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Dear Fellow IOS Members:

The annual INFORMS Meeting in Phoenix is
upon us! I look forward to seeing you during a pro-
ductive and enjoyable conference.

IOS Sessions in Phoenix: The Optimization So-
ciety is sponsoring 125 sessions at the conference.
We sponsored 93 last year, and 91 the year before
that.

Business meeting: The IOS Business Meeting
at the annual conference will be held on Sunday,

Vineet Goyal, Will Ma (recipient of 2017 Honorable Mention
for Student Paper) and David Morton
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November 4, 6:15–7:15pm in the Convention Center,
Room North 124A, 100 Level. Light refreshments,
along with beer and wine, will be provided.

IOS prizes: Congratulations to the winners of the
2018 INFORMS Optimization Society prizes!

This year, the Khachiyan Prize is being awarded
to three winners: John N. Hooker, James Renegar,
and Werner Römisch. Shabbir Ahmed is receiving
the Farkas Prize. Two winning teams are awarded
the Prize for Young Researchers: Amir Ali Ahmadi
and Georgina Hall, as well as Dan Iancu and Nikos
Trichakis. The Student Paper Prize honorable men-
tions recipients are Yanli Liu, the team of Naman
Agarwal and Brian Bullins, and Nam Ho-Nguyen.
Second prize in the competition is awarded to Felix
Happach and Joey Huchette. And, the winner of the
Student Paper Prize this year is Yong Sheng Soh.

The winners will receive their prizes at the IOS
Business Meeting. Please join us for two sessions in
which the prize recipients will present their award-
winning work on Tuesday, November 6, in West Bldg
102C. First, the three Khachiyan Prize winners will
speak in session TB61, 10:30am–noon. Afterwards,
the winners of the Young Researchers Prize and the
winner of the Student Paper Prize will present their
work in session TC61, 12:05pm–1:35pm.

We are grateful to the prize committees for their
work: Khachiyan Prize: Suvrajeet Sen (chair), Ig-
nacio Grossman, Arkadi Nemirovski, and David
Shmoys; Farkas Prize: Patrick Jaillet (chair), Don-
ald Goldfarb, Andy Philpott, and Nick Sahinidis;
Young Researchers Prize: Katya Scheinberg (chair),
Yongpei Guan, Fatma Kılınç-Karzan, and Andrea
Lodi; Student Paper Prize: Dan Iancu (chair), Amir
Ali Ahmadi, Frank Curtis, and Illya Hicks.

IOS board transitions: IOS officer elections were
held in September. We welcome our new vice-chairs,
who will be assuming their responsibilities on Jan-
uary 1, 2019:

• Global Optimization: Georgina Hall;

• Nonlinear Optimization: Shiqian Ma;

• Optimization Under Uncertainty: Ruiwei Jiang.

Please join me in thanking the vice chairs who com-
plete their terms this year: Siqian Shen (Global Op-
timization), Necdet Serhat Aybat (Nonlinear Opti-

mization), and Güzin Bayraksan (Optimization Un-
der Uncertainty).

Austin Buchanan has served as the IOS represen-
tative to the INFORMS Subdivision Council for the
last two years. Thank you to Austin for represent-
ing well the interests of IOS, and we welcome Siqian
Shen into the same role for 2019–2020. Thank you to
Sertalp Çay, our Web Editor, for managing the IOS
Connect website and for his tweets @InformsOS, too.

I am deeply grateful for the leadership of Ma-
rina Epelman and Burcu Keskin. Marina shapes our
newsletter in an outstanding way and, with the con-
tinued growth of IOS, she has taken a high quality
newsletter to twice a year. Burcu is efficient and ef-
fective, is a great communicator, and is fun to work
with as our Secretary/Treasurer. Thank you Burcu
and Marina!

Finally, thank you to Chair-Elect, Daniel Bien-
stock, for his ideas and work over the last year, and
for his enthusiasm to serve as the Chair of IOS for
2019-2020.

I wish you a wonderful conference!

https://twitter.com/informsos
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DUALITY IN TWO-STAGE
ADAPTIVE LINEAR

OPTIMIZATION: FASTER
COMPUTATION AND
STRONGER BOUNDS

Frans F.J.C.T. de Ruiter
Tilburg University, The Netherlands

fjctderuiter@gmail.com

Dimitris Bertsimas
Massachusetts Institute of Technology, USA

dbertsim@mit.edu

We are deeply honoured and grateful to have been
awarded the 2017 INFORMS Optimization Society
Student Paper Prize for our work “Duality in two-
stage adaptive linear optimization: faster computa-
tion and stronger bounds.” We would like to thank
the committee consisting of Vineet Goyal, Kiavash
Kianfar, Javier Peña, and Ermin Wei for their effort
and for honoring our work. This article explains the
broader context of the paper and surveys the results
presented in [5].

1 Introduction

Many applications for decision making under uncer-
tainty can be naturally modeled as two-stage adap-
tive robust optimization models. In an adjustable
robust optimization model we first make here-and-
now decisions before observing the realization of the

Vineet Goyal and Frans J.C.T. de Ruiter

uncertain parameters, and then set the policy for the
wait-and-see decisions to satisfy all the constraints.
An example of such a problem is the lot-sizing prob-
lem with distribution on a network. In this problem
one has multiple stores that can hold units of stock,
while each store faces some uncertain demand. In
the first-stage decision, before knowing the realiza-
tion of the demand, one has to decide how to allocate
the stock. After the demand is realized there is then
the opportunity to redistribute part of the stock to
other stores, in order to meet demand against ad-
ditional transportation costs. An instance of this
problem is depicted in Figure 1.

Duality in two-stage adaptive linear optimization: faster

computation and stronger bounds

Frans de Ruiter
Tilburg University, The Netherlands,

Dimitris Bertsimas
Massachusetts Institute of Technology, USA.

We are deeply honoured and grateful to
have been awarded the INFORMS Optimiza-
tion Society Best Student Paper Prize for our
work “Duality in two-stage adaptive linear op-
timization: faster computation and stronger
bounds”. We would like to thank the commit-
tee consisting of Vineet Goyal, Kiavash Kian-
far, Javier Peña, and Ermin Wei for their e↵ort
and honoring our work. This article explains
the broader context of the paper and survey the
results presented in Bertsimas and de Ruiter
[4].

1 Introduction

Many applications for decision making under
uncertainty can be naturally modeled as two-
stage adaptive robust optimization models. In
an adjustable robust optimization model we
first make here-and-now decisions, i.e. before
observing the realization of the uncertain pa-
rameters, and then set the policy for the wait-
and-see decisions to satisfy all the constraints.
An example of such a problem is the lot-sizing
problem with distribution on a network. In
this problem one has multiple stores that can
hold units on stock, while each store faces some
uncertain demand. In the first stage decision,
before knowing the realization of the demand,
one has to decide how to allocte the stock. Af-
ter the demand is realized there is then the op-
portunity to redistribute part of the stock to
other stores, in order to meet demand against
additional transportation costs. An instance of
this problem is depicted in Figure 1. There are
many more applications that use a two-stage
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Figure 1: Stock allocation for an instance for
distribution on a network with 30 stores on
the grid [0, 10]2. The bigger the filled dots
are, the more stock is allocated. The open
dots do not have stock allocated to them.

robust setting, see our paper [4] and the sur-
vey papers [6] and [9] for more examples.

Two-stage adaptive models under uncer-
tainty have been dealt with in various ways.
One way of dealing with these problems is via
Stochastic Programming, see for example Kali
and Wallace [12]. Another very tractable way
of dealing with these adaptive models, that be-
came popular since the seminal paper by Ben-
Tal et al. [3], is by using robust optimization.
In these models we have variables x residing
in some convex set X ⇢ Rn to the describe
the here-and-now decisions. The uncertainty is
modelled using uncertainty parameters ⇣ that
can take any value in some compact convex set

1

Figure 1: Stock allocation for an instance of the lot-
sizing problem on a network with 30 stores on the
grid [0, 10]2. The bigger the filled dots are, the more
stock is allocated. The open dots do not have stock
allocated to them.

