3, 5, 6, 7, 9, 10, 14, 15]. The learning
mechanism can use any particular training
example presented to it to adjust whatever
network it is learning in, but must forget that
example before examining others. This is the
so-called “memoryless learning” property,
where no storage of facts/information is
allowed. The idea is to obviate the need for
large amounts of memory to store a large
number of training examples or other facts.
Although this process of learning is very
memory efficient, it can be very slow and time-
consuming, requiring lots of training examples,
as demonstrated in [11,12]. However, the main
problem with this notion of memoryless
learning is that it is completely inconsistent
with the way humans actually learn; it violates
very basic behavioral facts. Remembering
relevant facts and examples is very much a part
of the human learning process; it facilitates
mental examination of facts and information
that is the basis for all human learning. And in
order to examine facts and information and
learn from it, humans need memory; they need
to remember facts. But connectionism has no
provision for it.

There are other logical problems with the idea
of memoryless learning. First, one cannot learn
(generalize, that is) unless one knows what is
there to learn (generalize). And one can find
out what is there to learn “only by” collecting
and storing some information about the
problem at hand. In other words, no system,
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biological or otherwise, can “prepare” itself to
learn without having some information about
what is there to learn (generalize). And in order
to generalize well, one has to look at a whole
body of information relevant to the problem,
not just bits and pieces of information at a time
as is allowed in memoryless learning. So the
notion of “memoryless learning” is a very
serious misconception in these fields, and is
totally inconsistent with external observations
of the human learning process.

A third misconception - the brain learns
instantly from each and every learning
example presented to it

A major dilemma for this field is explaining
the fact that sometimes human learning is not
instantaneous, but may occur much later,
perhaps at a distant point in time, based on
information already collected and stored in the
brain. The problem lies with the fundamental
belief in the connectionist school that the brain
learns “instantaneously.” Instantaneous, that is,
in the sense that it learns promptly from each
and every learning example presented to it by
adjusting the relevant synaptic strengths or
connection weights in the network. And it even
learns from the very first example presented to
it! The learning, as usual, is accomplished by
individual neurons using some kind of a “local
learning law.” Note that “instantaneous
learning” is simply a reflection of “memoryless
learning;” just the opposite side of the same
coin.

A fourth misconception - the networks are
predesigned and externally supplied to the
brain; and the learning parameters are
externally supplied too

Another major dilemma for this field is
explaining the fact that a network design, and
other types of algorithmic information, has to
be externally supplied to some of their learning
systems, whereas no such information is
externally supplied to the human brain. In fact,
not just one, but many different network

designs (and other parameter information) are
often supplied to these learning systems on a
trial and error basis in order for them to learn
[5, 9, 10, 14, 15]. However, as far as is known,
no one has been able to supply any network
design or learning parameter information to a
human brain. Plus, the whole idea of
“instantaneous and memoryless learning” is
completely inconsistent with their trial and
error learning processes; there is supposed to
be no storage of learning examples in these
systems for such a trial and error process to
take place. In other words, no such trial and
error process can take place unless there is
memory in the system, which they disallow.

In order for humans to generalize well in a
learning situation, the brain has to be able to
design different networks for different
problems - different number of layers, number
of neurons per layer, connection weights and
so on - and adjust its own learning parameters.
The networks required for different problems
are different, it is not a “same size fits all” type
situation. So the networks cannot come “pre-
designed” in the brain; they cannot be inherited
for every possible “unknown” learning problem
faced by the brain on a regular basis. Since no
information about the design of the network is
ever supplied to the brain, it implies that
network design is performed internally by the
brain. Thus it is expected that any brain-like
learning system must also demonstrate the
same ability to design networks and adjust its
own learning parameters without any outside
assistance. But the so-called autonomous
learning systems of connectionism depend on
external sources to provide the network design
to them; hence they are inherently incapable
of generalizing without external assistance.
This implies again that connectionist learning
is not brain-like at all.

