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Dear Fellow I0S Members:

I had the pleasure to meet many of you at the IN-
FORMS Optimization Society (IOS) conference in
Princeton a couple of months back. First off, I have
to thank Warren Powell (Princeton) for putting to-
gether a contemporary, vibrant, and well-organized
conference. For those of you who could not make
it to the conference, I want you to know that our
field continues to attract top-notch scholars from so
many fields that there is something for every opti-
mization sub-specialty and taste. I feel fortunate to
have made this my area of study as far back as the
late 70’s. The staying power of our discipline derives

2015 TIOS Prizes winners (left to right): Javad Lavaei,
Somayeh Sojoudi, Jean-Bernard Lasserre, Robert
Weismantel, Fatma Kiling-Karzan, and Paul Grigas


mailto:mepelman@umich.edu
mailto:s.sen@usc.edu

from the dedication and creativity of the Optimiza-
tion community which continues to challenge itself
via new connections with other academic disciplines
(e.g., statistics, signal processing, robotics) while at
the same time, addressing pressing real-world chal-
lenges of today (e.g. energy, health care, sustain-
ability, security). The breadth of this field, span-
ning theory and applications, is not only visible in
the IOS as a whole, but even in the research port-
folio of its members. This is the essence of a truly
vibrant research area, and I am honored to have the
opportunity to serve as the Chair of the I10S.

As many of you are aware, the 10S is preparing
a proposal to launch a new INFORMS journal de-
voted to Optimization. Over the past year, there
have been several occasions to provide inputs for this
new venture. A committee, consisting of John Birge
(University of Chicago, chair), Dimitris Bertsimas
(MIT), David Morton (Northwestern), Warren Pow-
ell (Princeton) and David Shmoys (Cornell) put to-
gether an initial vision for the journal. I am very
grateful for their service, and thank them on behalf
of our community. The recommendation, which was
presented at the IOS Business Meeting, was further
refined and circulated among the I0S membership
earlier this year. The report presented the pros and
cons of using both Optimization and Analytics as
focal points for the journal. In response, the com-
munity spoke clearly in favor of a journal dedicated
to Optimization alone, and there appeared to be a
fairly significant group of members who were not
supportive of including Analytics as part of the jour-
nal name. Instead, many suggested an editorial area
for Analytics so that authors working at the inter-
face between Optimization and Analytics would find
a high-quality outlet for their work. This would give
the IOS an opportunity to play a significant role in
the direction of Analytics within INFORMS, while
avoiding the risk associated with using a new area
in the name of the journal. We will propose such
a structure, with the remaining areas being aligned
with the Special Interest Groups (SIGS) or Subdivi-
sions within IOS. Over the next couple of months,
we will be moving forward with a proposal to the IN-
FORMS Publications Committee for a Journal of the
INFORMS Optimization Society. Incidentally, the
flagship INFORMS journal, Operations Research, is
now inviting submissions in a new category of papers
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described as “data-based principles of operational
science.” I suspect that this area will be similar to
the Analytics area of our proposed journal.