There are many more applications that use a two-
stage robust setting; see our paper [5] and the survey
papers [4] and [9] for more examples.

Two-stage adaptive models under uncertainty
have been dealt with in various ways. One way of
dealing with these problems is via stochastic pro-
gramming; see, for example, [12]. Another very
tractable way of dealing with these adaptive models,
which became popular since the seminal paper by [3],
is by using robust optimization. In these models we
have variables x residing in some convex set X ⊂ Rn
to describe the here-and-now decisions. The uncer-
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tainty is modelled using uncertainty parameters ζ
that can take any value in some compact convex set
U ⊂ RL [2]. In this paper we focus on polyhedral
uncertainty sets of the form

U = {ζ ≥ 0 | Dζ ≤ d} , (1)

with D ∈ Rp×L and d ∈ Rp. In contrast to stochastic
programming, robust optimization approaches result
in solutions that provide a priori guarantees on feasi-
bility and the objective value. Also unlike in stochas-
tic programming, only limited knowledge of the dis-
tribution of the uncertain parameter is needed. In
this case, only the support of the distribution has to
be known, or only that part of the support for which
one wants to be protected. Popular choices of uncer-
tainty sets are the polyhedral uncertainty sets such
as the box uncertainty sets (a hypercube), or bud-
get uncertainty sets that put an additional cardinal-
ity restriction on the deviations from some nominal
value; see [6]. In two-stage models, we also have vari-
ables y ∈ Rk+ for the wait-and-see decisions, which
can be adjusted after the realization of the uncertain
parameter is known.

2 Adaptive robust models

There are several equivalent representations of two-
stage adaptive robust optimization models, but for
our purpose it is most convenient to use a “min-max-
min” formulation as follows:

min
x∈X

max
ζ∈U

min
y≥0

{
c>x | Ax + By ≥ R(x)ζ + r

}
, (2)

where X ⊂ Rn is a set with additional constraints on
the here-and-now decisions (some of the x variables
may be integer), c ∈ Rn, A ∈ Rm×n, B ∈ Rm×k,
R(x) = R0 +

∑n
i=1 Rixi with Ri ∈ Rm×L for all i =

0, . . . , n, and r ∈ Rm. The middle ‘max’ indicates
that we take a robust perspective and aim to find the
solution that minimizes under worst-case outcomes.
As we can choose a different y ∈ Rk for every ζ,
the optimal solution will be a policy depending on
ζ, y(ζ). Therefore, an equivalent representation of
(2) would be

min
x∈X ,ỹ(·)∈F

max
ζ∈U

{
c>x| Ax + Bỹ(ζ) ≥ R(x)ζ + r

}
,

where F =
{
ỹ(·) | ỹ : RL → Rk+

}
, a class of poli-

cies. Optimizing over the class of all policies F is an
intractable task, but very good solutions can be ob-
tained by restricting to affine policies for ỹ(·); see [3].
These affine policies are of the form ỹ(ζ) = ȳ + Yζ,
with ȳ ∈ Rk and Y ∈ Rk×L the new here-and-now
variables. The resulting model is again a tractable
robust model that can be solved using standard
solvers for linear optimization. Note that these mod-
els allow the here-and-now decisions X to be integer,
but the wait-and-see decisions must be continuous.
Also note that the matrix B does not depend on ζ,
so we consider two-stage models with fixed recourse
only.

3 An equivalent representation by
duality

Although affine policies are a very efficient way to
find solutions for (2), there are two challenges. First,
the model with affine adaptive policies (and variables
ȳ,Y) is slower to solve than the corresponding non-
adaptive model. Second, since we restrict the class of
policies to affine policies, we find more conservative
solutions and it is hard to estimate how far affine
policies are from optimal policies. Therefore, in this
section we present an equivalent representation using
duality for linear programming to make computation
faster and to provide stronger lower bounds on the
performance of affine policies compared to optimal
policies. The full proof can be found in [5].

Theorem 1. The here-and-now decision x is feasi-
ble (and optimal) for (2) with nonempty uncertainty
set U as in (1) if and only if x is feasible (and opti-
mal) for

min
x∈X

max
w∈V

min
λ≥0

{
c>x | w>(Ax− r)− d>λ ≥ 0,

D>λ ≥ R(x)>
}
, (3)

where V =
{
w ≥ 0 : B>w ≤ 0, e>w = 1

}
.

Sketch of proof. We can apply the strong duality
theorem from linear optimization to the inner min-
imization problem of (2) resulting in a “min-max-
max” problem:
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min
x∈X

max
ζ∈U

max
w≥0

{
c>x + w>(R(x)ζ + r−Ax)

| B>w ≤ 0
}
,

where w ∈ Rm+ . This formulation has been used by
many to solve two-stage problems using Benders de-
composition techniques. Here we go one step further
by dualizing over ζ to obtain (3).

From many points of view the primal formulation
(2) and dualized formulation (3) have similar struc-
ture: they are both two-stage adaptive optimization
models that are linear in the wait-and-see decisions
y and λ, respectively, with fixed recourse. More-
over, they can be solved using the same solution
techniques of affine policies: in the dualized formu-
lation (3) we can use affine policies λ̃(w) = q+Qw.
Also, in the dualized version the affine policiy is a
conservative approximation of the optimal (nonlin-
ear) policy. However, one can prove that both the
original model (2) and the dualized formulation (3)
give the same objective value.

Proposition 2. For the here-and-now decision x,
there exists a feasible policy λ̃(w) = q + Qw for
(3) if and only if there exists a feasible affine policy
ỹ(ζ) = ȳ + Yζ for (2) for the same x .

Not only do both affine policies result in the same
set of feasible here-and-now solutions for x, in [5]
we also show that one affine policy can be directly
obtained from the other and vice versa. Therefore,
we could solve either (2) or (3) with affine policies,
or even solve both in parallel and stop the solver
whenever an optimal solution is found for one of the
models. Furthermore, there are several problems for
which the new dualized formulation solves an order
of magnitude faster as explained in our numerical
results later.

The second use of our approach is to strengthen
the lower bounds. One well-established way to
find a lower bound for (2) is to use a finite subset{
ζ1, . . . , ζN

}
⊂ U and solve the sampled model:

min
x∈X ,y1,...,yN≥0

{
c>x

| Ax + Byi ≥ R(x)ζi + r, i = 1, . . . , N
}
. (4)

Note that this model indeed provides a lower bound
to the optimal value of (2) as we are only protected
for a subset of scenarios from U . The quality of
the lower bound depends on the scenarios that are
picked. One effective way of picking scenarios is by
using a particular method developed in [11]. Again
we can use the fact that the dualized model (3) is
of the same form as (2) and apply the same lower
bounding technique to the dualized model. In fact,
we show in our paper that we can also combine the
sampled constraints of the resulting models to obtain
an even better lower bound.

4 Numerical example

In this section we show that (3) with affine policies
takes an order of magnitude less time to solve than
the primal formulation (2) with affine policies for
the lot-sizing example that was briefly mentioned in
Section 1. Also, the new lower bound using the infor-
mation from the equivalent dual formulation is much
stronger than the lower bound from [11] that only
used scenarios from the primal formulation. We con-
sider various instance sizes (with different numbers
of stores). For the full description of the problem we
again refer to [5]. All computations were carried out
with Gurobi 6.0.3 [10] on an Intel i7-4770 3.40GHz
Windows computer with 8GB of RAM. All modeling
was done using the modeling language JuMP embed-
ded in Julia programming language [8].