Other logical problems with connectionist
learning

But there are more problems with these
connectionist ideas. Strict autonomous local
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learning implies pre-definition of a network “by
the learning system” without having seen a
single training example and without having any
knowledge at all of the complexity of the
problem. There is no system, biological or
otherwise, that can do that in a meaningful way;
it is not a “feasible idea” for any system. The
other fallacy of the autonomous local learning
idea is that it acknowledges the existence of a
“master system” that provides the network
design and adjusts the learning parameters so
that autonomous learners can learn. So
connectionism’s autonomous learners, in the
end, are directed and controlled by other
sources after all! So these connectionist ideas
(instantaneous learning, memoryless learning
and autonomous local learning) are completely
illogical, misconceived and incompatible with
what can be externally observed of the human
learning process.

Conclusions

One of the “large” missing pieces in the
existing theories of artificial neural networks
and connectionism is the characterization of
an autonomous learning system such as the
brain. Although Rumelhart [15] and others
have clearly defined (conjectured) the
“internal mechanisms” of the brain, no one
has characterized in a similar manner the
external behavioral characteristics that they
are supposed to produce. As a result, the
field pursued algorithm development largely
from an “internal mechanisms” point of view
(local, autonomous learning, memoryless
learning, and instantaneous learning) rather
than from the point of view of “external
behavioral characteristics” of human
learning. That flaw is partly responsible for
its current troubles. It is essential that the
development of learning algorithms be
guided primarily by the need to reproduce a
set of sensible, well-accepted external
characteristics. If that set of external
characteristics cannot be reproduced by a
certain conjecture about the internal

mechanisms, than that conjecture is not
valid.

This article essentially described some of the
prevailing notions of connectionism and
showed their logical inconsistencies and how
they fail to properly account for some very
basic aspects of human learning. So there is
definitely a need for some new ideas about the
internal mechanisms of the brain. From the last
two debates and from recent neurobiological
evidence, it appears that a very convincing
argument can be made that there are subsystems
within the brain that control other subsystems.
This “control theoretic” notion, which allows
external sources to directly control a cell’s
behavior and perform other tasks, is finding
growing acceptance among scientists [13]. This
notion has many different labels at this point:
non-local means of learning, global learning
and so on. It would not be fair if it is not
acknowledged that such control theoretic
notions are already used, in one form or
another, in almost all connectionist learning
systems. For example, all constructive learning
algorithms (e.g. [5, 9, 10]) use non-local means
to “decide” when to expand the size of the
network. And the back-propagation algorithm
itself [14, 15] depends on a non-local, external
source to provide it the design of a network in
which to learn. So connectionist systems
inadvertently acknowledge this “control
theoretic” idea, by using a “master or
controlling subsystem” that designs networks
and sets learning parameters for them. In other
words, as baffling as it may sound, the control
theoretic ideas have been in use all along; they
are nothing new. Only recently has such non-
local means of learning been used effectively
to develop robust and powerful learning
algorithms that can design and train networks
in polynomial time complexity [1, 4, 11, 12].
Polynomial time complexity, by the way, is an
essential computational property for brain-like
autonomous learning systems.

In addition, a control theoretic framework
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resolves many of the problems and dilemmas
of connectionism. Under such a framework,
learning need no longer be instantaneous and
can wait until some information is collected
about the problem. Learning can always be
invoked by a controlling subsystem at a later
point in time. This would also facilitate
understanding the complexity of the problem
from the information that has been collected
and stored already. Such a framework would
also resolve the network design dilemma and
the problems of algorithmic efficiency that
have plagued this field for so long [1, 4, 11,
12]. So one can argue very strongly for such a
theory of the brain both from a computational
point of view and from the point of view of
being consistent with externally observed
human learning behavior.
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Software Announcement

GeNIe 1.0

We are pleased to announce GeNIe 1.0, a
free development environment for graphical
decision-theoretic models.

At the moment it implements Bayesian
networks and influence diagrams with, what
we believe to be, a pleasant and reliable user
interface.  It has hierarchical submodels, a
windows-style tree view, Noisy-OR nodes,
deterministic nodes, multiple decision nodes,
relevance reasoning that includes
designating nodes as targets, multiple utility
nodes, linearly-additive Multi-Attribute
utility nodes (we will have generalized
MAU nodes in the future), value of
information computation, several Bayesian
networks algorithms to choose from, on-
screen comments, an extensive beginner-
oriented HTML-based help system, and
many other useful features that one would
want from a development environment for
graphical models.  GeNIe is the main
research and teaching vehicle at Decision
Systems Laboratory, so naturally it will
evolve as time goes.

