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Dear Fellow IOS Members:

The INFORMS Optimization Society’s Confer-
ence is held every two years, and in March of this
year the University of Colorado Denver hosted the
conference. The number of attendees at the con-
ferences in 2014, 2016, and 2018 were 125, 210,
and 272, respectively. This speaks both to the re-
cent growth of research in optimization and to the
outstanding work done by the conference organizers
Steve Billups, Steffen Borgwardt, Manuel Laguna,
and Alexandra Newman.

The conference in Denver featured 14 sessions in
Optimization under Uncertainty and 12 sessions in
Integer and Discrete Optimization. That these two
clusters were among the most popular is consistent
with what we have seen in recent years. The con-
ference also hosted 13 sessions involving Optimiza-
tion in Machine Learning and Statistics, and this is
clearly an area of significant growth, both for IOS
and more broadly.

At the conference in Denver, Pietro Belotti re-
ceived the IOS Distinguished Service Award. Pietro
served as the IOS Web Editor for eight years, from
2010 through 2017. His remarkable dedication to
IOS included handling the recent transition in the
content management system to the new INFORMS
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Connect design. This was no small effort. In ad-
dition to providing Web content, Pietro helped IOS
have a strong presence on social media. On behalf
of all of IOS, thank you Pietro. IOS is pleased to
welcome Sertalp Çay as our new Web Editor.

At the Annual INFORMS Conference in Houston,
in fall 2017, IOS awarded four prizes. This newslet-
ter features articles by winners of two of the prizes:

• Robert J. Vanderbei received the Khachiyan
Prize for outstanding lifetime contributions to
the field of optimization. Bob has made im-
portant contributions to interior point methods
for linear programming, convex and nonconvex
nonlinear optimization, and semidefinite pro-
gramming. Bob has worked on a fascinating ar-
ray of applications including designing a NASA
space telescope. In this newsletter Bob writes
about sparsity and its role in optimization, a
theme that runs through important parts of his
work and through optimization more broadly.
• Alberto Del Pia and Aida Khajavirad re-

ceived the Prize for Young Researchers for
their paper, “On Decomposability of Multi-
linear Sets,” Mathematical Programming, doi.
org/10.1007/s10107-017-1158-z. Their the-
oretical work illuminates the facial structure of
Padberg’s Boolean quadric polytope and more
general multilinear polytopes. Their associated
algorithmic work should lend itself to improved
performance for mixed-integer nonlinear pro-
gramming solvers.

We thank the respective prize committees for their
work. Khachiyan Prize: Gerald Brown (chair), Bill
Cook, Andrzej Ruszczyński, and Yinyu Ye; and,
Young Researchers Prize: Michael Ferris (chair),
Jonathan Eckstein, Simge Küçükyavuz, and Suvra-
jeet Sen. Look for articles in the fall IOS newslet-
ter by the other two prize winners, Kim-Chuan Toh
(Farkas Prize) and Frans de Ruiter (Student Paper
Prize).

Looking forward, as detailed in this newsletter:

• The deadline for nominations for the four 2018
IOS prizes is June 15.
• We seek nominations for IOS Vice Chairs

in Global Optimization, Nonlinear Optimiza-
tion, and Optimization Under Uncertainty.

We further seek nominations for IOS Secre-
tary/Treasurer. The deadline for nominations
is June 30.
• We seek proposals to host the 2020 INFORMS

Optimization Society’s Conference.

We are now in our second year in which IOS pub-
lishes two newsletters per year. Thank you to Ma-
rina Epelman for leading our newsletter. Look for
the next newsletter prior to the annual meeting in
Phoenix. In the meantime, I wish you all a produc-
tive, optimized summer.

Pietro Belotti, showing off his IOS Distinguished Service
Award, at the Society conference in Denver. (photo by Sven

Leyffer)

doi.org/10.1007/s10107-017-1158-z
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This article is dedicated to the memory of Manfred
Padberg whose work on the Boolean quadric polytope
inspired us to start this line of research.

1 Introduction

Central to the efficiency of global optimization al-
gorithms is their ability to construct sharp and
cheaply computable convex relaxations. Factorable
programming techniques are used widely in global
optimization of mixed-integer nonlinear optimiza-
tion problems (MINLPs) for bounding general non-
convex functions [9]. These techniques iteratively
decompose a factorable function, through the intro-
duction of variables and constraints for intermedi-

Suvrajeet Sen, Aida Khajavirad, Alberto Del Pia, and David
Morton

ate nonlinear expressions, until each intermediate
expression can be convexified effectively.

Multilinear sets and polytopes. Factorable re-
formulations of many types of MINLPs, such as
mixed-integer polynomial optimization problems,
contain a collection of multilinear equations of the
form ze =

∏
v∈e zv, e ∈ E, where E denotes a set of

subsets of cardinality at least two of a ground set V .
Let us define the set of points satisfying all multilin-
ear equations present in a factorable reformulation
of a MINLP as S̃ = {z : ze =

∏
v∈e zv ∀e ∈ E, zv ∈

[0, 1] ∀v ∈ V1, zv ∈ {0, 1} ∀v ∈ V2}, where V1, V2

forms a partition of V . It is well-known that the
convex hull of S̃ is a polytope and the projection of
its vertices onto the space of the variables zv, v ∈ V ,
is given by {0, 1}V . Hence, the facial structure of
the convex hull of S̃ can be equivalently studied by
considering the following binary set:

{
z ∈ {0, 1}V +E : ze =

∏

v∈e
zv ∀e ∈ E

}
. (1)

In particular, this set represents the feasible region
of a linearized unconstrained 0−1 polynomial op-
timization problem. There is a one-to-one corre-
spondence between sets of form (1) and hypergraphs
G = (V,E). Henceforth we refer to (1) as the mul-
tilinear set of the hypergraph G and denote it by
SG, and refer to its convex hull as the multilinear
polytope of G and denote it by MPG. (See, e.g., [5])

If all multilinear equations defining SG are bi-
linear, the multilinear polytope coincides with the
Boolean quadric polytope defined by Padberg [10]
in the context of 0−1 quadratic optimization, in
which case our hypergraph representation simpli-
fies to the graph representation of Padberg. In-
deed, a significant amount of research has been de-
voted to studying the facial structure of the Boolean
quadric polytope and these theoretical developments
have had a significant impact on the performance of
branch-and-cut based algorithms for mixed-integer
quadratic optimization problems. However, similar
polyhedral studies for higher degree multilinear poly-
topes are quite scarce. Our ultimate goal is to bridge
this gap by performing a systematic study of the fa-
cial structure of the multilinear polytope, and thus
paving the way for devising novel optimization algo-
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rithms for nonconvex problems containing multilin-
ear sub-expressions.

Decomposability. In this article, we provide an
overview of some of our recent results [4, 6] on the fa-
cial structure of higher degree multilinear polytopes
with a special focus on their “decomposability” prop-
erties. Namely, we demonstrate that for multilin-
ear polytopes decomposability plays a key role from
both theoretical and algorithmic viewpoints.

Let us start by introducing some hypergraph ter-
minology we need to formally define the notion of
decomposability for the multilinear polytope. Given
a hypergraph G = (V,E), and a subset V ′ of V ,
the section hypergraph of G induced by V ′ is the
hypergraph G′ = (V ′, E′), where E′ = {e ∈ E :
e ⊆ V ′}. Given hypergraphs G1 = (V1, E1) and
G2 = (V2, E2), we denote by G1 ∩ G2 the hyper-
graph (V1 ∩ V2, E1 ∩E2), and we denote by G1 ∪G2

the hypergraph (V1 ∪ V2, E1 ∪ E2).
Now, consider a hypergraph G, and let Gj , j ∈

J , be distinct section hypergraphs of G such that
∪j∈JGj = G. Clearly, the system of all inequalities
defining MPGj for all j ∈ J provides a relaxation of
MPG as the convexification operation does not, in
general, distribute over intersection. It is highly de-
sirable to identify conditions under which these two
sets coincide, as in such cases characterizing MPG

simplifies to characterizing each MPGj separately.
More formally, we say that the polytope MPG is de-
composable into polytopes MPGj , for j ∈ J , if the
following relation holds:

MPG =
⋂

j∈J
MPGj , (2)

where MPGj is the set of all points in the space of
MPG whose projection in the space defined by Gj is
MPGj .