We solve both models with affine policies and de-
pict the average solution times over 10 runs in Ta-
ble 1, along with the objective value and the lower
bounds. The stock allocation (the here-and-now de-
cision) for one instance with N = 30 is depicted in
Figure 1. The lower bound from the primal formu-
lation is obtained using the method from [11]. The
primal/dual bound is the strengthened bound result-
ing from combining the primal and dual scenarios.
Solving the model via the new dualized formulation
reduces the computation time by an order of magni-
tude compared with the original primal formulation.
For the larger instances we see that the primal for-
mulation is approximately 20 times slower. These
results are averaged over 10 runs to avoid random
peak performances, but in each individual run we
observed a significant decrease in computation time.
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Table 1: Performance of primal and dualized formu-
lation with affine policies for the lot-sizing example.

Solver time (sec) Objective value Lower Bound (Gap%)
N Primal Dual Primal Primal/Dual

10 < 0.1 < 0.1 928 797 (14.0%) 824 (11.1%)
20 0.3 0.1 1353 1113 (17.7%) 1190 (12.0%)
30 2.6 0.8 1670 1356 (18.8%) 1465 (12.3%)
40 11.8 2.6 1947 1562 (19.8%) 1728 (11.3%)
50 42.0 7.3 2188 1728 (21.0%) 1934 (11.6%)
60 142.2 20.5 2421 1912 (21.0%) 2160 (10.8%)
70 366.0 41.3 2598 1996 (23.2%) 2312 (11.0%)
80 826.9 88.7 2781 2136 (23.2%) 2495 (10.3%)
90 1647.1 179.8 2953 2252 (23.8%) 2641 (10.6%)
100 4026.2 231.0 3130 2408 (23.1%) 2799 (10.6%)

The strengthened primal/dual bound is much tighter
than the primal bound, more than halving the opti-
mality gap for the larger instances.

We refer to [5] for a discussion of a facility loca-
tion problem with uncertain customer demand and
numerical experiments on instances of various sizes.

5 Conclusion and further steps

In this article, we have used duality for linear opti-
mization to derive an equivalent formulation of a pri-
mal two-stage adaptive model. The resulting dual-
ized formulation is again a two-stage adaptive model.
We show that optimal affine policies for the primal
formulation can be directly constructed from opti-
mal affine policies in the dual formulation. Via two
examples of lot-sizing and a facility location prob-
lem, we show that the dualized models, when cou-
pled with affine policies, can reduce computational
time to solve adaptive problems by an order of mag-
nitude. Furthermore, we provide a method that uses
the affine policies in the dual model to strengthen
bounds on the optimality gap of affine policies.

There are several ways in which these dualization
techniques can be further exploited. In static robust
optimization (without wait-and-see decisions y) du-
ality theory has been applied in a variety of ways
to formulate tractable optimization problems. We
can extend our result for linear two-stage adaptive
robust optimization models to nonlinear variants as
well, which are described in a working paper [7]. Fi-
nally, dualization for the linear case discussed in this
paper has now also been used in various other new
solution techniques (see [1] and [13]) showing signif-

icant speedups in computation time.
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I am deeply honoured to have been awarded the 2017
Farkas Prize from the INFORMS Optimization So-
ciety. I am grateful to the selection committee for
awarding me this prize. This award would not have
been possible without the guidance and mentorship
of some of the most wonderful persons I have met in
my career over the past 22 years. First and foremost,
Mike Todd and Nick Trefethen have had tremen-
dous influence on my career progression since my
graduate studies at Cornell University. I have the
good fortune to know Stephen Boyd, Robert Fre-
und, Masakazu Kojima, Tom Luo, Michael Over-
ton, Jong-Shi Pang, Franz Rendl, Christine Shoe-
maker, Stephen Vavasis, Stephen Wright, Yinyu Ye,
Henry Wolkowicz, Yin Zhang, and many others to
whom I would apologize here for not mentioning
their names explicitly, who have helped me in one
way or another. My conviction to work on interior-
point methods (IPMs) for SDP has been very much
influenced by the work of the people whose names I
just mentioned in offering the golden opportunities

Pascal Van Hentenryck, Kim-Chuan Toh, and David Morton

for a young numerical analyst trained in numerical
linear algebra to work in a flourishing area in opti-
mization. It was indeed fortuitous for me to be able
to change track from iterative linear algebra immedi-
ately after my PhD to numerical algorithms for SDP
with almost no barrier because of my good fortune
to start the collaboration with Mike Todd and Reha
Tutuncu, first on studying the Nesterov-Todd direc-
tion for SDP [51], and later on SDPT3 [52, 54, 53].

In my involvement in the practical implementa-
tions of IPMs for SDPs, I have benefited from vari-
ous discussions with Brian Borchers, Michael Grant,
Johan Lofberg, and Hans Mittelman.

I must express my special thanks to Defeng Sun
for the wonderful collaborations we have had on aug-
mented Lagrangian-based methods for solving SDPs,
and more generally, convex conic programming. Of
course, our work in the past 12 years or so would not
have been possible without the hard work and con-
tributions of our PhD students, postdocs, and col-
laborators. I thank them all for such an enjoyable
experience!

The remainder of this article is a selection of some
numerical issues I have encountered in the devel-
opment of algorithms for SDPs. The first part is
on interior-point-based algorithms, and the second
part is on augmented Lagrangian-based algorithms.
Each topic will conclude with a brief description of
the challenging questions to be resolved.

1 Introduction

Let Sn be the space of n×n real symmetric matrices
endowed with the standard inner product 〈·, ·〉 and
its induced norm ‖·‖.We denote the set of symmetric
positive semidefinite matrices by Sn+. A standard
primal semidefinite programming (SDP) problem is
given by

min
{
〈C, X〉 | A(X) = b,X ∈ Sn+

}
, (1)

where C ∈ Sn, b ∈ Rm are given data,
and A : Sn → Rm is a given linear surjec-
tive map. Typically, A is written explicitly in
the form A(X) = [〈A1, X〉, . . . , 〈Am, X〉]T , where
A1, . . . , Am are given constraint matrices in Sn. Cor-
respondingly, its adjoint map A∗ : Rm → Sn is given

mailto:mattohkc@nus.edu.sg
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by A∗y =
∑m

k=1 ykAk. The dual corresponding to (1)
is given by

max
{
〈b, y〉 | A∗y + Z = C,Z ∈ Sn+

}
. (2)

For ease of exposition, here we only consider the SDP
problem (1) with a single block variable in the cone
Sn+. In general, one may consider a problem with
multiple block variables and each block may be con-
strained to be in an SDP cone, a second-order cone,
the cone of nonnegative vectors, or unrestricted.

The perturbed Karush-Kuhn-Tucker (KKT) opti-
mality conditions for (1) and (2) are given as follows:

A(X) = b, A∗y + Z = C, XZ = µI, X,Z ∈ Sn+, (3)

where µ > 0 is the barrier parameter that is to be
driven to 0 explicitly. By setting µ = 0 in (3), one
obtains the optimality conditions for (1) and (2). We
assume that the Slater condition holds for both (1)
and (2) (equivalently, (1) and (2) are strictly feasi-
ble). Then the unique solution (X(µ), y(µ), Z(µ)) to
the perturbed KKT conditions exists and would con-
verge to an optimal solution (X∗, y∗, Z∗) of (1) and
(2) when µ ↓ 0; see [20]. As µ varies, the solution
(X(µ), y(µ), Z(µ)) would continuously trace a path
within the primal-dual feasible region of (1) and (2)
known as the central-path.