As part of this newsletter, I would like to ac-
knowledge various awards committees which worked
to identify outstanding contributions by individuals
who are at different points in their careers. One
of the most prestigious awards in the field of Op-
timization is the society’s Lifetime Award, named
after Leonid Khachiyan.  The 2015 Khachiyan
award was given to Jean Bernard Lasserre (Lab-
oratory for Analysis and Architecture of Systems,
France) who has been a pioneer in polynomial and
semi-algebraic optimization. The committee for
the Khachiyan Prize was composed of Ilan Adler
(Chair, UC Berkeley), Michael Ball (University
of Maryland), Donald Goldfarb (Columbia Univer-
sity) and Werner Roemisch (Humboldt-University
Berlin). The Farkas Prize for mid-career researchers
for 2015 went to Robert Weismantel (ETH-Zurich,
Switzerland) for his contributions to discrete math-
ematics and optimization. The committee for this
award was Ariela Sofer (Chair, George Mason Uni-
versity), Warren Adams (Clemson University), San-
jay Mehrotra (Northwestern University) and Zelda
Zabinsky (University of Washington). The third
award, for Young Researchers, was shared by Fatma
Kiling-Karzan (Carnegie Mellon University), and
Javad Lavaei and Somayeh Sojoudi (UC Berkeley).
Fatma’s award was for her work on Mixed-Integer
Conic Programs (which appeared recently in Math.
of OR), and Javad and Somayeh were awarded for
their joint work on Semidefinite Relaxations with un-
derlying Graph Structures (which appeared in SIAM
J. on Optimization). The committee for the prize
for young researchers was chaired by Nick Sahinidis
(CMU), and other committee members were Daniel
Bienstock (Columbia University), Sam Burer (Uni-
versity of Iowa), and Andrew Schaefer (Rice Univer-
sity). And finally, the winner of the student paper
competition was Paul Grigas (MIT) for his paper on
connections between boosting and subgradient op-
timization (which was coauthored with Robert Fre-
und and Rahul Mazumder). This committee was
chaired by Mohit Tawarmalani (Purdue University),
and others who served were Fatma Kiling-Karzan
(CMU), Warren Powell (Princeton University) and
Uday Shanbhag (Penn State).
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I want to take this opportunity to thank the work
of the officers who ended their terms in 2015. They
included Jim Luedtke (Secretary/Treasurer), Imre
Pélik (Computational Optimization and Software),
Juan Pablo Vielma (Integer and Discrete Optimiza-
tion), John Mitchell (Linear and Conic Optimiza-
tion), Vladimir Boginski (Network Optimization),
and Shabbir Ahmed (IOS Newsletter Editor). These
highly motivated individuals have been replaced by
an equally committed group in Burcu Keskin (Sec-
retary /Treasurer), Hande Benson (Computational
Optimization and Software), Amitabh Basu (Inte-
ger and Discrete Optimization), Saukeh Siddiqui
(Linear and Conic Optimization), Austin Buchanan
(Network Optimization) and Marina Epelman (I0S
Newsletter Editor). Last, and certainly not the least,
I would also like to thank our Chair-Elect David
Morton for his willingness to serve as the Chair of
IOS starting his two-year term in 2017.

I hope my enthusiasm for our society is palpable in
this column, and hope that you will all get involved
in the most vital society within INFORMS. Have a
great summer, and hope to see you all in Nashville.
(You can find me by looking for the Indian guy wear-
ing a cowboy hat.)

Thanks!

Jean-Bernard Lasserre
LAAS-CNRS and
Institute of Mathematics
University of Toulouse
France

lasserre@laas.fr

I am very honored and grateful for being awarded
the Khachiyan prize of the Optimization Society of
INFORMS and of course I first want to thank the
highly-respected members of the Khachiyan prize
committee. Recognition (official or not) by peers
is what any researcher would be proud of. However
such recognition is rarely due to the sole merit of
the awardee. Many (of which I am one) will agree
that “research” is usually a mix between solitary in-
tellectual efforts and collaborative work with PhD
students, Post-Docs, and colleagues. In fact, and
some philosophers would say it better than I, the
notion of “merit” in any of our actions in a lifetime
is itself questionable.

I cannot forget how much I owe to several persons
at different stages of my career, for scientific and
non-scientific reasons: After my PhD in Toulouse
(France) on large-scale linear programs for produc-
tion planning, and thanks to G. Giralt (from CNRS),
I spent a wonderful one-year Post-Doc at the EECS
department of the University of California at Berke-
ley (1978-1979). Being in such a stimulating envi-
ronment was extraordinary (in the plain sense of the
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word) for a young student! In particular, I met P.
Varaiya, an extraordinary man (in every aspect) who
became my supervisor, and there, I realized that “re-
search” was really what I wanted to do in my life!
In addition, in Berkeley more than anywhere else in
the world one could still enjoy some remainders of
the sixties... I liked the place so much that I came
back seven years later as an NSF Research Fellow
(again visiting P. Varaiya).