Organization. In Section 2 we provide a summary
of our results in [4] regarding necessary and sufficient
conditions for decomposability of multilinear poly-
topes based on the structure of their intersection hy-
pergraphs. Subsequently, in Section 3 we present a
polynomial-time algorithm to optimally decompose
a multilinear polytope into a collection of nondecom-
posable multilinear polytopes. A detailed analysis of

this algorithm can be found in [4]. In Section 4 we
give a brief overview of our results in [6], wherein we
study the complexity of the multilinear polytope in
conjunction with the acyclicity degree of its hyper-
graph and show that for certain acyclic hypergraphs,
the multilinear polytope is decomposable into a col-
lection of simpler multilinear polytopes whose ex-
plicit description can be obtained directly.

2 Decomposability based on the
intersection hypergraph

Suppose that G1 and G2 are section hypergraphs of
G such that G1 ∪ G2 = G. The following theorem
provides a sufficient condition for decomposability of
MPG into MPG1 and MPG2 , based on the structure
of the intersection hypergraph G1 ∩ G2. In the fol-
lowing, we say that a hypergraph Ḡ is complete if
all subsets of V (Ḡ) of cardinality at least two are
present in E(Ḡ).

Theorem 1. Let G be a hypergraph, and let G1,G2

be section hypergraphs of G such that G1 ∪ G2 = G
and G1∩G2 is a complete hypergraph. Then the poly-
tope MPG is decomposable into MPG1 and MPG2.

Figure 1 illustrates some hypergraphs G for which
MPG is decomposable into MPG1 and MPG2 . To
draw a hypergraph G, throughout this article, we
represent the nodes in V (G) by points, and the edges
in E(G) by closed curves enclosing the corresponding
set of points.
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We now provide the proof sketch for Theorem 1.
Given a vector z in the space defined by G, we de-
note by z∩ the vector that contains the components
of z corresponding to nodes and edges that are in
G1 ∩ G1. Moreover, we denote by z1 (resp. z2) the
vector that contains the components of z correspond-
ing to nodes and edges that are in G1 and not in G2

(resp. in G2 and not in G1). The key step in prov-
ing Theorem 1 is to show that a vector (ẑ1, ẑ∩, ẑ2)
belongs to MPG if (ẑ1, ẑ∩) can be written as a con-
vex combination of vectors in SG1 and (ẑ∩, ẑ2) can be
written as a convex combination of vectors in SG2 .
Clearly, given any two vectors (z1, z∩) ∈ SG1 and
(z′

∩, z2) ∈ SG2 with z∩ = z′
∩, we can combine them

to obtain a vector (z1, z∩, z2) ∈ SG. Since by as-
sumption the hypergraph G1 ∩ G2 is complete, the
polytope MPG1∩G2 is a simplex, implying that any
vector (ẑ1, ẑ∩, ẑ2) in MPG can be written as a convex
combination of the obtained vectors (z1, z∩, z2) in SG.
In partciular, Theorem 1 unifies the existing decom-
posability results for the Boolean quadric polytope
QPG [10]:

Corollary 1. Consider a graph G = G1 ∪ G2,
where G1 and G2 are induced subgraphs of G with
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vector that contains the components of z correspond-
ing to nodes and edges that are in G1 and not in G2

(resp. in G2 and not in G1). The key step in proving
Theorem 1 is to show that a vector (ẑ1, ẑ∩, ẑ2) be-
longs to MPG if (ẑ1, ẑ∩) can be written as a convex
combination of vectors in SG1 and (ẑ∩, ẑ2) can be
written as a convex combination of vectors in SG2 .
Clearly, given any two vectors (z1, z∩) ∈ SG1 and
(z′∩, z2) ∈ SG2 with z∩ = z′∩, we can combine them
to obtain a vector (z1, z∩, z2) ∈ SG. Since by as-
sumption the hypergraph G1 ∩ G2 is complete, the
polytope MPG1∩G2 is a simplex, implying that any
vector (ẑ1, ẑ∩, ẑ2) in MPG can be written as a con-
vex combination of the obtained vectors (z1, z∩, z2)
in SG. In partciular, Theorem 1 unifies the exist-
ing decomposability results for the Boolean quadric
polytope QPG [10]:

Corollary 2. Consider a graph G = G1 ∪ G2,
where G1 and G2 are induced subgraphs of G with
V (G1) ∩ V (G2) = {u}, for some u ∈ V (G), or
V (G1) ∩ V (G2) = {u, v}, for some {u, v} ∈ E(G).
Then QPG is decomposable into QPG1

and QPG2
.

The next theorem demonstrates the tightness of
Theorem 1. We define the rank of a hypergraph G
as the maximum cardinality of an edge in E(G).

Theorem 3. Let Ḡ be a rank-r hypergraph that is
not complete. Then for any integer r′ ≥ max{r, 2},
there exists a rank-r′ hypergraph G = G1∪G2, where
G1 and G2 are section hypergraphs of G with Ḡ =
G1 ∩ G2, such that MPG is not decomposable into
MPG1 and MPG2.

Figure 2 illustrates some hypergraphs G for which
MPG is not decomposable into MPG1 and MPG2 .
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.
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the maximum cardinality of an edge in E(G).

Theorem 2. Let Ḡ be a rank-r hypergraph that is
not complete. Then for any integer r′ ≥ max{r, 2},
there exists a rank-r′ hypergraph G = G1 ∪ G2, where
G1 and G2 are section hypergraphs of G with Ḡ =
G1 ∩ G2, such that MPG is not decomposable into
MPG1 and MPG2 .

Figure 2 illustrates some hypergraphs G for which
MPG is not decomposable into MPG1 and MPG2 .
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The proof of Theorem 2 is constructive. Namely,
we search for a section hypergraph H̄ of Ḡ with q
nodes such that E(H̄) consists all edges of cardinal-
ity between 2 and q − 1. Then we construct two
hypergraphs H1 and H2 with V (H1) = V (H̄) ∪ {u},
E(H1) = E(H̄) ∪ {{u, v} : v ∈ V (H̄)} and V (H2) =
V (H̄) ∪ {w}, E(H2) = E(H̄) ∪ {{w, v} : v ∈ V (H̄)}.
Subsequently, by letting H = H1 ∪ H2, we provide a
facet-defining inequality for MPH with nonzero coef-
ficients corresponding to some edges in E(H1)\E(H̄)
and in E(H2) \ E(H̄). This implies that MPH is not
decomposable into MPH1 and MPH2 . Next, we con-
struct the hypergraph G = H1 ∪ H2 ∪ Ḡ and define
G1 and G2 as the section hypergraphs of G induced
by V (H1) ∪ V (Ḡ) and V (H2) ∪ V (Ḡ), respectively.
We then show that since MPH is not decomposable
into MPH1 and MPH2 , the polytope MPG is not de-
composable into MPG1 and MPG2 either. It is simple
to see that the rank of the hypergraph G constructed
above is equal to max{r, 2}. For any integer r′ greater
than max{r, 2}, by adding a certain edge of cardinal-
ity r′ to either G1 or G2, we can complete the proof.

In [10], Padberg poses a question regarding the de-
composability of the Boolean quadric polytope when
the intersection graph is a clique of cardinality greater
than two. The proof of Theorem 2 implies that the
answer to this question is negative for a clique with
three or more nodes.

We conclude this section by remarking that in [4]
we also present sufficient conditions for decompos-
ability of multilinear polytopes with sparse intersec-
tion hypergraphs.

3 An optimal algorithm for de-

composing the multilinear poly-
tope

It is well-understood that branch-and-cut based
MINLP solvers would highly benefit from our decom-
position results as such techniques lead to significant
reductions in CPU time during cut generation [1]. In
this section, we present a simple and efficient algo-
rithm for optimally decomposing a multilinear poly-
tope into simpler and non-decomposable multilinear
polytopes. Our proposed algorithm can be easily in-
corporated in MINLP solvers as a preprocessing step
for cut generation. We start by presenting a sufficient
condition for decomposability of MPG into MPGj , for
j ∈ J , which can be obtained by a recursive applica-
tion of Theorem 1.