GeNIe runs on Windows 95/NT computers.
It comes with SMILE (Structural Modeling,
Inference, and Learning Engine), a portable
library of C++ classes that can be embedded
in applications that are based on Bayesian
networks and influence diagram models
developed using GeNIe.  SMILE is compiled
so far for Windows 95/98/NT and Unix.  If
there is sufficient demand, we will consider
recompiling it for other environments.

ITORMS: Call for Papers

ITORMS is the first electronic journal of
INFORMS.

ITORMS uses the interactive electronic
medium to deliver timely and updated
information employing not just the
textual and graphical format but also
other visual and algorithmic information.
The Interactive Transactions of OR/MS
publishes original, scholarly high quality
articles and bibliographies that provide a
perspective view of the OR/MS
discipline and exploit the interactivity
offered by the Internet. Interactivity has
two dimensions in this context. First, the
published articles are constantly updated
by the authors (contributing editors) to
offer the most recent literature on the
topic of interest. Second, interactivity
allows the readers to learn not only from
the paper being read, but also provide
access to other related resources that are
available or will be developing on the
Internet.

ICS loyal members such as Harvey
Greenberg, Chris Jones, and Fred
Murphy have published in ITORMS.
You are invited to submit a paper for
review for publication in ITORMS.
Check out the ITORMS web site at http://
www.informs.org/Pubs/ITORMS,  or
contact the Editor, Ramesh Sharda at
sharda@okstate.edu

GeNIe: Continued on page 18

http://www.informs.org/Pubs/ITORMS
http://www.informs.org/Pubs/ITORMS
mailto:sharda@okstate.edu
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Message from the Chair
Harlan P. Crowder

ILOG, Inc
Silicon Valley, USA
crowder@ilog.com

After a lot of tenacious effort, the Computer Sciences Technical Section has a new name; we are
now the INFORMS Computing Society.  The designation of “Society” for INFORMS subgroups is
reserved for SIGs and sections that have demonstrated a sustained commitment over time and have
significantly advanced a particular aspect of operations research and management sciences.  On both
counts, the INFORMS Computing Society has earned this special designation.

From the early days of our discipline, the computational aspects of OR/MS have advanced in
parallel with computer and computational science.  Much of what we take for granted today in
computational OR/MS owes a debt to computer science:  the invention of sophisticated data structures for
efficient algorithms; the application of computational complexity that allows us to understand the
capabilities, and limitations, of our problem-solving methods; the adoption of advances in computer
programming languages to the expression of mathematical models; and the introduction of computational
techniques that mimic natural systems, including simulated annealing from physical sciences and genetic
algorithms for the biological sciences.

I have always been especially impressed by how the whole study of computational complexity in
the 1970s and early 1980s gave us a fundamental understanding of the relative difficulty of a wide range
of OR/MS problems.  I once asked Philip Wolfe, OR/MS legend extraordinaire, what he thought was the
usefulness of complexity theory on the every-day, real-world application of OR/MS.  Phil said that was
easy; the practitioner could now confidently march into the boss’ office and say, “Boss, I don’t have any
idea how to solve this problem you asked me to solve.  But there are a lot of very smart people that have
looked at this same problem, and they don’t know how to solve it either!”  Phil has a way of getting to the
point.

Our new designation as a Society is a special honor, but it also means we have more
responsibility.  New moves are afoot in INFORMS to give more leadership to subgroups, including the
opportunity to have Society meetings on an annual basis.  This means that INFORMS Computing Society
members will need to work harder and get more involved to make the Society a continuing success.  I
invite you attend our Society business meetings at INFORMS meetings in Seattle, Cincinnati and
Philadelphia, and to get actively involved.  And I especially urge you to plan on attending our next big
INFORMS Computing Society conference in Cancun, Mexico, the first week of 2000.

GeNIe and SMILE are free for the taking for research, teaching, and personal use.  (We do ask
authors of publications in which GeNIe and SMILE played a role to acknowledge it.)  They can be
downloaded from http://www2.sis.pitt.edu/~genie.  We believe that the programs will prove useful
for the community.  May the smiling GeNIe grant you your three wishes :-).