As far as I am aware, most practical implemen-
tations of interior-point solvers such as CSDP [3],
SDPA [58], SDPT3 [52], SeDuMi [48] for SDP are
based on the primal-dual path-following framework,
with the exception of DSDP [2] which is based on a
dual-scaling framework. For readers who are inter-
ested in the relative performance of these solvers,
including non-interior-point-based solvers such as
PENSDP [24] and SDPNAL [63], we refer them to
the benchmarks performed by Hans Mittelmann [30]
on some large and sparse SDP problems. Among
the solvers, currently SDPT3 and SeDuMi are used
in the optimization modeling systems CVX [10, 19]
and YALMIP [28].

For the purpose of computing an approximate so-
lution of (1) and (2), we define the relative KKT
residual η = max{ηp, ηd, ηc, ηX , ηZ}, where

ηp = ‖A(X)−b‖
1+‖b‖ , ηd = ‖A∗y+Z−C‖

1+‖C‖ , ηc = |〈X,Z〉|
1+‖X‖+‖Z‖ ,

ηX = ‖min{0,λ(X)}‖
1+‖X‖ , ηZ = ‖min{0,λ(Z)}‖

1+‖Z‖ .

Note that λ(X) denotes the vector of eigenvalues of
X.

As a rough guide, today one can expect to suc-
cessfully solve an SDP problem via the interior-point
solvers mentioned above to a reasonable level of ac-
curacy of, say, at least 10−6 within a reasonable wall-
clock time of, say, less than one hour when the num-
ber of constraints m is moderate (say, m ≤ 20,000)
and the dimension of the matrix variable n is also
moderate (say, n ≤ 5,000). For the case when the
dimension n remains moderate but m is large (say,
more than 100,000), all the interior-point solvers
mentioned in the last paragraph that employ a di-
rect method to compute the search direction in each
iteration will run into memory difficulty, not to men-
tion that the computing time will also be excessive.
Of course, if one solves the SDP on a super com-
puting system with a parallel implementation of an
interior-point method such as SDPARA [60, 59], one
can overcome the memory difficulty and even solve
an SDP with a few millions constraints. As far as
I am aware, SDPARA has solved an SDP problem
(with 1.22 million constraints and matrix variable
dimension 1600) arising from the doubly nonnega-
tive relaxation of a quadratic assignment problem
(tai40b) on a parallel computing system (with 256
multi-core CPUs and 128GPUs) in about 122 hours
[14].

For the subsequent discussions, we assume that
the matrix dimension n in (1) and (2) is moderate,
say, less than 10,000, so that the matrix variables can
be stored in the RAM unit of a single PC, and ma-
trix operations such as spectral decomposition and
Cholesky factorization can be computed at a reason-
able cost.

2 Primal-dual path-following
interior-point methods

At each iteration (with current iterate (X, y, Z)
such that X,Z � 0 and assumed to be close to
(X(µ), y(µ), Z(µ))) of all the path-following IPMs
mentioned in the last section, the key compu-
tational step is to compute the search direction
(∆X,∆y,∆Z) ∈ Sn × Rm × Sn from a symmetrized

tai40b
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Newton equation of the following form:

A(∆X) = Rp, A∗(∆y) + ∆Z = Rd,

H(∆XZ +X∆Z) = Rc,
(4)

where Rp = b − A(X), Rd = C − A∗y − Z, Rc =
H(σµI −XZ) with σ ∈ (0, 1) being a given param-
eter, H : Rn×n → Sn is a linear operator defined by
H(U) = 1

2(PUP−1 + P−TUTP T ), and P ∈ Rn×n is
a given invertible matrix that is dependent on X,Z.
Obviously, the role of H is to symmetrize the non-
symmetric equation ∆XZ +X∆Z = σµI −XZ re-

sulting from the linearization of the perturbed com-
plementarity condition σµI − XZ = 0. Instead of
solving a very large linear system of equations of
dimension n(n+ 1) +m, by performing block elimi-
nations on ∆Z and ∆X, one can compute the direc-
tion by first computing ∆y from an m × m dense
symmetric positive definite Schur complement equa-
tion (SCE): M∆y = h. It turns out that the choice
of the symmetrization scheme is critical to the ef-
ficiency and stability of solving the resulting SCE,
where

Mij =


〈Ai, Q(Ω ◦ (QT (XAj +AjX)Q))QT 〉 for AHO symmetrization [1] with P = I

〈Ai, 1
2(XAjZ

−1 + Z−1AjX)〉 for HKM symmetrization [21, 25, 31] with P = Z1/2

〈Ai, WAjW 〉 for NT symmetrization [51] with P = W−1/2.

In the above, the notation “◦” denotes the
Hadamard product, Z = Qdiag(d)QT is a spectral
decomposition, W = Z−1/2(Z1/2XZ1/2)1/2Z−1/2,
and Ω ∈ Sn is given by Ωij = 1

di+dj
for all 1 ≤

i, j ≤ n.

As demonstrated in [1], the numerical stability of
computing ∆y via the AHO scheme is better than
that corresponding to the HKM and NT schemes.
In particular, the coefficient matrix in (4) for the
AHO scheme has a bounded condition number when
µ ↓ 0 if the optimal solution (X∗, y∗, Z∗) satisfies
the PDNSC conditions (primal and dual nondegen-
eracy conditions as well as the strict complementar-
ity condition). On the other hand, the correspond-
ing coefficient matrix for the HKM and NT schemes
has condition number that grows at least in the or-
der O(1/µ) even if the optimal solution satisfies the
PDNSC conditions just mentioned [55]. However,
even under the PDNSC conditions, just like HKM
and NT schemes, the matrixM for the AHO scheme
also has a condition number that grows at least in
the order O(1/µ) when µ ↓ 0 [1]. Despite the appar-
ent lack of advantage in terms of conditioning, [1]
has demonstrated empirically that computing the
AHO direction via the SCE can produce more ac-
curate approximate optimal solutions for randomly

generated SDP problems. Unfortunately, the struc-
ture of M in the AHO scheme makes it extremely
hard to fully exploit sparsity in the constraint ma-
trices {A1, . . . , Am} and computing M can be pro-
hibitively expensive. On the other hand, for the
HKM and NT schemes, it is much easier to fully ex-
ploit sparsity in the constraint matrices when com-
putingM (see [15] for the details). Thus, the solvers
[3], [58] have adopted the HKM scheme, and [48] has
adopted the NT scheme. For SDPT3 [52], we have
implemented both the HKM and NT schemes. How-
ever, observe that in general the iterate X � 0 is
completely dense, and henceM is also dense. Thus,
even though the sparsity in the constraint matrices
can be exploited in the HKM and NT schemes, the
low-rank property (by [34], there exist a rank-r pri-
mal optimal solution such that r(r + 1) ≤ 2m ) of
the optimal solution X∗ or Z∗ cannot be exploited
in an IPM solver.

The extreme ill-conditioning of the SCE (when µ
is small) indeed poses serious numerical challenges
to the accurate computation of the search direction
that ultimately limits the accuracy level one can at-
tain when solving the SDP problems (1) and (2).
(We should mention that other numerical difficul-
ties can also arise if the problem (1) or (2) does
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not satisfy the Slater’s condition, but we shall not
touch on those issues here.) In fact, the extreme ill-
conditioning ofM often makes it numerically indefi-
nite althoughM is mathematically positive definite.
In SDPT3, we add a small positive definite diagonal
perturbation D toM so that the resulting Cholesky
factorization can be computed successfully. After
that, the SCE is solved by using an iterative solver,
namely the preconditioned symmetric quasi-minimal
residual (PSQMR) method with the preconditioner
chosen to be the computed Cholesky factorization of
M+D. We find that such an approach can typically
produce a more accurate approximate optimal solu-
tion than the straightforward approach that directly
uses the computed Cholesky factor R of M + D to
find ∆y via R−1(R−Th).