Theorem 3. Let G be a hypergraph, and let Gj , j ∈
J , be section hypergraphs of G such that ∪j∈JGj =
G. Suppose that for all j, j′ ∈ J with j ≠ j′, the
intersection Gj ∩Gj′ is the same complete hypergraph
Ḡ. Then MPG is decomposable into MPGj , for j ∈ J .

Now consider a hypergraph G and let p ⊂ V (G).
Denote by Ḡ the section hypergraph of G induced by
p. We say that p decomposes G if

(a) the hypergraph Ḡ is complete,
(b) there exist at least two section hypergraphs Gj ,

j ∈ J , of G, with V (Gj) \ V (Gj′) ≠ ∅ for all
j, j′ ∈ J with j ≠ j′, that together with Ḡ satisfy
the hypothesis of Theorem 3.

If p does not decompose any Gj , j ∈ J , as defined
in (b), then we refer to the family Gj , j ∈ J , as
a p-decomposition of G. It can be shown that there
exists a unique p-decomposition of G. The next result
indicates that a p-decomposition test can be carried
out efficiently.

Proposition 1. Given a connected rank-r hyper-
graph G = (V,E) and p ⊂ V , we can test if p de-
composes G, and, if so, obtain the p-decomposition
of G in O(r|E|) time.
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The proof of Theorem 3 is constructive. Namely,
we search for a section hypergraph H̄ of Ḡ with q
nodes such that E(H̄) consists of all edges of cardi-
nality between 2 and q − 1. Then we construct two

hypergraphs H1 and H2 with V (H1) = V (H̄)∪ {u},
E(H1) = E(H̄) ∪ {{u, v} : v ∈ V (H̄)} and V (H2) =
V (H̄)∪ {w}, E(H2) = E(H̄)∪ {{w, v} : v ∈ V (H̄)}.
Subsequently, by letting H = H1 ∪H2, we provide a
facet-defining inequality for MPH with nonzero coef-
ficients corresponding to some edges in E(H1)\E(H̄)
and in E(H2)\E(H̄). This implies that MPH is not
decomposable into MPH1 and MPH2 . Next, we con-
struct the hypergraph G = H1 ∪H2 ∪ Ḡ and define
G1 and G2 as the section hypergraphs of G induced
by V (H1) ∪ V (Ḡ) and V (H2) ∪ V (Ḡ), respectively.
We then show that since MPH is not decomposable
into MPH1 and MPH2 , the polytope MPG is not de-
composable into MPG1 and MPG2 either. It is sim-
ple to see that the rank of the hypergraph G con-
structed above is equal to max{r, 2}. For any integer
r′ greater than max{r, 2}, by adding a certain edge
of cardinality r′ to either G1 or G2, we can complete
the proof.

In [10], Padberg poses a question regarding the
decomposability of the Boolean quadric polytope
when the intersection graph is a clique of cardinality
greater than two. The proof of Theorem 3 implies
that the answer to this question is negative for a
clique with three or more nodes.

We conclude this section by remarking that in [4]
we also present sufficient conditions for decompos-
ability of multilinear polytopes with sparse intersec-
tion hypergraphs.

3 An optimal algorithm for de-
composing the multilinear poly-
tope

It is well-understood that branch-and-cut based
MINLP solvers would highly benefit from our decom-
position results as such techniques lead to significant
reductions in CPU time during cut generation [1]. In
this section, we present a simple and efficient algo-
rithm for optimally decomposing a multilinear poly-
tope into simpler and non-decomposable multilinear
polytopes. Our proposed algorithm can be easily
incorporated in MINLP solvers as a preprocessing
step for cut generation. We start by presenting a
sufficient condition for decomposability of MPG into
MPGj , for j ∈ J , which can be obtained by a recur-
sive application of Theorem 1.
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Theorem 4. Let G be a hypergraph, and let Gj, j ∈
J , be section hypergraphs of G such that ∪j∈JGj =
G. Suppose that for all j, j′ ∈ J with j 6= j′, the
intersection Gj∩Gj′ is the same complete hypergraph
Ḡ. Then MPG is decomposable into MPGj , for j ∈
J .

Now consider a hypergraph G and let p ⊂ V (G).
Denote by Ḡ the section hypergraph of G induced
by p. We say that p decomposes G if

(a) the hypergraph Ḡ is complete,
(b) there exist at least two section hypergraphs Gj ,

j ∈ J , of G, with V (Gj) \ V (Gj′) 6= ∅ for all
j, j′ ∈ J with j 6= j′, that together with Ḡ sat-
isfy the hypothesis of Theorem 4.

If p does not decompose any Gj , j ∈ J , as defined
in (b), then we refer to the family Gj , j ∈ J , as a p-
decomposition of G. It can be shown that there ex-
ists a unique p-decomposition of G. The next result
indicates that a p-decomposition test can be carried
out efficiently.

Proposition 5. Given a connected rank-r hyper-
graph G = (V,E) and p ⊂ V , we can test if p de-
composes G, and, if so, obtain the p-decomposition
of G in O(r|E|) time.

Full decompositions. In general, a multilinear
polytope MPG is decomposable into simpler poly-
topes via a series of p-decompositions of G until none
of the newly generated multilinear polytopes are de-
composable. In the following, whenever a polytope
MPG is decomposable into polytopes MPGk

, k ∈ K,
we refer to the family Gk, k ∈ K, as a decomposi-
tion of G. Given a hypergraph G, we define its full-
decomposition as a decomposition of G given by a
family Gk, k ∈ K, with the following properties:

(i) There exists no Gk, for some k ∈ K, and p ⊂
V (Gk) such that p decomposes Gk.

(ii) No hypergraph Gs, for some s ∈ K, is a section
hypergraph of another hypergraph Gt, for some
t ∈ K with t 6= s.

If Gs is a section hypergraph of Gt for some s, t ∈ K
with s 6= t, then MPGs corresponds to a face of
MPGt . Thus, removing Gs from a decomposition of
G amounts to removing redundant inequalities from

the description of MPG, which is computationally
beneficial. It can be shown that the following algo-
rithm gives a full-decomposition of G.

Gen dec : General full-decomposition algo-
rithm
Input: A hypergraph G
Output: A full-decomposition of G
Initialize the family L = {G};
while L does not satisfy property (i) of
full-decomposition do

select a hypergraph G̃ ∈ L and p ⊂ V (G̃);

if p decomposes G̃ then
let Gj , j ∈ J , be the p-decomposition
of G̃;

let J̃ be the subset of J such that each
Gj , j ∈ J̃ , is not a section
hypergraph of any hypergraph in L
different from G̃;

in L, replace G̃ with Gj , j ∈ J̃ ;

return L;

Decomposition orders. In Gen dec, we have not
specified which G̃ ∈ L and p ⊂ V (G̃) to choose at
each iteration. We refer to different choices of G̃ and
p throughout the execution of Gen dec as decomposi-
tion orders. We denote a specific decomposition or-
der by the sequence of choices that defines it, where
each choice consists of a pair (G̃, p), for some hyper-
graph G̃ ∈ L and a set of nodes p ⊂ V (G̃) that is
tested for p-decomposition of G̃. The next propo-
sition indicates that a full-decomposition of G does
not depend on the specific decomposition order used.

Proposition 6. The full-decomposition of a hyper-
graph obtained by Gen dec is independent of the de-
composition order.

Henceforth, we will speak of the full-
decomposition of G. However, as we detail
next, different decomposition orders result in dif-
ferent computational costs for Gen dec. First, from
the definition of Gen dec it follows that the length
of the decomposition order used is a reasonable
measure for the overall cost of this algorithm and
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it can be shown that for a hypergraph G, every de-
composition order contains at least |V (G)|+ |E(G)|
pairs. Second, to ensure that property (ii) in the
definition of the full-decomposition is satisfied,
every time the p-decomposition of G̃ is generated,
each new hypergraph Gj is compared with the
existing ones and is added to L only if it is not
a section hypergraph of another hypergraph in L.
Let us refer to the section hypergraphs not added
to L as redundant hypergraphs. It can be shown
that different decomposition orders in Gen dec may
result in distinct redundant hypergraphs. As the
redundancy check is computationally expensive,
it is beneficial to obtain a decomposition order
that results in a minimum number of redundant
hypergraphs.