Marek J. Druzdzel (marek@sis.pitt.edu) University of Pittsburgh, Decision Systems Laboratory
School of Information Sciences, Intelligent Systems Program, and Medical Informatics Training Program

GeNIe: continued from page 17

http://www2.sis.pitt.edu/~genie
mailto:marek@sis.pitt.edu
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New Books

Network Optimization: Continuous and
Discrete Models by Dimitri P. Bertsekas,
Massachusetts Institute of Technology.
Athena Scientific, 1998, 608 pages, ISBN 1-
886529-02-7.

This book provides an introductory, yet
comprehensive and up-to-date treatment of
linear, nonlinear, and discrete network
optimization problems, and the analytical
and algorithmic methodology for solving
them. It also provides a guide to important
practical network applications and their
algorithmic solution, highlights the interplay
between continuous and discrete models, and
treats extensively the associated analytical
and algorithmic issue at an introductory and
accessible level.

Among its special features, the book:

- provides a comprehensive account of the
theory and the practical application of the
principal algorithms for linear network flow
problems, including simplex, dual ascent,
and auction algorithms.
- covers extensively the main algorithms for
specialized network flow problems, such as
shortest path, max-flow, assignment, and
traveling salesman.
- develops the main methods for nonlinear
network problems, such as convex separable
and multicommodity flow problems arising
in communication, transportation, and
manufacturing contexts.
- describes the main models and algorithmic
approaches for integer constrained network
problems.
- contains many examples, practical
applications, illustrations, and exercises.

For preface and table of contents, see http://
world.std.com/~athenasc/netsbook.html

Reinforcement Learning: An Introduction
by Richard S. Sutton, AT&T Shannon
Laboratories and Andrew G. Barto,
University of Massachusetts.  MIT Press,
1998, 344 pages, ISBN 0-262-19398-1.

Reinforcement learning, one of the most
active research areas in artificial intelligence,
is a computational approach to learning
whereby an agent tries to maximize the total
amount of reward it receives when
interacting with a complex, uncertain
environment. This book provides a clear and
simple account of the key ideas and
algorithms of reinforcement learning. The
discussion ranges from the history of the
field’s intellectual foundations to the most
recent developments and applications. The
only necessary mathematical background is
familiarity with elementary concepts of
probability.

The book is divided into three parts. Part I
defines the reinforcement learning problem
in terms of Markov decision processes. Part
II provides basic solution methods: dynamic
programming, Monte Carlo methods, and
temporal-difference learning. Part III
presents a unified view of the solution
methods and incorporates artificial neural
networks, eligibility races, and planning. The
final chapter presents a number of case
studies.

Combinatorial Optimization  by William J.
Cook, Rice University, William H.
Cunningham, University of Waterloo,
William R. Pulleyblank, IBM Research, and
Alexander Schrijver, Centrum voor
Wiskunde en Informatica.  John Wiley and
Sons, Inc, 1998, 368 pages, ISBN 0-471-
55894-X.
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One of the youngest, most vital areas of
applied mathematics, combinatorial
optimization integrates techniques from
combinatorics, linear programming, and the
theory of algorithms. Because of its success
in solving difficult problems in areas from
telecommunications to VLSI, from product
distribution to airline crew scheduling, the
field has seen a ground swell of activity in
the past decade.

Combinatorial Optimization is an ideal
introduction to this mathematical discipline
for advanced undergraduates and graduate
students of discrete mathematics, computer
science, and operations research. Written by
a team of recognized experts, the text offers a
thorough, highly accessible treatment of both
classical concepts and recent results. The
topics include network flow problems,
optimal matching, integrality of polyhedra,
matroids and NP-completeness. The book
features logical and consistent exposition,
clear explanation of basic and advanced
concepts, many real-world examples, and
helpful, skill-building exercises.

Advances in Sensitivity Analysis and
Parametric Programming edited by Tomas
Gal, Fern Universität and Harvey J.
Greenberg, University of Colorado at
Denver.  Kluwer Academic Press, 1997, 610
pages, ISBN 0-7923-9917-X.