Another approach to partially alleviate the nu-
merical difficulties in solving the extremely ill-
conditioned SCE has been adopted by SeDuMi,
wherein the search direction in each iteration is com-
puted in a scaled space that is dependent on the cur-
rent iterate. However, the drawback is that the com-
putation of the associated Schur complement matrix
can be much more costly than that of M. Thus, in
SDPT3, we focus on solving the SCE with greater
computational efficiency but at the expense of com-
puting a search direction that may not be as accurate
as the scaled space approach.

Apart from the extreme ill-conditioning of M
that arises as the iterates converge to an optimal
solution when µ ↓ 0, other issues, such as the
case when the optimal solution does not satisfy the
PDNSC conditions or when A is ill-conditioned, can
further exacerbate the numerical difficulty in solv-
ing the SCE. In addition, when either (1) or (2)
does not satisfy Slater’s condition, the central-path
{(X(µ), y(µ), Z(µ) | µ > 0} is not well-defined. In
the latter scenario, although in practice one can con-
tinue to solve an SDP problem by using an infeasible
path-following IPM solver, the numerical behavior of
the solver can worsen and sometimes one can only
solve the problem to a low accuracy level of 10−4–
10−3 in the relative KKT residual. An elegant ap-
proach to overcome this difficulty is to reformulate
the SDP into a homogeneous self-dual (HSD) model
[62] (for which the Slater condition always holds)
and to apply an IPM solver to the HSD model. In
SeDuMi, its implementation is based on the HSD

model of (1) and (2). For SDPT3, we have also im-
plemented IPM solvers for the HSD model, and the
user has the option to solve an SDP problem via
this approach. We should mention that another ap-
proach to address the failure of Slater’s condition is
by facial reduction [5]. But the efficient implemen-
tation of the latter approach depends heavily on the
specific SDP data at hand, and in general it is ex-
pensive to perform the reduction. Simplified facial
reduction approaches have recently been proposed
in [36]. Finally, detecting whether an SDP prob-
lem satisfies Slater’s condition is itself an interesting
problem that had been studied in [13].

2.1 Deterioration of primal infeasibility
and its mitigation

Next, we will describe in more detail how the inac-
curacy in solving the SCE will affect the attainable
accuracy level of a computed approximate optimal
solution of an SDP problem. From [22, Theorem
10.4], one can see that the computed solution ∆y of
the SCE would satisfy the following condition on the
norm of the residual vector ξ := h−M∆y:

‖ξ‖ ≤ O(u)‖M‖2‖∆y‖, (5)

where u = 2.2 × 10−16 is the machine epsilon in
double-precision computations. Assuming that all
the other steps in computing ∆X and ∆Z are done
exactly, then for the new primal iterate X+ = X +
α∆X, where α ∈ (0, 1] is the step-length, one can
show that new primal infeasibility is given by

R+
p := b−A(X+) = (1− α)Rp + αξ. (6)

Based on (5) and (6), one can expect in the worst
case that the primal infeasibility ‖R+

p ‖ would grow
proportionately with ‖M‖2 = O(1/µ). Indeed, one
can observe the deterioration of the primal infeasi-
bility ‖Rp‖ in Table 1, which shows the relevant re-
sults generated from the last few iterations of SDPT3
when solving the SDP problem control10.dat-s in
the SDPLIB library [4].

In order to mitigate the drastic loss of accuracy
in the primal infeasibility due to the SCE approach
for computing ∆y, [55] designed the reduced aug-
mented equation (RAE) approach for computing the
search direction, wherein the key step is to solve an
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Table 1: Performance of the SCE-based IPM
in SDPT3 when solving the SDP problem
control10-dat.s.

iter ‖Rp‖ µ ‖M‖2 ‖Rp‖
u‖M‖2‖∆y‖

20 1.18e-09 1.61e-05 2.15e+07 3.04e-02

21 2.95e-08 3.24e-06 3.48e+08 4.45e-02

22 8.29e-07 1.77e-06 3.15e+09 3.94e-02

23 5.85e-07 1.03e-06 3.58e+09 4.18e-02

24 7.39e-07 8.37e-07 5.90e+09 5.18e-02

25 7.19e-07 7.96e-07 7.57e+09 2.42e-02

RAE that is derived from the 2×2 block augmented
equation corresponding to the NT symmetrization
scheme. To begin with, we know that when µ � 1,
the eigenvalues of the positive definite NT-scaling
matrixW would be partitioned into two groups if the
optimal solution (X∗, y∗, Z∗) satisfies the strict com-
plementarity condition. In particular, we have the
spectral decomposition W−1 = Q1D1Q

T
1 +Q2D2Q

T
2 ,

where D1 = diag(d(1)) and D2 = diag(d(2)) are such
that d(1) = Θ(

√
µ) and d(2) = Θ( 1√

µ). The columns

of Q1 ∈ Rn×r and Q2 ∈ Rn×(n−r) are the eigen-
vectors corresponding to the eigenvalues in d(1) and
d(2), respectively. For simplicity, we assume that

max1≤i≤r{d(1)
i } < 1 and min1≤i≤n−r{d(2)

i } ≥ 1. The
RAE is given by[

H Ã1

Ã∗1 −Φ̃

]
︸ ︷︷ ︸

B

[
∆y

Ξ ◦ (QT1 ∆XQ1)

]
= rhs, (7)

where Ξij = 1− d(1)
i d

(1)
j for all 1 ≤ i, j ≤ r,

Hξ = A
(
U1(A∗ξ)U1 + U2(A∗ξ)U3

+U3(A∗ξ)U2 + U3(A∗ξ)U3

)
∀ ξ ∈ Rm,

Φ̃(V ) = Φ ◦ V, Ã1(V ) = A(Q1V Q
T
1 ) ∀ V ∈ Sr,

with U1 = Q1Q
T
1 , U2 = Q1D

−1
1 QT1 = Θ( 1√

µ), U3 =

Q2D
−1
2 QT2 = Θ(

√
µ), Φij =

d
(1)
i d

(1)
j

1−d(1)i d
(1)
j

= O(µ). Note

that the dimension of the coefficient matrix B ism+p
where p = r(r + 1)/2 is generally at most m.

One can show that under the strict complemen-
tarity condition, the spectral norm ‖B‖2 is bounded
independently of µ even as µ ↓ 0. Based on the RAE
approach to compute the search direction, the pri-
mal infeasibility of the updated X+ can readily be
shown to satisfy the following inequality:

‖R+
p ‖ ≤ (1− α)‖Rp‖+ α‖ξ − Ã1(η)‖, (8)

where (ξ, η) is the residual vector associated with the
computed solution of the RAE (7). Assuming that
(7) is solved stably via an LU factorization, then its
norm satisfies the condition that

max{‖ξ‖, ‖vec(η)‖}
≤ O(u)‖B‖2 max{‖∆y‖, ‖vec(QT1 ∆XQ1)‖}. (9)

From the above inequality, one can deduce that in
contrast to the SCE approach, as µ ↓ 0, the new pri-
mal infeasibility ‖R+

p ‖ computed based on the RAE
approach would not be amplified before reaching the
level permitted by the right-hand-side of (9).

Table 2 shows the results corresponding to Ta-
ble 1 using the RAE approach to compute the
search direction when solving the SDP problem
control10.dat-s. One can observe that the achiev-
able accuracy of ‖Rp‖ in the RAE approach is much
better than that in the SCE approach.

It turns out that the RAE approach can actually
allow one to solve an SDP problem much more ac-
curately than the SCE approach, even for problems
that do not satisfy the PDNSC conditions. Indeed
in [55, Table 1–5], it has been demonstrated that an
IPM solver that uses the RAE approach to compute
the search direction in each iteration can solve the
tested SDP problems to a very high accuracy level
of less than 10−12 in the relative KKT residual.