The optimal decomposition algorithm. Next,
we define a special sequence of choices Ō in the exe-
cution of Gen dec with highly desirable algorithmic
properties. At a given iteration of Gen dec, we say
that p ∈ V (G̃)∪E(G̃) is tested in G̃ if the pair (G̃, p)
has been already considered in an earlier iteration of
Gen dec. Moreover, we refer to the hypergraph G̃
in Gen dec as the parent of each Gj . The ancestors
of Gj are the parent of Gj , and the ancestors of the
parent of Gj . At a given iteration, any hypergraph
in the current family L can be chosen as G̃. Let
the list {qk, k ∈ K} contain all nodes and edges of
G̃ ordered by increasing cardinality. We define p to
be the first element qk in the above list that is not
tested in G̃ or in any ancestor of G̃. The sequence
Ō ends when no such pair (G̃, p) can be found.

Proposition 7. The sequence Ō is a decomposi-
tion order. Moreover, it creates no redundant hy-
pergraphs. Consider a hypergraph G with n nodes
and m edges. Let the decomposition order Ō for
G be given by (G1, p1), (G2, p2), . . . , (Gt, pt). Then
t = n+m.

In [4], we present an optimal full-decomposition
algorithm, referred to as Opt dec, which is obtained
by an efficient incorporation of the decomposition or-
der Ō in Gen dec. We refer to this algorithm as op-
timal due to two reasons. First, Opt dec applies the
minimum number of p-decomposition tests needed
to obtain the full-decomposition of any hypergraph.
Second, no redundant hypergraph is generated in the

course of Opt dec, and hence the costly redundancy
test (as described in Gen dec) is not required. The
following proposition gives the worst-case running
time of Opt dec.

Proposition 8. Consider a connected rank-r hyper-
graph G with n nodes and m edges. Then, the run-
ning time of Opt dec is O(rm(n+m)).

In [4], we provide an example that demonstrates
the significance of our optimal decomposition al-
gorithm; namely we define a hypergraph G and a
decomposition order Õ, such that when incorpo-
rated in Gen dec, in comparison to Ō, the decom-
position order Õ requires n(m − 1)/2 additional p-
decomposition tests to obtain a full-decomposition
of G. In addition, a total number of n(n− 2)/4− 1
redundant hypergraphs are generated in the course
of Gen dec.

4 The multilinear polytope of
acyclic hypergraphs

In this section, we demonstrate the key role of de-
composition in obtaining explicit descriptions for the
multilinear polytope of certain acyclic hypergraphs.
Moreover, these convex hull characterizations enable
us to optimize a linear function over MPG in poly-
nomial time. We start by providing a sufficient con-
dition for decomposability of multilinear polytopes
that will be used for the subsequent developments.

Theorem 9. Let G be a hypergraph, and let G1, G2

be section hypergraphs of G such that G1 ∪ G2 =
G. Denote by p̄ := V (G1) ∩ V (G2). Suppose that
p̄ ∈ V (G) ∪ E(G), and that for every edge e of G
containing nodes in V (G1) \ V (G2) either e ⊃ p̄, or
e ∩ p̄ = ∅. Then MPG is decomposable into MPG1

and MPG2.

Figure 3 illustrates a hypergraph G for which by
Theorem 9 the polytope MPG is decomposable into
MPG1 and MPG2 .

As in Theorem 1, to prove Theorem 9, we need
to show that a vector (ẑ1, ẑ∩, ẑ2) belongs to MPG

if (ẑ1, ẑ∩) can be written as a convex combination
of vectors in SG1 and (ẑ∩, ẑ2) can be written as a
convex combination of vectors in SG2 . Moreover,
as before, it is sufficient to consider vectors in SG
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edges. Let the decomposition order Ō for G be given
by (G1, p1), (G2, p2), . . . , (Gt, pt). Then t = n + m.

In [4], we present an optimal full-decomposition al-
gorithm, referred to as Opt dec, which is obtained by
an efficient incorporation of the decomposition order
Ō in Gen dec. We refer to this algorithm as optimal
due to two reasons. First, Opt dec applies the mini-
mum number of p-decomposition tests needed to ob-
tain the full-decomposition of any hypergraph. Sec-
ond, no redundant hypergraph is generated in the
course of Opt dec, and hence the costly redundancy
test (as described in Gen dec) is not required. The
following proposition gives the worst-case running
time of Opt dec.

Proposition 4. Consider a connected rank-r hyper-
graph G with n nodes and m edges. Then, the run-
ning time of Opt dec is O(rm(n + m)).

In [4], we provide an example that demonstrates
the significance of our optimal decomposition algo-
rithm; namely we define a hypergraph G and a
decomposition order Õ, such that when incorpo-
rated in Gen dec, in comparison to Ō, the decom-
position order Õ requires n(m − 1)/2 additional p-
decomposition tests to obtain a full-decomposition of
G. In addition, a total number of n(n − 2)/4 − 1
redundant hypergraphs are generated in the course
of Gen dec.

4 The multilinear polytope of
acyclic hypergraphs

In this section, we demonstrate the key role of de-
composition in obtaining explicit descriptions for the
multilinear polytope of certain acyclic hypergraphs.
Moreover, these convex hull characterizations enable
us to optimize a linear function over MPG in polyno-
mial time. We start by providing a sufficient condi-
tion for decomposability of multilinear polytopes that
will be used for the subsequent developments.

Theorem 4. Let G be a hypergraph, and let G1, G2

be section hypergraphs of G such that G1 ∪ G2 = G.
Denote by p̄ := V (G1) ∩ V (G2). Suppose that p̄ ∈
V (G)∪E(G), and that for every edge e of G contain-
ing nodes in V (G1)\V (G2) either e ⊃ p̄, or e∩ p̄ = ∅.
Then MPG is decomposable into MPG1 and MPG2.

Figure 3 illustrates a hypergraph G for which by
Theorem 4 the polytope MPG is decomposable into
MPG1 and MPG2 .

G G1 G2

Figure 3

As in Theorem 1, to prove Theorem 4, we need
to show that a vector (ẑ1, ẑ∩, ẑ2) belongs to MPG if
(ẑ1, ẑ∩) can be written as a convex combination of
vectors in SG1 and (ẑ∩, ẑ2) can be written as a convex
combination of vectors in SG2 . Moreover, as before,
it is sufficient to consider vectors in SG obtained by
combining one vector (z1, z∩) in SG1 with one vector
(z′

∩, z2) in SG2 . However, since in Theorem 4 the in-
tersection hypergraph is not complete, it is no longer
sufficient to only combine vectors with z∩ = z′

∩. In
this case, we need to consider all vectors (z1, z

′
∩, z2)

obtained by combining a vector (z1, z∩) ∈ SG1 and
a vector (z′

∩, z2) ∈ SG2 with zē = z′
ē. The pres-

ence of (z1, z
′
∩, z2) in SG follows from the assump-

tion that every edge that is only in G1 either con-
tains ē or is disjoint from it. Moreover, the existence
of the edge ē implies that we can write the vector
(ẑ1, ẑ∩, ẑ2) as a convex combination of the obtained
vectors (z1, z

′
∩, z2) in SG.

Acyclic hypergraphs. Padberg [10] shows that
for an acyclic graph, the Boolean quadric polytope
admits a simple and compact description. This result
can be obtained by showing that the Boolean quadric
polytope of an acyclic graph is decomposable into a
collection of Boolean quadric polytopes whose graphs
consists of a single edge. To obtain similar character-
izations for higher degree multilinear polytopes, it is
then natural to look into the notion of acyclicity for
hypergraphs. Interestingly, unlike graphs for which
there is a single natural notion of acyclicity, for hy-
pergraphs several different degrees of acyclicity have
been defined [8]. In the following, we present two
types of hypergraph acyclicity which will be used for
the subsequent developments.