Back to Toulouse, and after one year of military
service (detached in a research lab) I was recruited
at CNRS (Le Centre National de la Recherche Sci-
entifique) and for me “C. N. R. S.” sounded like the
four magic letters of a prestigious research institu-
tion! I worked again on production planning and
scheduling but now with emphasis on planning hori-
zons. 1 was then contacted by O. Hernandez-Lerma
(IPN, Mexico) to start a collaboration on Markov
Control (or Decision) Processes (mainly on Borel
spaces) within a CNRS-CONACYT program (CNRS
has many such bilateral cooperation programs with
countries all over the world). This friendly collabo-
ration lasted about 15 years during which I learnt
a lot! In particular, seminal works of the sixties
(notably by de Ghellinck, d’Epenoux, Manne) ex-
pressed discounted and average-cost MDPs with fi-
nite states and actions as linear programs. It turns
out that such LP formulations can be extended to
MDPs with (infinite-dimensional) Borel state and
action spaces. But then I had to learn about real
and functional analysis so as to become familiar with
infinite-dimensional linear programs on appropriate
spaces of measures. This was indeed possible be-
cause a nice thing about CNRS is that you can enjoy
almost total freedom and so you may explore any re-
search direction that you want. This collaboration
with O. Hernandez-Lerma (and some other nice peo-
ple in this small but friendly community) resulted
in two Springer books on Markov Control Processes
and one Birkhauser book on invariant measures for
Markov Chains (MCs).

Then I started to be motivated by practical nu-
merical evaluation of ergodic criteria for MCs on
Borel spaces, directly via an invariant measure
rather than via an estimator through “simulation”.
It turns out that if the stochastic kernel P associated
to the MC (the infinite-dimensional analogue of the
transition matrix in the finite-state case) maps poly-
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nomials into polynomials then the invariance prop-
erty uP = p translates into countably many linear
equations between moments of the invariant measure
. Hence if f is a polynomial, the ergodic functional
[ fdu is a linear combination of finitely many mo-
ments y of p which satisfy a system of countably
many linear equations (involving higher-order mo-
ments). So it remains to express conditions under
which the vector y is coming from moments of some
measure p. This is where I had to understand the old
K-moment problem in functional analysis (initiated
by famous mathematicians at the end of the nine-
teenth century). After some time and efforts I ended
up reading Schmiidgen and Putinar’s Positivstellen-
satze which in my mind are one of the few exam-
ples of a very powerful mathematical theorem whose
statement (not proof) can be understood by fresh-
men at a university and can be used in so many ap-
plications (namely, every time where one has to state
that a polynomial is positive on a compact semi-
algebraic set). In fact, Putinar’s (and Schmiidgen’s)
Positivstellensatz has two dual facets (one in real al-
gebraic geometry about positivity on K, and one in
functional analysis on the K-moment problem).

Last but not least, this beautiful and fascinating
duality is nicely captured by standard duality of con-
vex optimization in appropriate convex cones and
can be implemented via a hierarchy of semidefinite
programs. It was the beginning of an exciting period
during which I could meet and interact with people
from various areas at workshops in some very nice
mathematics institutes around the world. Many be-
came “colleagues” but in trying to cite them I would
probably do unfortunate omissions. Since then I
have tried to popularize the field of Polynomial Op-
timization (i) which is at the crossroad of several dis-
ciplines, (ii) whose list of important (practical and
theoretical) applications is almost endless, and (iii)
which meets convex optimization for practical imple-
mentation (via hierarchies of convex relaxations). It
provides a lot of interesting research issues as well as
challenges for practical implementation that should
attract PhD students and researchers in optimiza-
tion (in a broad sense) motivated by the multi- or
inter-disciplinary aspects of the field!