Of course, the drawback of using the RAE ap-
proach is that not only is the computation of B more
costly (fortunately, only 2-3 times more in general)
than that of M, the cost of computing the LDLT

factorization of B can be up to 8 times slower (as-
suming that p ≤ m) than the Cholesky factorization
of M. One could, of course, try to minimize the
additional cost by employing a hybrid approach of
using the SCE approach when µ is not too small
and then switch to the RAE approach when µ ↓ 0.
In this way, one could expect to be able to solve an
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Table 2: Performance of the RAE-based IPM in SDPT3 when solving the SDP problem control10.dat-s.

iter ‖Rp‖ µ ‖B‖2 ‖Rp‖
u‖B‖2‖[∆y; vec(QT

1 ∆XQ1)]‖
20 6.84e-13 1.61e-05 3.67e+02 1.18e-01

21 9.00e-13 3.25e-06 4.27e+02 5.94e-01

22 1.67e-12 1.41e-06 5.41e+02 5.87e-01

23 1.26e-12 2.62e-07 4.29e+02 1.17e+00

24 2.65e-12 8.97e-08 7.30e+02 1.48e+00

25 2.03e-12 1.76e-08 1.28e+03 1.74e+00

SDP problem to a high level of accuracy but at a
modest expense of higher computing time.

2.2 Handling dense columns in linear and
second-order cone programming

While the SC matrixM for an SDP problem is typi-
cally dense, its counterpart in the case of a linear pro-
gramming problem is generally sparse when the con-
straint matrix (with A now being a matrix) is sparse.
In the event when A has a few dense columns, the
matrix M would have the structure of a sparse ma-
trix plus a low-rank dense matrix. The same struc-
ture for M also appears frequently when one solves
a second-order cone programming (SOCP) problem,
even when A has no dense columns.

It is important to pay special attention to han-
dling the low-rank dense part in M separately, so
that the SCE can be solved efficiently in terms of
both the computation time and memory consump-
tion. An efficient approach is to apply the Sherman-
Morrison-Woodbury (SMW) inverse formula to han-
dle the dense part based on the Cholesky factoriza-
tion of the sparse part. While this approach is effi-
cient, unfortunately it is not numerically stable. In
SDPT3, we again use the computed inverse (based
on the SMW inverse formula) as the preconditioner
in the PSQMR solver used to solve the SCE. We find
that such an approach is more stable than the itera-
tive refinement approach that is typically employed
to improve the accuracy of the computed solution
based on the SMW inverse formula.

An alternative to the SMW approach for handling
the low-rank dense part inM is to use the product-
form Cholesky factorization. It has been shown in

[17, 18] that the approach is roughly as stable as
the original Cholesky factorization for M and theo-
retically nearly as efficient as the SMW approach.
Unfortunately, the efficient implementation of the
product-form Cholesky factorization to take advan-
tage of the cache memory hierarchy of a CPU by op-
timized BLAS is non-trivial. As far as I am aware,
SeDuMi is the only solver that has implemented the
product-form Cholesky factorization to handle the
sparse-plus-dense-low-rank structure of M.

Again, the SCE approach for solving an SOCP
problem generally limits the level of accuracy that
is achievable because of the extreme ill-conditioning
of M. The matter is made worse if the SMW
inverse formula is employed to handle the sparse-
plus-dense-low-rank structure in M. For example,
SDPT3 and SeDuMi can only solve the SOCP prob-
lem sched 100 100 org in the DIMACS depository
[35] to an accuracy of about 10−3 and 5× 10−4, re-
spectively.

It turns out that for SOCP problems, the RAE
approach analogous to that in (7) can also success-
fully overcome the loss of accuracy [7]. Moreover,
it can effectively handle any sparse-plus-dense-low-
rank structure present in the (1, 1) block of the co-
efficient matrix B. For the SOCP problem just men-
tioned, an IPM solver that employs the RAE ap-
proach to compute the search direction in the last
few iterations can obtain a solution with the accu-
racy of 8× 10−10, but at the expense of higher com-
putation time.
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2.3 Solving large-scale SDPs via an inex-
act IPM

The RAE approach for computing the search direc-
tion not only can mitigate the deterioration of the
primal infeasibility, it also has an important property
that, under the PDNSC conditions, ‖B−1‖2 can be
proven to be bounded independently of µ as µ ↓ 0;
see [55, Theorem 2.3]. As a result, the condition
number of B can be bounded independently of µ as
µ ↓ 0. This implies that one can use an iterative
solver such as the PSQMR method to solve the RAE
and expect to get a reasonable convergence rate even
when µ ↓ 0. Indeed, in [55], it was shown that one
could use an inexact IPM to solve a large scale SDP
(with more than 127,000 constraints and matrix vari-
able dimension 800) via the RAE approach in about
6.5 hours on a modest desktop PC in 2004. Today,
solving such a large SDP on a desktop PC is still
beyond the reach of an IPM solver that is based on
the SCE approach.

Despite the favorable property of bounded condi-
tion numbers (for B) under the PDNSC conditions,
solving a large-scale SDP problem by an inexact IPM
that uses an iterative solver to solve the RAE in each
iteration is usually still not efficient enough. Faced
with the difficulty just mentioned, it is natural for
one to explore alternative computational frameworks
to solve large SDP problems. Fortunately, we were
able to discover that by designing an appropriate
semismooth Newton method to solve the subprob-
lem arising in each iteration of an augmented La-
grangian method (ALM) applied to the dual SDP
(2), one can solve a primal and dual nondegener-
ate SDP problems highly efficiently. As will be dis-
cussed later, our semismooth Newton-based ALM
can fully exploit the rank-sparsity structure of the
matrix variables to drastically cut down the compu-
tational cost of the CG method used to solve the
semismooth Newton equations in each iteration of
the ALM.

3 Augmented Lagrangian-based
methods

The first time I came across a non-barrier-based
method to solve the SDP problem (1) was at a work-

shop held at the Institute of Mathematical Sciences,
National University of Singapore, in January 2006.
In his tutorial lectures, Franz Rendl [39] reported
extremely impressive numerical results obtained by
the so-called boundary-point method [37] for solving
sparse random SDP problems as well as SDP relax-
ations of maximum stable set problems. In hind-
sight, the boundary-point method implemented in
[37] is exactly the same as the classical ADMM (with
unit step-length) applied to the dual SDP problem
(2).

Inspired by the impressive performance of the
boundary-point method and also the impressive
performance achieved by Houduo Qi and Defeng
Sun [40] in employing the semismooth Newton-CG
(SNCG) method to solve the nearest correlation ma-
trix problem (a semidefinite least-square problem),
I convinced Defeng at that time to work together
with my PhD student Xinyuan Zhao on designing an
augmented Lagrangian method (ALM) to solve the
dual SDP problem (2) wherein the subproblem at
each iteration is solved by an SNCG method (sub-
sequently we named the algorithm SDPNAL). Al-
though we started to work on SDPNAL in early
2006, the numerical design of the algorithm and
its efficient implementations, together with extensive
numerical evaluation of its performance, took almost
two years to complete and the resulting paper [63]
only appeared in print in 2010.

In SDPNAL, we used the boundary-point method
to generate a reasonably good initial point to warm-
start the ALM. Our work has subsequently inspired
Wen et al. [57] to implement an ADMM solver
(called SDPAD) for the dual SDP (2). As mentioned
in the acknowledgments in [57], Wen et al. adapted
quite a number of implementation ideas and subrou-
tines in SDPNAL codes to SDPAD.

As a follow-up to [37], one of the objectives in
[29] is to provide a theoretical foundation for the
boundary-point method. In fact, the regulariza-
tion methods in [29] bear close resemblance to the
proximal-point algorithm (PPA) in [46] applied to
(1) and the augmented Lagrangian method (ALM)
applied to (2) in [47] where their convergence anal-
yses have been well developed. For a beautiful anal-
ysis on the fast linear convergence of the ALM for
SDP and its connections to an approximate semis-
mooth Newton method, we refer the reader to the
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paper by Defeng Sun, Jie Sun, and Liwei Zhang [43].