The most restrictive class of acyclic hypergraphs is
the class of Berge-acyclic hypergraphs. A Berge-cycle
in G is a sequence v1, e1, v2, e2, . . . , vt, et, v1 with t ≥
2, such that (i) v1, v2, . . . , vt are distinct nodes of G,
(ii) e1, e2, . . . , et are distinct edges of G, (iii) vi, vi+1 ∈
ei for i = 1, . . . , t − 1, and vt, v1 ∈ et. A hypergraph
is Berge-acyclic if it contains no Berge-cycles. The
next class of acyclic hypergraphs in increasing order
of generality, is the class of γ-acyclic hypergraphs. A

5

Figure 3

obtained by combining one vector (z1, z∩) in SG1

with one vector (z′∩, z2) in SG2 . However, since in
Theorem 9 the intersection hypergraph is not com-
plete, it is no longer sufficient to only combine vec-
tors with z∩ = z′∩. In this case, we need to consider
all vectors (z1, z

′
∩, z2) obtained by combining a vec-

tor (z1, z∩) ∈ SG1 and a vector (z′∩, z2) ∈ SG2 with
zē = z′ē. The presence of (z1, z

′
∩, z2) in SG follows

from the assumption that every edge that is only in
G1 either contains ē or is disjoint from it. Moreover,
the existence of the edge ē implies that we can write
the vector (ẑ1, ẑ∩, ẑ2) as a convex combination of the
obtained vectors (z1, z

′
∩, z2) in SG.

Acyclic hypergraphs. Padberg [10] shows that
for an acyclic graph, the Boolean quadric polytope
admits a simple and compact description. This re-
sult can be obtained by showing that the Boolean
quadric polytope of an acyclic graph is decomposable
into a collection of Boolean quadric polytopes whose
graphs consists of a single edge. To obtain sim-
ilar characterizations for higher degree multilinear
polytopes, it is then natural to look into the notion
of acyclicity for hypergraphs. Interestingly, unlike
graphs for which there is a single natural notion of
acyclicity, for hypergraphs several different degrees
of acyclicity have been defined [8]. In the following,
we present two types of hypergraph acyclicity which
will be used for the subsequent developments.

The most restrictive class of acyclic hypergraphs
is the class of Berge-acyclic hypergraphs. A Berge-
cycle in G is a sequence v1, e1, v2, e2, . . . , vt, et, v1

with t ≥ 2, such that (i) v1, v2, . . . , vt are distinct
nodes of G, (ii) e1, e2, . . . , et are distinct edges of G,
(iii) vi, vi+1 ∈ ei for i = 1, . . . , t−1, and vt, v1 ∈ et. A
hypergraph is Berge-acyclic if it contains no Berge-
cycles. The next class of acyclic hypergraphs, in in-
creasing order of generality, is the class of γ-acyclic
hypergraphs. A γ-cycle in G is a Berge-cycle such
that t ≥ 3, and for each i ∈ {2, . . . , t}, the node vi

belongs to ei−1, ei and no other ej . A hypergraph is
γ-acyclic if it contains no γ-cycles.

Acyclicity and decomposability. The link be-
tween hypergraph acyclicity and decomposability is
given by the concept of leaf of a hypergraph. Con-
sider a hypergraph G = (V,E). An edge of G is
maximal if it is not contained in any other edge of
G. We say that an edge e′ is a leaf of G if it is
a maximal edge and e′ ∩ (∪e∈E\E′e) ⊂ ẽ for some
ẽ ∈ E \E′, where E′ is the set of edges contained in
e′. It can be shown that every γ-acyclic hypergraph
contains a leaf. The existence of a leaf, together with
the special structure of Berge-acyclic and γ-acyclic
hypergraphs enables us to employ our decomposition
results and derive an explicit description of MPG by
induction on the number of maximal edges of G.

Berge-acyclic hypergraphs. The standard lin-
earization MPLP

G is a widely-used relaxation of SG
and is obtained by replacing each multilinear equa-
tion ze =

∏
v∈e zv by its convex hull over the unit

hypercube (see, e.g., [3]):

zv ≤ 1 ∀v ∈ V,
ze ≥ 0 ∀e ∈ E,
ze ≥

∑
v∈e zv − |e|+ 1 ∀e ∈ E,

ze ≤ zv ∀e ∈ E, ∀v ∈ e.
We now show that for a Berge-acyclic hypergraph,
we have MPG = MPLP

G .
Any two edges of a Berge-acyclic hypergraph in-

tersect in at most one node. It then follows that
the hypergraph considered in the base case of the
induction consists of a single edge. Hence, the cor-
responding multilinear polytope coincides with the
standard linearization.

In the inductive step, we construct MPG in two
steps:

1. Decompose the polytope MPG into MPG1 and
MPG2 , where G1 is the section hypergraph of
G induced by the leaf e′ and G2 is the section
hypergraph of G induced by ∪e∈E\E′e.

2. Obtain MPG by juxtaposing the description of
MPG1 and of MPG2 given by the induction hy-
pothesis.

For a Berge-acyclic hypergraph, the intersection
of the leaf e′ with the hypergraph G2, i.e., the set p̄
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defined in Theorem 9, consists of at most one node.
Hence, all assumptions of Theorem 9 are trivially
satisfied and we can utilize this result to perform the
decomposition described in Step 1. Hence, if G is a
Berge-acyclic hypergraph, we have MPG = MPLP

G .
In fact, we have proved that the converse holds as
well. More precisely, we have shown the following:

Theorem 10. MPG = MPLP
G if and only if G is a

Berge-acyclic hypergraph.

It follows directly from Theorem 10 that for a
Berge-acyclic hypergraph G, we can optimize a lin-
ear function over MPG via linear optimization in
polynomial time.

In [10], Padberg shows that the standard lineariza-
tion coincides with the Boolean quadric polytope if
and only if G is an acyclic graph. Therefore, Theo-
rem 10 generalizes Padberg’s result to higher degree
multilinear polytopes.

γ-acyclic hypergraphs. To characterize the mul-
tilinear polytope of γ-acyclic hypergraphs, we intro-
duce a class of valid inequalities for MPG which we
will refer to as flower inequalities. Let e0 be an edge
of G and let ek, k ∈ K, be a collection of edges such
that |e0 ∩ ek| ≥ 2 for every k ∈ K, and ei ∩ ej = ∅
for all i, j ∈ K with i 6= j. Then a flower inequality
for MPG is given by:

∑

v∈e0\∪k∈Kek

zv+
∑

k∈K
zek−ze0 ≤ |e0\∪k∈Kek|+|K|−1.

We define the flower relaxation MPF
G as the re-

laxation of the multilinear set obtained by adding
all flower inequalities to its standard linearization
MPLP

G . We now show that for a γ-acyclic hyper-
graph, we have MPG = MPF

G.

To establish the base case of the induction, we
make use of the fact that a γ-acyclic hypergraph
with one maximal edge is a laminar hypergraph.
The multilinear polytope of a laminar hypergraph
can be characterized using a fundamental result due
to Conforti and Cornuéjols regarding the connection
between integral polyhedra and balanced matrices
[2]. This characterization in turn implies that for a
laminar hypergraph the multilinear polytope coin-
cides with its flower relaxation.

In the inductive step, Theorem 10 cannot be di-
rectly applied to MPG as was the case for Berge-
acyclic hypergraphs. However, we can utilize this
result after the addition of one extra edge to G. In
more detail, we construct MPG in four steps:

1. Define the hypergraph G+ obtained from G by
adding the edge p̄ := e′ ∩ (∪e∈E\E′e).

2. Decompose the polytope MPG+ into MPG1 and
MPG2 , where G1 is the section hypergraph of
G+ induced by e′ and G2 is the section hyper-
graph of G+ induced by ∪e∈E\E′e.

3. Obtain MPG+ by juxtaposing the description
of MPG1 given by the base case, and of MPG2

given by the induction hypothesis.
4. Obtain MPG by projecting out the variable p̄

from the description of MPG+ .

The section hypergraph induced by an edge of a
γ-acyclic hypergraph is laminar. This in particular
implies that for every edge e of G containing nodes
in V (G1) \ V (G2) either e ⊃ p̄, or e ∩ p̄ = ∅. Hence,
we can employ Theorem 9 to perform the decompo-
sition described in Step 2. Finally, by projecting out
the variable zp̄ from the description of MPG+ us-
ing Fourier-Motzkin elimination, we conclude that
MPG = MPF

G.

In fact, we have shown that the converse holds as
well. More precisely, we have shown the following:

Theorem 11. MPG = MPF
G if and only if G is a

γ-acyclic hypergraph.