Finally, in parallell with polynomial optimization,
I was (and still am) also interested in the fascinating
(at least in my mind) connections between four seem-
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ingly unrelated problems defined on the same convex
polytope K, namely, (i) maximizing ¢’z on K (LP),
(il) maximizing ¢’z on KNZ"™ (Integer Programming
(IP)), (iii) integrating exp 'z on K (linear integra-
tion), and (iv) summing up exp ¢’z on KNZ" (linear
counting). It turns out that again a nice “magic”
formula from algebraic geometers (Brion & Vergne,
Khovanskii & Pukhlikov) provides a result in closed-
form for (iii) and (iv) in which all basic fundamen-
tal ingredients of (i) (LP) (basis, reduced cost, and
dual vector) appear! Moreover, the same asymp-
totic result links (i) with (iii) and links (ii) with (iv).
The formula for (iv) also encodes Gomory’s corner
polyhedron associated with (ii). So exactly as the
Legendre-Fenchel transform provides a duality for
convex optimization, the Laplace transform (respec-
tively, Z-transform) provides a duality for integra-
tion (respectively, for counting) with striking analo-
gies and parallels in the linear case. In my taste,
among many excitements and motivations in doing
research, an important one is trying to reveal and
understand connections between seemingly different
fields. I enjoyed a lot writing a book on this topic
even though I am somehow disappointed to have got
almost no feedback so far!l May be in some near fu-
ture?

To conclude, in retrospect I have been very lucky
and fortunate to have been able to change research
topics and enter new fields at my convenience. As
nicely expressed by D. Bertsekas in his last year’s
Khachiyan speech, “I resisted overly lengthy distrac-
tions in practical directions that were too special-
ized, as well as in mathematical directions that had
little visible connection to the practical world.” 1
will never be grateful enough to the CNRS institu-
tion that provides its researchers with this almost
total freedom!

From Linear to Nonlinear
Integer Optimization

Robert Weismantel
Department of Mathematics and
Institute for Operations Research

ETH Zurich
Switzerland

robert.weismantel@ifor.math.ethz.ch

1. Introduction

First of all I am very grateful to the Farkas Prize
Committee 2015 consisting of Ariela Sofer (Chair),
Warren Adams, Sanjay Mehrotra and Zelda Zabin-
sky. I feel greatly honored that I am the recipient of
the prize in 2015.

I would like to take this opportunity to reflect
about the field and present my motivation for some
selected research in integer programming that I have
conducted in the past years. The main intention of
this article, though, is to outline three research di-
rections that I personally regard as very interesting
for the future.

When my friend and colleague Alexander Martin
and I started in 1989 as PhD students in the group
of Martin Grétschel in Augsburg and later in Berlin,
the common belief was that general-purpose meth-
ods for integer programming do not work. Instead
one would try to study a combinatorial / integer op-
timization problem from a polyhedral point of view,
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i.e., detect classes of valid inequalities and derive
necessary and sufficient conditions on the input in-
stance under which such inequalities become facet-
defining. Back then computers were very slow com-
pared to current standards. The software that was
available for solving integer programs often could not
solve an integer optimization problem with 100 bi-
nary variables without exploiting special structure
of the underlying problem.

This situation has changed drastically within
twenty five years. State-of-the-art software for mixed
integer linear programs can typically handle in-
stances of moderate to large size without a priori
knowledge about the combinatorics of the problem.
This is a fascinating development for the field in gen-
eral. Most important to me is the fact it allows us to
move forward to more complicated mixed integer op-
timization models that involve nonlinear functions,
for instance.

In the same vein as linear integer programming
heavily relies on our ability to solve linear optimiza-
tion problems, we can now go one step further. We
assume that we have at our disposal an oracle for
solving linear integer problems and exploit this ora-
cle to tackle more involved problems.

The past fifty years have also seen an enormous
development of the theory of combinatorial and in-
teger programming. Besides cutting plane theory,
also integer programming in fixed dimension, ma-
troid theory, graph theory, totally unimodular ma-
trices, Hilbert bases, theory of approximation algo-
rithms have become subfields within mathematical
optimization with various links to other mathemat-
ical disciplines such as probability theory, combina-
torics and algebraic geometry. To the best of my
knowledge, apart from basics of cutting plane the-
ory, other theories are still not used by solvers. The
question emerges whether we can bridge this gap?
For my work, this question has been a major source
of inspiration and motivation.

