Scheduling and Routing Roaming Conductors to Support Single-Person Crew Operations on North American Freight Railways

Zezhou Wang, Darkhan Mussanov, C. Tyler Dick, Ph.D., P.E.

INFORMS Annual Meeting – Seattle
October 22nd, 2019
Background

► Train crew expenses are a considerable operating cost for private for-profit US freight railways
 • Exceed $6 billion/year for US Class 1 railroads

► US freight train crews typically operate with two-person crews
 • Engineer controls the locomotive
 • Conductor manages the train operation, performs “work events”, and helps to ensure engineer is safely operating the train

► Implementation of Positive Train Control to enforce train speed and movement authority reduces safety benefits of a second crew member in the locomotive cab

► Strong economic incentive for US railroads to adopt one-person train crews for mainline freight trains
 • No regulatory obstacles but “work events” are a practical challenge
Freight Train Work Events

Work events are tasks that require the second crew member (conductor) on the ground outside the train to assist the engineer.

Planned work events
- Delivery or pick-up of railcars at shipper spur tracks and junctions with other railways
- Exchanging blocks of railcars at intermediate terminals
- Adding or removing locomotives at designated locations
- Lining a turnout switch for meets with other trains where there is no centralized traffic control system

Unplanned work events
- Walking train to inspect defects detected by wayside equipment
- Dropping off a defective “bad order” railcar
- Flag protection at some roadway level crossings
- Observe clearances at special locations or during extreme weather

HOW TO HANDLE?
Roaming Conductors

New concept of freight train operations proposed by several major freight railroads

- Single-person crew (engineer) onboard the locomotive
- Assisted by a “roaming conductor” when necessary
 - Not assigned to a particular train
 - Travel via highway vehicles on the roadway network
 - Meet trains to perform scheduled work events
 - May serve multiple trains as required

Potentially economical if the number of roaming conductors is less than the number of onboard conductors for a particular pattern of train paths and work events
Objective: develop an approach to optimally assign train work events to a minimum number of roaming conductors, and determine the feasibility of roaming conductors for different roaming conductor travel scenarios.
Test Problem Setting and Assumptions

- Hypothetical 300-mile (482km) rail corridor
- Average train speed: 55 to 65 mph (88 to 105 km/h)
- Direct access to rail line from parallel highway

- During 12-hour conductor shift
 - Operate 20 trains on the corridor
 - 100 work events randomly distributed between trains and along route
 - Assume work events are completed instantaneously
 (Future work introduces work event duration)

- Variable factor levels
 - Roaming conductor maximum average travel speed
 - 20, 30, 40, 50, 60 mph (32, 48, 64, 80, 97km/h)
 - Number of roaming conductor terminals
 - 1, 2, 3 or 4 distributed evenly along corridor
Mathematical Optimization Model

- Conceptually similar to the Vehicle Routing Problem with Time Windows (VRPTW)
 - Conductor trip = vehicle route
 - Work event = stop
 - Conductors must begin and end shift at their assigned terminal
 - Cannot exceed maximum average travel speed when moving between work events

- Can formulate as a mixed-integer program (MIP)

- Problem size grows quickly
 - Impractical for future tactical application to unplanned work events

\[
\min \sum_{j} X_{0j} \\
\text{Subject to:}
\]

\[
\sum_{j} \sum_{c} X_{0jc} = 1
\]

\[
\sum_{i} \sum_{c} X_{loc} = 1
\]

\[
\sum_{i} \sum_{j} \sum_{c} X_{ijc} \cdot \frac{d_{ij}}{v} \leq 12, \forall c
\]

\[
\sum_{j} \sum_{c} X_{ijc} = 1, \forall i
\]

\[
\sum_{i} \sum_{c} X_{ijc} = 1, \forall j
\]

\[
\sum_{j} X_{tjc} - \sum_{j} X_{jic} = 0, \forall i, \forall c, \forall
\]

\[
x_{ijm} \in \{0,1\}
\]

\[
a_{i} \sum_{j} X_{ijc} \leq w_{ic} \leq b_{i} \sum_{j} X_{ijc}, \forall i
\]

\[
w_{ic} + s_{t} + \frac{d_{ij}}{v} - w_{jc} \leq B_{tj} (1 - X_{tjc}), \forall i \neq j
\]

\[
F \leq w_{oc}, w_{o'c} \leq L, \text{where } F = 0 \text{ hours and } L = 12 \text{ hours, } \forall c
\]
Special Problem Structure