Since the beginning of linear programming a
half century ago, sensitivity analysis has
been an integral part of its theory,
implementations and applications. As much
as possible, these foundations have, over the
years, been extended to nonlinear, integer,
stochastic, multi-criteria, and other
mathematical programming, though it is
considered that those advances have so far
not provided as rich a body of knowledge.
Recent advances in mathematical
programming have opened up new insights

about sensitivity analysis (including
sensitivity analysis in the presence of
degeneracy in linear programming). The
paradigm, What if....? question is no longer
the only question of interest. Often, we want
to know Why....? and Why not....? Such
questions were not analyzed in the early
years of Mathematical Programming to the
same extent that they are now, and we have
not only expanded our thinking about “post-
optimal analysis”, but also about “solution
analysis”, even if the solution obtained is not
optimal. Therefore, it is now time to examine
all the recent advances on sensitivity analysis
and parametric programming.

This book bridges the origins of sensitivity
analysis with the state-of-the-art. It covers
much of the traditional approaches with a
modern perspective (including degeneracy
graphs and the tolerance approach). It shows
recent results using the optimal partition
approach, stemming from interior point
methods, for both linear and quadratic
programming. It examines the special case of
network models, and presents a neglected
topic, qualitative sensitivity analysis. The
book also presents advances in sensitivity
analysis outside of standard linear
programming. These include mixed integer
programming, nonlinear programming,
multi-criteria mathematical programming,
stochastic programming, quadratic programs,
and fuzzy mathematical programming.

INFORMS ON-LINE
http://www.informs.org/

Subscribe to IOL-NEWS and get weekly e-
mail updates.  Visit INFORMS ON-LINE
for details.
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Journal on Computing: Vol. 10, No. 4

Feature Article
“The World Wide Web: Opportunities for Operations Research and Management Science”, Bhargava and Krishnan
Commentaries
“Dynamic, Distributed, Platform Independent OR/MS Applications -- A Network Perspective”, Bradley and Buss
“Predictions for Web Technologies in Optimization”, Fourer
“A New Horizon for OR/MS”, Geoffrion
“The World Wide Web: It’s the Customers”, Trick
Rejoinder
“OR/MS, Electronic Commerce, and the Virtual INFORMS Community”, Bhargava and Krishnan
Contributed Research Articles
“Partitioning the Attribute Set for a ProbabilisticReasoning System”, Sarkar and Ghosh
“An Efficient Algorithm for Solving an Air Traffic Management Model of the National Airspace System”, Boyd,
Burlingame and Lindsay
“Lifted Cover Inequalities for 0-1 Integer Programs: Computation”, Gu, Nemhauser and Savelsbergh
“A Branch and Bound Algorithm for the Stability Number of a Sparse Graph”, Sewell
“Distribution Estimation using Laplace Transforms”, Harris and Marchal

Feature Article Abstract: The World Wide Web has already affected OR/MS work in a significant way, and holds
great potential for changing the nature of OR/MS products and the OR/MS software economy.  Web technologies are
relevant to OR/MS work in two ways.  First, the Web is a multimedia communication system.  Originally based on an
information pull model, it is -- critical for OR/MS -- being extended for information push as well.  Second, it is a
large distributed computing environment in which OR/MS products -- interactive computational applications -- can
be made available, and interacted with, over a global network.  Enabling technologies for Web-based execution of
OR/MS applications are classified into those involving client-side execution and server-side execution.  Methods for
combining multiple client-side and server-side technologies are critical to OR/MS’s use of these technologies.  These
methods, and various emerging technologies for developing computational applications give the OR/MS worker a
rich armament for building Web-based versions of conventional applications.  They also enable a new class of
distributed applications working on real-time data.  Web technologies are expected to encourage the development of
OR/MS products as specialized component applications that can be bundled to solve real-world problems.  Effective
exploitation, for OR/MS purposes, of these technological innovations will also require initiatives, changes, and
greater involvement by OR/MS organizations.

Fred Glover Wins von Neumann Prize
Fred Glover was awarded the INFORMS John von Neumann Theory Prize at the Spring 1998 meeting in Montreal.