Unbeknown to the authors of [37, 57] including our
own work in [63], the classical ADMM (for 2 blocks
of variables) in fact has a rather well-developed con-
vergence analysis already done by Glowinski [16]
and Fortin and Glowinski [12] for any step-length
in (0, (1 +

√
5)/2). There are various generaliza-

tions of the classical ADMM for a 2-block problem.
As far as I am aware, the most versatile 2-block
ADMM with a very general convergence analysis is
the semi-proximal ADMM (SPADMM) published in
Appendix B of [11]. In fact, the SPADMM in [11]
forms the basis for some of our subsequent work
on designing ADMM-type methods for solving con-
vex composite conic programming problems, such as
[45, 27, 9].

For the dual SDP (2), the classical ADMM ap-
pears to be the most suitable first-order method for
solving the problem. But it is no longer adequate
for solving a more complicated SDP such as the fol-
lowing doubly nonnegative (DNN) SDP:

min
{
〈C, X〉 | A(X) = b,X ∈ Sn+, X ∈ N n

}
(10)

whose dual is given by

max
{
〈b, y〉 | A∗y + Z + S = C, Z ∈ Sn+, S ∈ Nn

}
, (11)

where N n = {X ∈ Sn | Xij ≥ 0 ∀ (i, j)}. We should
mention that DNNSDPs form an important class of
computationally tractable relaxations for completely
positive programming (CPP) problems that have be-
come very popular in recent years. The rise in the
popularity of CPP can be attributed to the impor-
tant work done by Burer [6] who showed that CPP
can give an equivalent reformulation (under mild as-
sumptions) of a nonconvex quadratic optimization
problem. For more recent developments, we refer
the reader to [23] and the references therein.

One can, of course, directly extend the classi-
cal ADMM to solve the dual DNNSDP which has
the natural structure of having 3 blocks of variables
in different cones (Rm,Sn+,N n). But the drawback
is that the directly extended ADMM is no longer
guaranteed to be convergent [8], although in prac-
tice it usually converges despite the lack of a the-
oretical guarantee. In fact, based on our numeri-
cal experience in [45], the practical performance of

the directly extended ADMM (DE-ADMM) is sur-
prisingly good compared to various convergent vari-
ants of multi-block (for 3 or more blocks) ADMM
that have been proposed to overcome the lack of
convergence guarantee of the former. To address
the apparent paradox, [45] proposed a convergent
multi-block ADMM (called sPADMM3c) for solving
a conic programming problem with 4 types of con-
straints that includes the dual DNNSDP (11) as a
special case. The numerical experiments in [45] have
demonstrated that our convergent method is at least
20% faster than DE-ADMM for the vast majority of
about 550 large-scale DNNSDPs tested.

In order to solve even more complex conic pro-
gramming problems such as convex quadratic SDP
problems with 4 types of constraints, [27] pro-
posed the convergent multi-block ADMM (SCB-
SPADMM) which, again, has been demonstrated to
clearly outperform the DE-ADMM in extensive nu-
merical experiments. In order to be able to cope
with a problem with a huge number of linear con-
straints and other numerical challenges, [9] extended
the SCB-SPADMM to an inexact setting that has
the flexibility of allowing the linear system of equa-
tions in each iteration to be solved approximately by
an iterative solver such as the preconditioned conju-
gate gradient method. The convergence of the SCB-
SPADMM in [27] has relied on the key idea of se-
quentially eliminating blocks of variables (as in the
Schur-complement approach for solving block linear
system of equations) when solving the multi-block
minimization subproblem in each iteration. Recently
it has been shown that the SCB approach in solv-
ing the SCB-SPADMM minimization subproblem in
each iteration is in fact equivalent to applying one
cycle of a block symmetric Gauss-Seidel iteration for
solving a convex composite quadratic programming
problem [26].

Despite the fairly good performance of ADMM-
based methods that we have designed and imple-
mented in solving conic programming problems as
demonstrated in [45, 27, 9], they are sometimes
not efficient enough, or even stagnate, when solv-
ing difficult problems such as the DNNSDPs arising
from the relaxation of quadratic assignment prob-
lems [38] as demonstrated in [61]. As shown in the
numerical experiments in [61], it is crucial to use
second-order information in the design of a robust
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and efficient method for solving difficult DNNSDPs.
The method designed in [61] is a majorized SNCG
augmented Lagrangian method (called SDPNAL+)
that is designed for solving a linear SDP problem
with additional bound constraints such as those in
a DNNSDP. It is built upon the foundation estab-
lished in SDPNAL [63] for solving the SDPs (1) and
(2). For the work done in [61], the authors were
awarded the 2018 Beale–Orchard-Hays Prize by the
Mathematical Optimization Society.

As guaranteed by the convergence theory of SNCG
and ALM, SDPNAL and SDPNAL+ are expected to
work very efficiently for nondegenerate SDPs. But
they may encounter numerical difficulties for degen-
erate ones. In SDPNAL+, we attempt to solve de-
generate problems by a hybrid strategy of employing
a majorized SNCG ALM together with a convergent
multi-block ADMM introduced in [45, 27, 9]. Nu-
merical results for various large-scale SDPs with or
without nonnegativity constraints show that SDP-
NAL+ is not only fast but also robust in obtaining
fairly accurate solutions. For example, SDPNAL+
is able to solve an SDP problem arising from the
DNN relaxation of a quadratic assignment problem
(tai40b) in less than 1.5 hours on a desktop PC. In
contrast, the same problem is solved by the parallel
interior-point solver SDPARA in about 122 hours on
a parallel computing platform with 256 multi-core
CPUs and 128 GPUs [14]. The largest instance that
SDPNAL+ has solved currently is an SDP relaxation
problem (with n = 9, 261 and m = 12, 326, 390) aris-
ing from a rank-one tensor approximation problem
[33], and the instance is solved in about 7 hours on
a desktop PC with an Intel Xeon CPU (E5-2680v3
@2.50 GHz with 12 cores) and 128GB of RAM.

Next, we discuss the key computational step in
each iteration of SDPNAL. We start with the aug-
mented Lagrangian function for (2):

Lσ(y, Z;X) = −〈b, y〉+ δSn+(Z)

+
σ

2
‖A∗y + Z − C + σ−1X‖2 − 1

2σ
‖X‖2, (12)

where σ > 0 is a given penalty parameter. At the
kth ALM iteration, one needs to solve the following
minimization subproblem for a given Xk:

(yk+1, Zk+1) ≈ min
y,Z
{Lσk(y, Z;Xk)}

≡ min
y

{
−〈b, y〉+ min

Z∈Sn+

{σ
2
‖A∗y+Z−C+σ−1Xk‖2

}}
.

Let Π+(M) denote the projection of a given matrix
M ∈ Sn onto Sn+. One can compute the solution
(yk+1, Zk+1) by first solving

yk+1 ≈ min
y

{
φ(y) := −〈b, y〉

+
σ

2
‖Π+(A∗y − C + σ−1Xk)‖2

}
(13)

and then updating Zk+1 = Π+(C − A∗yk+1 −
σ−1Xk). To compute yk+1, one would need to solve
the following nonsmooth optimality condition for the
problem (13):

0 = ∇φ(y) = σAΠ+(A∗y − C + σ−1Xk)− b. (14)

In the fundamental paper [42], the matrix-valued
function Π+(·) has been shown to be strongly semis-
mooth. Thus, one can apply the semismooth Newton
method [41] to solve the above equation and expect
to achieve quadratic convergence when (1) is non-
degenerate at the converged optimal solution. More
precisely, primal constraint nondegeneracy plays an
important role in ensuring that the generalized Ja-
cobians of ∇φ(·) are nonsingular so that quadratic
convergence of the semismooth Newton method can
be derived. For more details on constraint nonde-
generacy and its characterization for SDP, we refer
the reader to the excellent work of Defeng Sun in
[44].