My attention was and still is caught by questions
related to a systematic study of feasible solutions
to systems of linear equations and inequalities over
integers. The basic mathematical objects here are
bases of lattices and their refinements to cones. Let
me introduce these notions rigorously.

Definition 1. (Bases of lattices and cones)
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(a) Let B be an n-by-n invertible matriz. B is a
basis of the lattice {BA | A € Z"}.

(b) Let C C R™ be a rational polyhedral cone. A set
H ={h',... h*} CCNZ" is a Hilbert basis of
C if for every x € CNZ" there exist multipliers
Aly .oy Ak € Zy such that

k
xr = Z )\th
i=1

On the first glance, the definition (b) sounds sim-
ple. In fact, it is known for centuries that such a
Hilbert basis of a rational polyhedral cone exists
and is finite, see for instance Gordan [7]. Van der
Corput showed that if the cone is pointed, then a
Hilbert basis of minimal cardinality is uniquely de-
termined [§]. Despite the fact that Hilbert bases oc-
cur in many areas of mathematics, surprisingly little
is known about geometric and algebraic properties of
such bases. Inspired by this fact I began to work with
my colleague and friend Martin Henk on this topic.
We were studying several parameters: the height of
Hilbert bases [14], the integer Caratheodory num-
ber [15] and connections between Hilbert bases and
lattice bases for simpultaneous diophantine approx-
imation [I6, I7]. From the point of view of inte-
ger optimization, there are several important con-
nections with Hilbert bases. Let me mention three
below. Edmonds and Giles [I1] introduced the no-
tion of totally dual integral systems. Those systems
have been characterized by Giles and Pulleyblank
[12] by means of Hilbert bases of cones associated
with the tight constraints at faces. Cook, Gerards,
Schrijver and Tardos showed that Hilbert bases al-
low us to bound the distances between vertices of
the linear programming optimum and optimal inte-
gral solutions [9]. Graver, in his work [10], noticed
that Hilbert bases can be used to verify optimality of
a given integer point that is feasible for an associated
integer programming problem. This optimality cer-
tificate is usually too big to be computed efficiently.
There are, however, special cases even in variable
dimension in which this can be accomplished. As
one such nice example let me refer to the family of
N-fold integer programming problems that were in-
troduced and studied with my colleagues Raymond
Hemmecke, Jests de Loera and Shmuel Onn in [19].
There are several further examples where one can
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shed light on integer programming problems using
Hilbert bases. Together with my colleagues Ray-
mond, Jesus, Matthias, Shmuel and also Jon Lee we
have been investigating this topic intensively. I will
refrain from listing all our joint papers here. Let me
at least mention that it was a great pleasure hav-
ing had this very nice collaboration over a period of
about ten years. As a team we could push this theory
to a level that I am satisfied with today. Jointly with
my former students Utz Haus and Matthias Koppe
we turned lattice- and Hilbert-basis theory into a pri-
mal algorithm, the integral basis method [I§]. One
starts with a solution and turns it into a basic fea-
sible one of an appropriate simplex tableau. Then
columns in this tableau are removed and replaced by
integer combinations of the removed columns with
non-removed ones in a way that no primal feasible in-
tegral solution is lost. This replacement step may be
viewed as an affine version of a Hilbert basis compu-
tation and can be accomplished very fast for special
integer programs. Proceeding this way, one either
arrives at a simplex tableau proof that the current
solution is optimal or detects an improving direc-
tion. This is why the method is a primal integer
programming algorithm. It would have been inter-
esting to combine this method with cutting plane
schemes to develop a primal/dual simplex tableau
based algorithm. To the best of my knowledge no-
body experimented with this idea yet. Hopefully, we
will at some point arrive at a primal / dual algorithm
for integer programming. This was always a dream
of mine.