The presentation was made by Leon S. Lasdon, chair of the INFORMS von
Neumann Committee (see photo at left).  The award was presented to Dr.
Glover for “his fundamental contributions to integer programming, networks,
and combinatorial optimization.”  The full text of the presentation citation
can be found at http://www.informs.org/Prizes/
vonneumanndetails.htm#1998.

Fred’s accomplishments are also nicely outlined in the June 1998 issue of
OR/MS Today.

The von Neumann prize is awarded annually to a scholar who has made
fundamental, sustained contributions to theory in operations research and the
management sciences. It is awarded for a body of work, typically published
over a period of several years,  reflecting contributions that have stood the
test of time. The criteria for the prize are broad, and include significance,
innovation, depth, and scientific excellence.  The award is $5,000, a
medallion and a citation.

Fred Glover (left) and Leon Lasdon
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Computing and Optimization Tools
for the New Millennium

Seventh INFORMS Computing Society Conference
Cancún, México

January 5-7, 2000

Computer science and operations research share an important part of their history.  Their
interface is responsible for advances that could have not been achieved in isolation.  The
first six INFORMS Computing Society (ICS) conferences witnessed fascinating
developments in the computer science/operations research interface.  We would like to take
this opportunity to invite you to the seventh ICS conference, which has the goal of bringing
together researchers and practitioners in Operations Research, Computer Science,
Management Science, Artificial Intelligence, and other related fields. These researchers and
practitioners will be responsible for creating the computing and optimization tools for the
new millennium.

The advisory committee for the conference is:
·  Bruce Golden (University of Maryland)
·  Harvey Greenberg (University of Colorado)
·  Paolo Toth (University of Bologna)
·  John Hooker (Carnegie Mellon University).

The conference hotel will be the Westin Regina Cancún, situated just up the beach from the
Punta Nizuc natural reef.  Anyone interested in organizing sessions or tutorials should
contact either one of us.  We hope to continue the tradition of excellence established in
previous ICS conferences, for which we need to count with your support and participation.
For additional information, please visit the conference web site at http://www-
bus.colorado.edu/Faculty/Laguna/cancun2000.html

General Co-Chairs:
Manuel Laguna
University of Colorado
Manuel.Laguna@Colorado.Edu

José Luis González Velarde
Monterrey Tech
lugonzal@campus.mty.itesm.mx

http://www-bus.colorado.edu/Faculty/Laguna/cancun2000.html
http://www-bus.colorado.edu/Faculty/Laguna/cancun2000.html
mailto:Manuel.Laguna@Colorado.Edu
mailto:lugonzal@campus.mty.itesm.mx
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Upcoming Meetings

INFORMS Spring 1999 Meeting, Cincinnati
Convention Center and Omni Netherland Plaza,
Cincinnati OH, May 2-5, 1999.  Theme:
Delivering to the Global Consumer.  Features
comprehensive coverage of OR/MS topics while
also striving for increased emphasis in pedagogy
and practice.  General Chair David Rogers,
(david.rogers@uc.edu), URL=http://
www.informs.org/Conf/Cincinnati99/

Fourth Conference on Information Systems
and Technology, Cincinnati OH, May 2-5, 1999,
sponsored by the INFORMS Colleges on
Information Systems and Artificial Intelligence.
URL=http://www.cob.ohio-state.edu/~rolland/
cist-99/main.htm

Winter Simulation Conference (WSC ‘98),
Grand Hyatt Hotel, Washington DC, December
13-16, Theme: “Simulation in the 21st Century”.
URL=http://www.wintersim.org

19th IFIP TC7 Conference on System
Modelling and Optimization, Cambridge,
England, July 12-16, 1999.

Society for Medical Decision Making (SMDM),
Reno, NV, October 2-5, 1999.

INFORMS Fall 1999 Meeting, Philadelphia
Marriott, Philadelphia PA, November 7-10, 1999.

INFORMS/CSTS 7th Biennial Conference,
Cancun Mexico, January 2000.  General Chair:
Manuel Laguna.

INFORMS Spring 2000 Meeting, San Francisco
CA.

INFORMS/KORS,  Seoul, South Korea,
Summer 2000.