For γ-acyclic hypergraphs, the number of facets
of MPF

G may not be bounded by a polynomial in
|V (G)|, |E(G)|. However, flower inequalities can be
separated in strongly polynomial time, and this al-
lows us to optimize a linear function over MPG in
polynomial time.

We conclude this article by remarking that in [7]
we extend the above decomposition based technique
to characterize the multilinear polytope for a more
general class of acyclic hypergraphs.
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Sparsity Matters
Robert J. Vanderbei

Dept. of Operations Research and Financial Engineering
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rvdb@Princeton.EDU

I am deeply honored and grateful to have been
awarded the 2017 Khachiyan Prize from the IN-
FORMS Optimization Society. I really love opti-
mization — one might say I’m an optimistic per-
son. Over the past several decades I have had the
great pleasure to collaborate with a number of sim-
ilarly optimistic researchers and we’ve had a lot of
fun working on a broad range of topics in optimiza-
tion. In this article, I will focus on one particular
issue that permeates much of the world of optimiza-
tion, namely, the importance of understanding that
“modeling matters” and, in particular, that exploit-
ing sparsity in a problem’s representation can be ex-
tremely beneficial.

1 Introduction

As is well-known in the optimization world, the
worst case complexity of interior-point methods for
linear programming is roughly O(n3.5L) where n de-
notes the number of variables and L denotes the

Gerald Brown, Robert Vanderbei, and David Morton
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number of bits of data needed to encode the prob-
lem. It is also well-known that the standard variants
of the simplex method take an exponential number
of pivots in the worst case but that, in practice,
the simplex method and interior-point methods have
similar performance on average although one algo-
rithm might beat the other by a significant amount
on a particular problem.

This last “well-known fact” is perhaps the most
important one — things vary greatly from one in-
stance of a problem to another. Those of us in the
field of optimization understand this quite well but
users from outside the field often don’t appreciate
this subtlety. It is very common to hear someone
say that their problem has tens of thousands of vari-
ables and therefore even an n3 algorithm will be too
slow to solve the problem. That is certainly true in
some cases. But, it is not universally true and that’s
what this article is about. Before getting into details,
I’d like to mention that this topic brings to mind a
comment made by John Forrest at a conference back
in the late 1980’s. He said

The simplex method is 200 times faster than ...
... the simplex method.

In this modern era infused with many different opti-
mization algorithms, I would generalize John’s state-
ment to this:

Any optimization algorithm is 200 times faster
than ...

... that same algorithm.

2 What Can Go Wrong?

The practical performance issues that I’d like to dis-
cuss can be broken down into three broad categories:

• Sometimes the straightforward/default numeri-
cal linear algebra isn’t the best way to solve a
particular type of problem.
• Sometimes the obvious natural formulation of

an optimization problem isn’t very easy to solve
but there is a mathematically equivalent variant
that one can solve quickly.
• Sometimes the real-world problem to be solved

isn’t precisely defined and an alternate formu-
lation might be vastly easier to solve.

In the following sections, I will discuss some ex-
amples of each of these scenarios. Some of these
examples are well known in the optimization com-
munity but a few of them are a little more specific
to particular interests of my own. I hope even these
esoteric examples stimulate some interest among a
broad reader base.

3 Numerical Linear Algebra

Problems with Dense Columns

Some linear programming problems have a con-
straint matrix that is mostly sparse but might have
one or a few dense columns. For example, consider
this LP:

maximize cTx + c0 x0

subject to Ax + a x0 = b
x, x0 ≥ 0,

where x is a high-dimensional vector, x0 is just a
single scalar variable, A is a very sparse matrix, but
a is a dense vector.

There are practical real-world problems with this
structure. And, for example, the “Big-M” method
for getting an initial starting point for interior-point
methods involves such a structure.

In the early days of interior-point methods (the
mid 1980’s), the computationally intensive part of
these algorithms involved finding the “step direc-
tions” by solving the so-called “normal equations”
for the dual step direction ∆y:

[
A a

] [ D2 0
0 d2

] [
AT

aT

]
∆y = ...

where D is a diagonal matrix and d is a scalar. Mul-
tiplying out, we get:

(AD2AT + d2 aaT ) ∆y = ...

The matrix AD2AT is sparse but aaT is dense.
Hence, the sum is dense and solving the system of
equations as formulated is highly inefficient. There
are three ways to address this problem:

• Use the Sherman-Morrison-Woodbury formula
to express solutions to the dense system in terms
of solutions to the system without the dense
(rank one) term. [4, 1, 7]



12 INFORMS Optimization Society Newsletter

• Solve the reduced KKT system instead of the
normal equations. [11]
• Re-express the problem using several variables

in place of the single variable x0. [9]

Splitting Dense Columns

A problem with these constraints...

[
A a

] [ x
x0

]
= b

can be reformulated in this equivalent but larger but
also sparser fashion...




a1
a2

A a3
. . .

am
1 −1

1 −1
. . .

. . .

1 −1







x

x0,1
x0,2
x0,3

...
x0,m




=




b

0
0
...
0




For an optimizer based on solving the normal equa-
tions, this second form of the problem will solve
much faster than the original form. Of course,
most/all modern interior-point method solvers solve
the reduced KKT system to avoid this issue. This
dense columns example is a bit dated but it illus-
trates an important point:

The number of constraints, m, and the
number of variables, n, often have little to
do with how long it takes to solve a prob-
lem.

The sparsity of the constraint matrix plays a huge
role.

Exploiting Sparsity

Modern solvers are designed to exploit sparsity in
the constraint matrix. I recently solved a gener-
alized network flow problem using ampl [3] with
loqo [10]. The problem had 195,503 variables and
123,571 constraints. Of course, being a (generalized)
network flow problem the constraint matrix had only
about two nonzeros per column. I was able to solve

it in just 3.9 seconds on my laptop computer. For
comparison, I solved a dense problem with 1/100-th
as many variables and 1/100-th as many constraints.
It took 59 seconds to solve. If we were to scale this
up to the same size as the network flow problem, it
would take about 59×1003.5 = 590, 000, 000 seconds
to solve — in other words, about 18.7 years (and, of
course, it wouldn’t fit in the memory on my laptop
computer).

4 Mathematically Equivalent
Problems

Now let’s consider an example illustrating how prob-
lems often have equivalent formulations that differ
dramatically in how long it takes to solve them. The
problem we will consider is the Markowitz model for
portfolio selection.

In the Markowitz model, our vector x of decision
variables is a stochastic vector (i.e., the elements are
nonnegative and sum to one) representing the frac-
tion of our portfolio to invest in various asset choices
and the problem is to optimize some combination of
risk and reward. The reward term is linear and can
be denoted rTx whereas the risk term is quadratic
and can be expressed in terms of a covariance matrix:
xTΣx. If we let µ denote the weighting factor that
controls the trade-off between these two objectives,
we can express the Markowitz model like this:

minimize µ xTΣx− rTx
subject to eTx = 1

x ≥ 0.

Here’s an equivalent formulation of the problem.
The matrix Σ is positive semidefinite and therefore
can be expressed (and probably was defined) as a
product Σ = UTU . So, we can reexpress the prob-
lem like this:

minimize µ yT y − rTx
subject to y − Ux = 0

eTx = 1
x ≥ 0.

This formulation has more variables and more con-
straints. But, the quadratic term in the objective
function is now a simple (sparse) yT y whereas the
quadratic term in the original formulation was dense
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(xTΣx). This can make a big difference. Also, the
matrix U does not have to be a square matrix — it
might have many fewer rows than columns.

Here’s a specific example. For a problem with
10,000 market assets and a covariance matrix based
on data from 100 time periods in the past, the first
problem has 10,000 variables and just one constraint.
It solves in 1480 seconds. The second formulation
has 10,100 variables and 101 constraints. It solves
in 10.3 seconds — a speedup by a factor of 144.

5 Alternate Formulations

In the previous section, we discussed the fact that
there are often equivalent formulations of a problem
one of which might solve much faster than another.
Sometimes there is some freedom in the definition of
the problem and minor changes to the definition can
lead to dramatic speedups. To illustrate such bene-
fits of alternate formulations let us consider various
expressions of the compressed sensing problem.