- Roaming conductor problem simplifies some aspects of VRPTW

- One-dimensional travel along the corridor reduces the logical routing options

- Prospective upper bound and initial solution
 - Number of roaming conductors ≤ number of onboard conductors
 - Each conductor follows a single train and handles its work events
 - Initial feasible solution if:
 - Average train speed ≤ maximum average conductor travel speed
 - Initial and final work events for each train allow for adequate conductor travel time from terminal(s)

- Suggests a heuristic approach to create and improve this initial solution may be more efficient than solving the MIP
Example Set of Work Events

► Apply heuristics through Python code

► Construction
 • Initial construction
 • Insert multiple terminals

► Improvement
 • Work event swapping
 • Trip deletion
Initial Construction Algorithm

► Basic concept
 • Dispatch roaming conductor from the terminal
 • Select “closest” work event without violating specified maximum average travel speed
 • Insert work event to path provided path to end terminal satisfies travel speed requirements

► Define “closest” work event?
 • Distance first: nearest work event along corridor
 • Time first: next work event in time
Insert Multiple Terminals

- Initial construction with single terminal leaves some infeasible events at start and end of shift that are far from terminal

- Insert additional terminals and reassign roaming conductors to improve coverage of work events
 - Remaining work events can only be covered by staggered shifts
Improvement Algorithms

► Work event swapping
 • Perturb solution by exchanging work events
 • Accept if average conductor travel speed or total travel distance is decreased
 • Does not reduce number of conductors but helps later steps

► Trip deletion
 • Perturb solution by randomly deleting path
 • Accept deletion if orphaned work events can be feasibly reassigned to other paths

► Monte Carlo approach used to iterate different improvement algorithms and converge to better quality solution
Results After Initial Construction

- Time-first search outperforms distance-first
Addition of Second Terminal

- Second terminal improves work event coverage and feasibility with time-first search
Solution Improvement

- Roaming conductor maximum average speed 50 mph (80km/h)
- Four roaming conductor terminals
- Reduce from 20 onboard conductors to 16 roaming conductors

<table>
<thead>
<tr>
<th>Number of Roaming Conductors</th>
<th>Average Conductor Travel Speed</th>
<th>Total Distance Traveled</th>
<th>Computation Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(no iterations or improvements)</td>
<td>19</td>
<td>22.5 mph (36.4km/h)</td>
<td>5,139 miles (8,325km)</td>
</tr>
<tr>
<td>(100 iterations, no improvements)</td>
<td>18</td>
<td>15.5 mph (25.1km/h)</td>
<td>3,339 miles (5,409km)</td>
</tr>
<tr>
<td>After 100 iterations and improvements</td>
<td>16</td>
<td>14.2 mph (23.0km/h)</td>
<td>2,728 miles (4,419km)</td>
</tr>
</tbody>
</table>
Summary and Future Work

► Developed algorithm to assign work events to roaming conductors
► Demonstrated that number of roaming conductors can be lower than the number of onboard conductors for hypothetical corridor
► Suggests the operating concept is a potential pathway to single-person crews on US mainline freight trains

► Future work will eliminate simplifying assumptions
 • Introduce work event duration
 • Consider work event dependency
 - Late execution of one work event delays subsequent work events for that train
 • Overlapping shifts
 • Tactical model with unplanned work events
 • Actual corridor settings with more complex topography and access
Thank you for your attention!

C. Tyler Dick, Ph.D., P.E.
Lecturer and Senior Railway Research Engineer
Rail Transportation and Engineering Center (RailTEC)
University of Illinois at Urbana-Champaign
ctdick@illinois.edu

This project is supported by the National University Rail Center (NURail), a US DOT-OST Tier 1 University Transportation Center, and the Association of American Railroads