2. A link between fixed and vari-
able dimension

Despite the fact that there are numerous beautiful
and deep results about integer optimization prob-
lems with a constant number of variables such as
Lenstra’s algorithm [5], it seems difficult to apply
these results to practically relevant instances. One
obvious explanation is that such instances typically
live in very high dimensions. Moreover, these high-
dimensional problems are typically mixed integer
problems with binary variables. Given that fixed-
dimension theory applies to few variables with a
large range of potential values for the individual

variables, it is not straightforward to apply the al-
gorithm of Lenstra, for instance, in a direct man-
ner. One attempt to use fixed-dimension integer pro-
gramming theory for the study of high-dimensional
optimization problems is presented in my joint work
with Rico Zenklusen, Robert Hildebrand and Jorg
Bader [I]. Consider the “high-dimensional” integer
optimization problem

max {c'z | Az < b, x € Z"}.

Let us try to find a matrix W € ZF*™ with k small
and relate the two polyhedra

conv{zx € Z" | Ax < b}
and

proj,, (Conv{(:c,z) ER" X ZF | Az < b, Wz = z}) .

Since W is integral, the following inclusion prop-
erty is obvious: the polyhedron on the left is always
contained in the one on the right. Furthermore, if
W is the n-by-n identity matrix, then the two poly-
hedra coincide. The objectives here are two-fold:

o If we request equality between the two polyhe-
dra, then the goal is to find an integer matrix W
with as few rows k as possible so that one can
model the integer hull of the original feasible
region.

e If we do not require equality between the two
polyhedra, then the question emerges whether
we can find good approximations of the integer
hull of all solutions to a specific combinatorial
/ integer problem by means of solutions of a
mixed integer problem with few integrality con-
straints.

In other words, in the first setting we consider re-
formulations based only on the constraint matrix A,
and hence these reformulations apply to all integral
right-hand sides b. For this, we study decomposi-
tions of the matrix A that access underlying totally
unimodular (TU) properties of the matrix. We say a
matrix factorization A = UW is a TU decomposition
of A if U is an integral matrix and W is TU. From a
mathematical point of view, this matrix property is
interesting on its own. For algorithmic applications,



we introduce a more general notion: A decomposi-
tion A = A+ UW is called an affine TU decompo-
sition of A if U is an integral matrix and the joint
matrix [A; W] is TU.

Our motivation for studying affine TU decompo-
sitions of matrices comes from the following simple
fact.

Theorem 2. Let A= A+ UW € Z™" with W €
{0, £1}¥*" be an affine TU decomposition, and b €
Z™. Thenconv ({z € R" | Az < b,Wx € Z*}) is an
integral polyhedron.

This is one answer to the first question we were
posing before: Polyhedra

P={zeR"| Az < b}

with an affine TU decomposition A = A+ UW have
the property

conv{zr € Z" | Az < b}

= proj, (conv{(z,2) € R" x ZF | Az < b, Wz = 2}).
(1)

Among all affine TU decompositions of A, we call

the minimal number of rows needed for W the affine
TU-dimension of A. This is the reformulation that
we are really interested in, since the number of in-
teger variables is a measure of complexity for the
underlying problem.

At this point a reader might wonder whether an
affine TU decomposition of a matrix is too much
to ask for if we only request equality between the
two polyhedra in Eq. . In a somewhat restricted
setting a converse of the above theorem holds.

Theorem 3. Let A € Z™*", and let W € Z**™ have
rank k such that the polyhedron

{r e R" | Az < b,Wzx =d}

is integral for all b € Z™ and for all d € ZF. Then
there exist matrices U € Z™* and W' € ZF*" such
that A = A+ UW’ is an affine TU decomposition.
Moreover, for every b e Z™,

conv ({x eR"| Az < bWz € Zk})

= conv ({CL‘ ER"| Az < bWz € Zk}) .
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One can now study various specific combinato-
rial optimization problems and exhibit constructions
that lead to an affine TU-dimension of a given ma-
trix. In particular, there are various knapsack prob-
lems for which the affine TU-dimension of the given
vector of numbers is not too big. This then automat-
ically leads to a corresponding mixed integer model
with few integer variables. Let me also mention in
this context that when k and the number of rows of
A are fixed, then one can find a polynomial time al-
gorithm to determine if the affine TU-dimension of
A is equal to k. On the other hand it is NP-hard
to decide if for a given matrix A € Z™*™ its affine
TU-dimension is equal to n. It remains yet open
whether determining the affine TU dimension for a
general matrix A is polynomial-time solvable when
only k is a constant.