Compressed sensing

The goal of compressed sensing is to recover a sparse
signal from a small number of measurements. Let
x0 = (x0

1, . . . , x
0
n)T ∈ Rn denote a signal to be recov-

ered. Here, we assume that n is large and that the
signal vector x0 is sparse.

Let A be a given (or chosen) m × n matrix with
m � n. The compressed sensing problem is to re-
cover x0 assuming only that we know y = Ax0 and
that x0 is sparse.

Since x0 is a sparse vector, one can hope that it is
the sparsest solution to the underdetermined linear
system and therefore can be recovered from y by
solving

(P0) min
x
‖x‖0 subject to Ax = y,

where ‖x‖0 denotes the 0-pseudo-norm of x:

‖x‖0 = #{i : xi 6= 0}.

As is well-known, this problem is NP-hard due to
the nonconvexity of the 0-pseudo-norm.

To make the problem more tractible, it is com-
mon to replace the 0-pseudo-norm with the 1-norm:

‖x‖1 =
∑

j |xj |. This new problem is called the basis
pursuit problem:

(P1) min
x
‖x‖1 subject to Ax = y.

This problem can be converted to a linear program-
ming problem using the standard tricks for handling
absolute values in minimization problems. There is
an extensive literature that studies the probability
as a function of m, n, and the choice of A that a
solution to the basis pursuit problem is actually a
solution to the compressed sensing problem.

Kronecker Compressed Sensing

As formulated, the compressed sensing problem in-
volves a signal that is a vector. In some applica-
tions, it is more natural to assume that the signal is
a matrix or even a higher dimensional tensor. Let’s
consider a matrix signal.

Given a sparse matrix signal X0 ∈ Rn1×n2 , we
can use two sensing matrices A ∈ Rm1×n1 and B ∈
Rm2×n2 and try to recover X0 from knowledge of
Y = AX0BT by solving the Kronecker compressed
sensing problem:

(P2) X̂ = argmin‖X‖1 subject to AXBT = Y.

Here, of course, ‖X‖1 is the sum of the absolute
values of all the entries of the matrix X. As with
the basis pursuit problem, this problem can also be
formulated as a linear programming problem.

When the signal is multidimensional, Kronecker
compressed sensing is more natural than classical
vector compressed sensing. Also, as we will ex-
plain shortly, the linear programming problem for
Kronecker compressed sensing benefits from sparsity
that is not present in the vector-based formulation.
Hence, for a vector problem and a matrix problem
of the same size (i.e., the same number of elements
in the signal), one would expect the matrix problem
to solve more quickly.

Kroneckerizing Vector Problems

Sometimes, even when facing vector signals, it is
beneficial to use Kronecker compressed sensing due
to its added computational efficiency.

More specifically, even though the target signal
is a vector x0 ∈ Rn, if we assume that n can be
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factored into n1 × n2, then we can first reshape x0

into a matrix X0 ∈ Rn1×n2 by putting successive
length n1 sub-vectors of x0 into columns of X0. We
then multiply the matrix signal X0 on both the left
and the right by sensing matrices A and B to get a
compressed matrix signal Y 0. We will show that we
are able to solve this Kronecker compressed sensing
problem much more efficiently than the correspond-
ing vector compressed sensing problem.

Vectorizing the Kroneckerization

In the Kronecker problem the variables are naturally
represented as a matrix. But, an LP solver expects
to see a vector of variables, not a matrix. So, we need
to rewrite the Kronecker problem in vector form.

The simple/natural/naive vectorization can be de-
scribed as follows. Let x = vec(X) and y = vec(Y ),
where, as usual, the vec(·) operator takes a matrix
and concatenates its elements column-by-column to
build one large column-vector containing all the ele-
ments of the matrix.

In terms of x and y, problem (P2) can be rewritten
as an equivalent vector compressed sensing problem:

vec(X̂) = argmin‖x‖1 subject to Ux = y,

where U is given by the (m1m2)× (n1n2) Kronecker
product of A and B:

U = B ⊗A =




Ab11 · · · Ab1n2

...
. . .

...
Abm21 · · · Abm2n2


 .

The matrix U is fully dense. This is bad.

Sparsifying the Constraint Matrix

The key to an efficient algorithm for solving the lin-
ear programming problem associated with the Kro-
necker sensing problem lies in noting that the dense
matrix U can be factored into a product of two
sparse matrices:

U =




Ab11 · · · Ab1n2

...
. . .

...
Abm21 · · · Abm2n2




=




A · · · 0
...

. . .
...

0 · · · A







b11I · · · b1n2I
...

. . .
...

bm21I · · · bm2n2I




=: VW.

Here, I denotes an n1×n1 identity matrix, 0 denotes
an m1 × n1 zero matrix, and V is a block-diagonal
matrix with A on the diagonal blocks.

Exploiting the Sparsification

Assuming that A and B are dense matrices (as they
generally are in Kronecker compressed sensing), the
matrix U is usually completely dense. But, it is a
product of two sparse matrices: V and W . We can
exploit this sparse factorization.

Let’s introduce some new variables, call them z,
and rewrite the constraints like this:

z − Wx = 0
V z = y.

Using the common trick of expressing a free variable
as the difference of two nonnegative variables and
the absolute value of that free variable as the sum
of the two nonnegative variables, we can convert the
problem to a linear program:

min
x+,x−

1T (x+ + x−)

subject to z − W (x+ − x−) = 0
V z = y

x+, x− ≥ 0.

This formulation has more variables and more con-
straints. But, the constraint matrix is sparse. And
as we’ve discussed already, for linear programming,
sparsity of the constraint matrix is the key to algo-
rithm efficiency.

Numerical Results

The numerical results I’ll present here were first pub-
lished in [12].

For the vector sensor, we generated random prob-
lems using m = 1,122 = 33× 34 and n = 20,022 =
141×142. We varied the number of nonzeros k in sig-
nal x0 from 2 to 150. We solved the straightforward
linear programming formulations of these instances
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using my interior-point solver loqo [10]. We also
solved a large number of instances of the problem
using the parametric simplex method as described
in [8].

We followed a similar plan for the Kronecker sen-
sor. For these problems, we used m1 = 33, m2 = 34,
n1 = 141, n2 = 142, and various values of k. Again,
the straightforward linear programming problems
were solved by loqo and the parametrically formu-
lated versions were solved by a custom developed
parametric simplex method.

For the Kronecker sensing problems, the matrices
A andB were generated so that their elements are in-
dependent standard Gaussian random variables. For
the vector sensing problems, the corresponding ma-
trix U was used.

We also ran some publicly-available, state-of-the-
art codes: `1 `s [6], FHTP [2], and Mirror Prox [5].

m = 1,222, n = 20,022. Error bars represent one
standard deviation.

m = 1,122, k = 100, n = 141× n2.

Conclusions

The interior-point solver (loqo) applied to the Kro-
necker sensing problem is uniformly faster than both
`1 `s and the interior-point solver applied to the vec-
tor problem (the three horizontal lines in the plot).

For very sparse problems, the parametric simplex
method is best. In particular, for k ≤ 70, the para-
metric simplex method applied to the Kronecker
sensing problem is the fastest method. It can be
two or three orders of magnitude faster than `1 `s.

But, as explained earlier, the Kronecker sensing
problem involves changing the underlying problem
being solved. If one is required to stick with the
vector problem, then it too is the best method for
k ≤ 80 after which the `1 `s method wins.

Instructions for downloading and running the
various codes/algorithms described herein can be
found at:

http://www.orfe.princeton.edu/~rvdb/tex/

CTS/kronecker_sim.html
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Mountains of Optimization indeed! (Photo by Thiago Serra)

2018 IOS Conference Report
Alexandra M. Newman

Department of Mechanical Engineering
Colorado School of Mines

anewman@mines.edu

The 2018 edition of the INFORMS Optimization
Society conference was held in Denver, Colorado on

March 23–25, 2018. Over 200 participants descended
on the mile-high city, contributing to nearly 70 ses-
sions, three tutorials, and seven plenaries.