At a given point ȳ, the semismooth Newton equa-
tion (SNE) is given by

AJA∗︸ ︷︷ ︸
H

(∆ȳ) = − 1

σ
∇φ(ȳ),

where J : Sn → Sn is a generalized Jacobian of
Π+ at A∗ȳ − C + σ−1Xk. Suppose that the latter
has spectral decomposition, Qdiag(d)QT , where the
eigenvalues are arranged such that d1 ≥ · · · dr ≥ 0 >
dr+1 ≥ · · · ≥ dn; then one can pick
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J (M) = Q(Ω ◦ (QTMQ))QT , Ωij =



1 if 1 ≤ i, j ≤ r
di

di+|dj | if 1 ≤ i ≤ r, r + 1 ≤ j ≤ n
dj

|di|+dj if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r
0 r + 1 ≤ i, j ≤ n.

Let Q1 ∈ Rn×r and Q2 ∈ Rn×(n−r) be the matri-
ces formed by the first r and last n − r columns of
Q, respectively. Under the primal constraint nonde-
generacy condition at the optimal solution, one can
show that H is positive definite, and

cond(H) ≤ σΘ(1) cond([Ã1, Ã2])2, (15)

where Ã1 : Sr → Rm is defined by Ã1(V ) =
A(Q1V Q

T
1 ), and Ã2 : Rr×(n−r) → Rm is defined

by Ã2(V ) = A(Q1V Q
T
2 + Q2V

TQT1 ). Note that
under the primal constraint nondegeneracy condi-
tion at the optimal solution, cond([Ã1, Ã2]) remains
bounded even as the iterate (Xk, yk, Zk) converges
to an optimal solution.

In contrast, for an IPM solver where M = AW ⊗
WA∗, we have

cond(M) ≤ ‖X‖
2

µ
Θ(1) cond([Ã1, Ã2])2, (16)

where Ã1 and Ã2 are the analogues of those in
(15) but defined based on the spectral decomposi-
tion of W . It is clear that even if the SDP is pri-
mal nondegenerate at the optimal solution so that
cond([Ã1, Ã2]) is bounded independently of µ, the
condition number of M would still grow to infinity
as µ ↓ 0. It is precisely the unavoidable asymptotic
singularity of M that makes solving the SCE by an
iterative method prohibitively expensive when such
a technique is needed for large-scale SDPs. On the
other hand, the SNE does not suffer from such a fa-
tal defect when the SDP is primal nondegenerate at
the optimal solution and thus one can solve the lin-
ear system by an iterative method at a reasonable
cost. From this comparison, one can see why the
solver SDPNAL is needed to solve large-scale SDP
problems [63].

Besides the difference in the conditioning of the
SCE and SNE, the SNE also has another tremendous
advantage over the SCE in that it can fully exploit

any low-rank or high-rank structure (which we call
rank-sparsity for convenience) present the current it-
erate. Specially, if the rank of σ−1Xk− (C−A∗ȳ) is
r, then the cost of computing a matrix-vector prod-
uct for the SNE can be shown to be given by

cost(H∆y) = 8 min{r, n− r}n2

+ cost(A(·)) + cost(A∗(·)).

In contrast, the corresponding cost of a matrix-
vector product for the SCE is given by:

cost(M∆y) = 4n3 + cost(A(·)) + cost(A∗(·)).

Clearly, if r � n or n − r � n, then the savings
from exploiting the rank-sparsity structure present
in the generalized Jacobian in the SNE can be very
substantial. Roughly speaking, one can observe that
the rank-sparsity structure of the generalized Jaco-
bian is inherited from the rank-sparsity structure of
the iterate (Xk, Zk) and SNE is able to exploit the
rank-sparsity structure in the iterate, but the SCE
cannot do so because the IPM framework has per-
turbed all zero eigenvalues to small positive num-
bers. For convenience, in Table 3, we summarize
the key computational differences of solving a large-
scale SDP problems via an IPM solver versus the
SDPNAL solver.

4 Conclusion

We have discussed various numerical issues that
are critical to the design of robust and efficient
solvers for SDP problems. In particular, we note
that well-implemented IPM solvers can be surpris-
ingly robust for solving ill-posed (degenerate) SDP
problems, even though they are efficient only for
solving medium-scale problems. While augmented
Lagrangian-based solvers such as SDPNAL and
SDPNAL+ have achieved good success in solving
some large-scale SDP problems, their performance
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Table 3: Contrast in the conditioning and second-order sparsity of the SCE in SDPT3 and that of the SNE
in SDPNAL. In the table, D : Sn → Sn is defined by D(M) = Ω ◦M .

m×m linear system in IPM m×m linear system in ALM

A(W ⊗W )A∗∆y = rhs A(Q⊗Q)D(QT ⊗QT )A∗∆y = rhs

Condition number at least Θ(1/µ)
unbounded as barrier parameter µ ↓ 0

Condition number = Θ(σ)
stays bounded for nondegenerate problems,
where σ is the penalty parameter

CG needs a large number of steps CG needs a moderate number of steps

Can exploit data structure,
especially sparsity

Can exploit data structure
such as sparsity

Unable to exploit low-rank or
high-rank structure in X

Can exploit low-rank or high-rank
structure in X, because of the
all-ones and zero blocks in Ω

is expected to be robust mainly for nondegenerate
problems, and they may not be able to solve de-
generate problems to a reasonable level of accuracy.
Indeed, how to design an algorithm that is robust
and efficient for solving large-scale degenerate SDP
problems is a key challenge in SDP research, and
any progress to resolve this challenge will contribute
to the widespread application of SDP modeling in
business, economics, science, and engineering.

Another challenge in SDP research is in designing
an algorithm for solving large SDP problems when
both n and m are large. Parallel algorithms that ex-
tend the current IPM- or ALM-based solvers would
be the natural path to take, although one should
not underestimate the numerical and implementa-
tion complexities that would arise in the parallel
algorithms, especially when the dense matrix vari-
able must be stored in a distributed fashion. For
an SDP problem with large matrix dimension n but
with conducive sparsity structure, one can apply the
conversion method that has been well-studied in [32]
to convert the problem into an equivalent problem
having multiple blocks of smaller matrix variables,
where the dimension of each block is moderate (of
course, the dimensions of the smaller blocks are very
much dependent on the SDP data at hand). How-
ever, one should note that in the conversion method,
usually a large number of equality constraints will be
introduced to account for the fact that matrix ele-

ments in the overlapping part of two different blocks
must be the same. Another issue that is not often
mentioned is that the converted problem is likely to
be degenerate even if the original problem is non-
degenerate. Thus, solving the converted problem is
also not without challenges.

To conclude, I hope this article has convinced
the reader that there is interesting and challenging
work to be done in designing algorithms for solv-
ing large-scale SDP problems. Of course, the same
questions can be asked for more general conic pro-
gramming problems such as convex quadratic SDPs,
log-determinant SDPs, etc.
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Correction In the article “Sparsity Matters” by
Robert J. Vanderbei published in volume 1 of the

2018 newsletter, reference [7] should read “I.J.
Lustig, R. Marsten, and D.F. Shanno. Computa-
tional experience with a primal-dual interior point
method for linear programming. Linear Algebra and
its Applications 152:191–222, 1991.” We apologize
for the error.
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The INFORMS Optimization Society Conference
is held in the early part of the even years, often in a
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opportunity for researchers studying optimization-
related topics to share their work in a focused venue.
The most recent conference, held earlier this year in
Denver, Colorado, certainly has met all of these cri-
teria. (See the short report on the conference by its
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