Let me now briefly turn to the second question.
If we do not require equality between the two poly-
hedra, then the question emerges whether we can
find good approximations of the integer hull of all
solutions to a specific combinatorial / integer prob-
lem by means of solutions of a mixed integer problem
with few integrality constraints. This question is still
widely open. Indeed, besides some basic examples
we know very little about this topic. For instance,
the parity polytope has a simple inequality descrip-
tion if we add one additional integrality constraint.
There also exist classes of knapsack polytopes that
(i) have an exponential-sized polyhedral description
of its convex hull of integer solutions and (ii) the
convex hull can be described by linearly many linear
inequality constraints together with one integrality
constraint. These are two examples that illustrate
that it is well conceivable to find interesting approx-
imations of a convex hull of integer solutions with a
small number of integrality constraints.

3. Lattice free sets and mixed in-

teger convex optimization

In my view one of the most important objects to
study in order to better understand integer program-
ming are lattice-free sets. Before explaining this in
some more detail, let me make precise what lattice-
free sets are.

Definition 4. (Lattice-free sets)
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Let S C R™ be a conver set. S is called lattice free
of

int (S) N (Z" x RY) = 0.
Furthermore, we call S mazimally lattice free if S is
mazimal with respect to inclusion.

Basic examples of lattice-free sets are strips: for
an integer normal vector ¢ € Z"™ whose greatest com-
mon divisor of all entries is one and an integer num-
ber v, the set {z € R" | 4 < [¢,0]T2 < v + 1}
is maximally lattice free. However, the geometry of
maximally lattice-free sets is complicated in general.
The following properties established by Lovédsz and
Doignon are well-known and fundamentally impor-
tant.

Lemma 5. [] [6] Let S C R"™ be a mazimal, full-
dimensional, lattice-free, convexr set. Then, the fol-
lowing properties hold:

a) Let K be the orthogonal projection of S onto R™.
Then, K is maximally lattice free (with respect to
R") and S = K x R¢,

b) S is a polyhedron,

c) each facet of S contains an integer point in its
relative interior and

d) S has at most 2" facets.

A substantial amount of research in mixed integer
programming is dedicated to the question of how
to derive inequalities from a description of P that
are satisfied by all the points in P N (Z" x RY).
Such inequalities naturally define relaxations of Py =
conv(P N (Z" x R?)) in form of polyhedra that are
contained in P and that contain P;. In order to
obtain such relaxations, one can use an operator
introduced in Andersen, Louveaux and Weismantel
[2] that may be viewed as a special disjunctive pro-
gramming approach, a general and widely applicable
framework invented by Egon Balas in the nineteen-
seventies. More formally, if L is a lattice-free poly-
hedron, then

Prc P\ L:=conv(P\int L) C P.

Here, int denotes the topological interior and conv
— the closed convex hull. Such an operation can be
used iteratively and for all lattice-free sets. Some
questions arising in this context are: which lattice-
free polyhedra L should one use in order to

e approximate P; sufficiently well, or
e be able to obtain a polyhedral closure, or

e prove finite convergence to the mixed integer

hull, or

e develop a cutting plane proof?