News about Members

Colin Bell (colinbel@microsoft.com) left his position
as Professor of Management Sciences and Associate
Dean at the University of Iowa for a position in the
Microsoft Project Development group at Microsoft
Corporation.

Ismail Chabini  (chabini@mit.edu) is the winner of an
NSF Career award starting in June 1998.

Shyam (schadha@uwec.edu) and Veena Chadha at the
University of Wisconsin, Eau Claire, with several
students, investigated the distribution problem of  the
Walmart distribution center located at Menomonie, WI
in the spring of 1998.  A mathematical model was
developed using ten cities of the region.  This project
was funded by the Student Research Collabration
Grants of the University of Wisconsin, Eau Claire.

Jonathon Eckstein (jeckstei@rutcor.rutgers.edu) has
been granted tenure and promoted to Associate
Professor at Rutgers University.  In addition, he was
awarded the Rutgers University Board of Trustees
Fellowship for Scholarly Excellence in May 1998 and
his second child was born in March 1998.

Anna Nagurney (nagurney@gbfin.umass.edu) has been
named to an endowed chair position at the University of
Massachusetts.  Her title is John F. Smith Memorial
Professor.  This professorship is funded by a gift from
Jack Smith, CEO of General Motors, to honor the
memory of his father.

Marcel F. Neuts (marcel@tucson.sie.arizona.edu) is
developing a research program in computer
experimentation for probability models. He is also
starting a news bulletin in this area - in addition to the
existing Stochastic Models News and the Matrix-
Analytic Bulletin.  For the year 2000, he is planning a
special issue of Stochastic Models on the methodology
of  computer experimentation.  He also offers consulting
and educational services in applied probability and its
computational aspects.

S. Raghavan (suraghav@rhsmith.umd.edu) moved
from his position as Acting Director, Optimization
Group, at U S WEST Advanced Technologies, Boulder
CO, to take up a faculty appointment in the Decision
and Information Technologies Department, within the
Robert H. Smith School of Business at the University of
Maryland, College Park MD.

mailto:david.rogers@uc.edu
http://www.informs.org/Conf/Cincinnati99/
http://www.informs.org/Conf/Cincinnati99/
http://www.cob.ohio-state.edu/~rolland/cist-99/main.htm
http://www.cob.ohio-state.edu/~rolland/cist-99/main.htm
http://www.wintersim.org
mailto:colinbel@microsoft.com
mailto:chabini@mit.edu
mailto:schadha@uwec.edu
mailto:jeckstei@rutcor.rutgers.edu
mailto:nagurney@gbfin.umass.edu
mailto:marcel@tucson.sie.arizona.edu
mailto:suraghav@rhsmith.umd.edu
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The GAMS Short Course:
Optimization Modeling and Problem-Solving

Using the General Algebraic Modeling System

Date: January 11-14, 1999 Location:  Carmel, California
Instructor: Dr. Richard E. Rosenthal

Here’s what others have said about Dr. Rosenthal’s course:
“Dr. Rosenthal does a great job of “Dr. Rosenthal has many years of “Truly one of the most enjoyable “Excellent course!
bridging the gap between academia experience with a remarkable and instructive courses I have ever I wish I went to it
and the corporate world. His broad range of real world attended. Fine balance between a year ago. I could
instruction is excellent, and the real- applications. His course is loaded optimization theory, GAMS have saved a ton
world optimization models he shares with valuable examples, anecdotes, implementation and managerial of time and
with the class are invaluable.” and insights.” practice.” money.”
Margery Connor Dr. Michael Saunders Howard Mason Allan Metts
Chevron Stanford University Bankers Trust BellSouth

For detailed course description and registration information, contact GAMS Development Corp.
 (tel: 202-342-0180, fax: 202-342-0181) or view web site http://www.gams.com

Now in its eleventh year

http://www.gams.com

	Contents
	A Science in Trouble
	Message from the Editors
	What about parallel programming and high-end systems?
	ICS Member Profile: Richard E. Rosenthal
	ITORMS: Call for Papers
	GeNIe 1.0
	Message from the Chair
	New Books
	Journal on Computing: Vol. 10, No. 4
	Fred Glover Wins von Neumann Prize
	Seventh INFORMS Computing Society Conference
	News about Members
	Upcoming Meetings