The theme of the conference was “Mountains of
Optimization,” and mountains there were. Sessions
on optimization under uncertainty and nonlinear op-
timization were among the most copious, but atten-
dees were also treated to topics on discrete optimiza-
tion, optimization in machine learning and statistics,
network optimization, and software and implemen-
tation, inter alia.

The seven plenaries featured:

• Shabbir Ahmed: “Value of Multi-Stage Sto-
chastic Optimization in Power Systems Oper-
ations”
• Marcos Goycoolea: “Large-scale Open Pit Mine

Production-Scheduling”
• Moritz Hardt: “Non-convex non-optimization”
• Illya Hicks: “Discrete Optimization and Net-

work Analysis”
• Karla Hoffman: “Hybrid optimization algo-

rithms to solve real-world problems” (based on
material from this year’s Franz Edelman Award
winning team)
• John Hooker: “What Decision Diagrams Can

Do for You”
• Sven Leyffer: “A Globally Convergent Cutting-

Plane Method for Simulation-Based Optimiza-
tion with Integer Constraints”

The three tutorials consisted of:

• Bob Fourer: “A Guide to Identifying Good
Near-Optimal Formulations for Hard Mixed-
Integer Programs”
• Ed Klotz: “Performance Tuning For CPLEX’s

Spatial Branch-and-Bound Solver For Global
Nonconvex Mixed Integer Quadratic Programs”
• Warren Powell: “A Unified Modeling and Algo-

rithmic Framework for Optimization under Un-
certainty”

All plenary and tutorial speakers were
kind enough to supply their slides, which
are posted on the conference website at:
http://orwe-conference.mines.edu/info.html.

A special “thank you” must be extended to the
co-organizers of the conference, Stephen Billups and

mailto:anewman@mines.edu
http://orwe-conference.mines.edu/info.html
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Steffen Borgwardt, both of the University of Col-
orado, Denver, and Manuel Laguna of the University
of Colorado, Boulder.

Nominations for Society
Prizes Sought

The INFORMS Optimization Society awards four
prizes annually at the INFORMS annual meeting.
We seek nominations (including self-nominations)
for each of them, due by June 15, 2018. Each of the
four awards includes a cash amount of US$1,000 and
a citation plaque. The award winners will be invited
to give a presentation in a special session sponsored
by the Optimization Society during the INFORMS
annual meeting in Phoenix, AZ, in November 2018
(the winners will be responsible for their own travel
expenses to the meeting). Award winners are also
asked to contribute an article about their award-
winning work to the Optimization Society newslet-
ter.

The four awards are listed below. Addi-
tional information on the awards, and nomi-
nation instructions, can be found on the so-
ciety website (http://connect.informs.org/
optimizationsociety/prizes). Inquiries should
be sent directly via email to the chair of the
corresponding prize committee.

The Khachiyan Prize is awarded for outstand-
ing lifetime contributions to the field of optimization
by an individual or team. The topic of the con-
tribution must belong to the field of optimization
in its broadest sense. Recipients of the INFORMS
John von Neumann Theory Prize or the MOS/SIAM
Dantzig Prize in prior years are not eligible for the
Khachiyan Prize. The prize may be awarded once in
a lifetime to any individual. Nominations should be
submitted to the chair of the committee.

The prize committee for this year’s Khachiyan
Prize is as follows:

• Suvrajeet Sen (chair)
s.sen@usc.edu

• Ignacio Grossman

• Arkadi Nemirovski

• David Shmoys

The Farkas Prize is awarded for outstanding con-
tributions by a mid-career researcher to the field of
optimization, over the course of their career. Such
contributions could include papers (published or
submitted and accepted), books, monographs, and
software. The awardee will be within 25 years of
their terminal degree as of January 1st of the year of
the award. The prize serves as an esteemed recogni-
tion of colleagues in the middle of their career. The
prize may be awarded at most once in their lifetime
to any person. A nomination shall consist of: (i) a
letter of nomination, not exceeding two pages, sum-
marizing the nominee’s contributions with explana-
tions of their importance and impact; (ii) a curricu-
lum vitae for the nominee, not exceeding four pages;
and (iii) two support letters, each not exceeding two
pages. These letters can be sent directly to the com-
mittee chair or to the nominator, to be included in
the nomination package.

The prize committee for this year’s Farkas Prize
is as follows:

• Patrick Jaillet (chair)
jaillet@mit.edu

• Donald Goldfarb

• Andy Philpott

• Nick Sahinidis

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization that is published in, or
submitted to and accepted by, a refereed professional
journal within the four calendar years preceding the
year of the award. The prize serves as an esteemed
recognition of promising colleagues who are at the
beginning of their academic or industrial career. All
authors must have earned their most recent degree
within the eight calendar years preceding the year
of award, or be enrolled in a degree-granting pro-
gram. (Note: All authors of a prize-winning paper
will be co-winners of the prize.) The topic of the
paper must belong to the field of optimization in its
broadest sense. The prize may be awarded once in
a lifetime to any individual. The paper may not be
simultaneously submitted to an INFORMS student
paper competition. Nominations should be submit-
ted to the chair of the committee.

http://connect.informs.org/optimizationsociety/prizes
http://connect.informs.org/optimizationsociety/prizes
mailto:s.sen@usc.edu
mailto:jaillet@mit.edu
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The prize committee for this year’s Prize for
Young Researchers is as follows:

• Katya Scheinberg (chair)
katyas@lehigh.edu

• Yongpei Guan

• Fatma Kılınç-Karzan

• Andrea Lodi

The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received, or pub-
lished in a refereed professional journal no more than
three years preceding the year of the award. Every
nominee/applicant must be a student on January 1st
of the year of the award. The prize serves as an es-
teemed recognition of promising students who are
looking for an academic or industrial career. A com-
plete entry consists of a single PDF file containing:
(i) a copy of the paper; (ii) a letter signed by all co-
authors attesting that the majority of the work was
done by the student(s); (iii) a nomination letter at-
testing that the eligibility conditions have been sat-
isfied by the entrant(s) and the paper. Nominations
should be submitted to the chair of the committee.

The prize committee for this year’s Student Paper
Prize is as follows:

• Dan Iancu (chair)
daniancu@stanford.edu

• Amir Ali Ahmadi

• Frank Curtis

• Illya Hicks

Nominations of Candidates
for Society Officers Sought

Three Society Vice Chairs will be completing their
two-year terms in 2018: Siqian Shen, Necdet Ser-
hat Aybat, and Güzin Bayraksan. We would like to
thank these officers for their work!

We are currently seeking nominations of candi-
dates for the following positions:

• Vice Chair for Global Optimization
• Vice Chair for Nonlinear Optimization

• Vice Chair for Optimization Under Uncertainty

Self-nominations for all of these positions are encour-
aged.

Vice Chairs serve a two-year term. According to
Society Bylaws, “The main responsibility of the Vice
Chairs will be to help INFORMS Local Organiz-
ing committees identify cluster chairs and/or session
chairs for the annual meetings. In general, the Vice
Chairs shall serve as the point of contact with their
sub-disciplines.”

Additional details on officer responsibil-
ities and elections can be found in the
Bylaws at http://connect.informs.org/

optimizationsociety/aboutios/bylaws

Please send your nominations or self-nominations
to Burcu Keskin (bkeskin@cba.ua.edu), including
contact information for the nominee, by June 30,
2018. Online elections will begin in mid-August,
with new officers will assume their duties on January
1st, 2019.

Seeking a Host for the 2020
INFORMS Optimization

Society Conference

The INFORMS Optimization Society Conference
is held in the early part of the even years, of-
ten in a warm, or otherwise attractive, location.
It offers an opportunity for researchers studying
optimization-related topics to share their work in
a focused venue. The Optimization Society is
currently seeking candidate locations to host the
2020 conference. If you are interested in help-
ing to host the conference, please contact the
current Optimization Society Chair, David Mor-
ton (david.morton@northwestern.edu), or the Chair-
elect Dan Bienstock (dano@ieor.columbia.edu).

mailto:katyas@lehigh.edu
mailto:daniancu@stanford.edu
http://connect.informs.org/optimizationsociety/aboutios/bylaws
http://connect.informs.org/optimizationsociety/aboutios/bylaws
mailto:bkeskin@cba.ua.edu
david.morton@northwestern.edu
dano@ieor.columbia.edu