These questions have been addressed in joint work
with my former postdocs, Kent Andersen, Quentin
Louveaux and Alberto del Pia, [20] 21]

As a second example of why lattice-free polyhe-
dra are intrinsically related with an understanding
of mixed integer problems, I would now like to move
away from linear mixed integer optimization and
consider a more general convex optimization prob-
lem in mixed integer variables. I refer here to my
joint work with Michel Baes and Timm Oertel [2].
My intention is to indicate informally that optimal-
ity certificates and duality in convex optimization
have a very natural mixed integer analogue. Recall
first that a duality theory in Euclidean space follows
from a precise interplay between points — which are
viewed as primal objects — and hyperplanes inter-
preted as dual objects. It turns out that there is a
similiar interplay in the mixed integer setting. Here,
the primal objects are sets of points, whereas the
dual objects are lattice-free polyhedra.

Let f: dom(f) — R be a continuous convex func-
tion. In order to simplify our exposition we may as-
sume w.l.o.g. here that dom(f) = R". Assume that
f has a, not necessarily unique, minimizer z*. Then
a necessary and sufficient certificate for x* being a
minimizer of f is that 0 € 9f(z*), i.e., the zero-
function is in the subdifferential of f at x*. Hence,

¥ = argmin ,cpn f(2) <= 0 € Of(z¥).

A question emerges: how do we obtain a certificate
that a point 2* € Z" x R? solves the corresponding
mixed integer convex problem

¥ = argmin ycyn paf(2)?

(2)

Let us explain the idea of our approach. By defini-
tion, «* = argmin ,czn,gaf(x) if and only if
{zeZ" xR | f(z) < fa)} = 0. (3)

The level set {x € R"*? | f(x) < f(2*)} is convex.
If it is nonempty, then its projection to its first n
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components, that is, to the subspace spanned by the
integer variables is again a convex set. Clearly, z*
argmin ,cznraf(2) if and only if

Q:={zeR" |y ek z=(zy)
and f(z) < f(z*)}NZ" = 0.

From the theorem of Lovasz, inclusion-wise max-
imally lattice-free convex sets are polyhedra [4]: we
can restrict our attention to such polyhedra P that
contain the (convex) projection (). From the theo-
rem of Doignon [6], it follows that a subset of at most
2" inequalities in the description of P is enough to
prove that int (P)NZ™ = (). It remains to show how
to relate these 2" inequalities to the function f. The
following theorem clarifies this relationship, provid-
ing a necessary and sufficient optimality condition
for our original mixed integer convex problem. Each
of these 2™ inequalities is related to a mixed integer
point, the set of which constitutes our optimality cer-
tificate. Condition (a) ensures that x* is one of the
points of the optimality certificate and is the best of
them. Also, in view of condition (c), every point x
in the certificate minimizes f on its own fiber, that
is, on the set {(x1,...,2,)T} x R% Finally, the sub-
gradient of f at each point of the certificate defines
a half-space. The interior of their intersection de-
fines a polyhedron whose projection on the first n
components is lattice-free by condition (b).

One direct implication of the result below is that
it provides us with a “good” certificate for the opti-
mality of a given mixed-integer point. The verifica-
tion can be performed in polynomial time, provided
that the number of integer variables is a constant
and regardless of how many continuous variables are
involved.

Theorem 6. z* = argmin ,cznygaf(x) if and only
if there exist k < 2" points

T = 2%, 29, ..., 15 € Z"XR? and vectors h; € of (z;)
such that the following conditions hold:
(a) fla1) < ... < f(aw).

(b) {x € R | bl (z — 2;) < 0 for all i} N (Z" x
R%) = ().

(c) hi € R® x {0} fori=1,... k.
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In the same vein as one can generalize the uncon-
strained optimality conditions to the KKT theorem,
the result above can be extended to convex con-
straints. The Lagrangean relaxation method then
leads to a formalism of duality in convex optimiza-
tion and allows us to develop a duality result for
mixed integer convex programs. The only difference
is that a single point is replaced by a lattice free
polyhedron whose inequality description is polyno-
mial whenever the number of integer variables is a
constant. I view this as a first step towards the ul-
timate goal of designing new mixed-integer convex
algorithms. Any lattice free polyhedron that we con-
struct in the course of such an algorithm provides us
with a lower bound on the optimal objective func-
tion value. This is why lattice free polyhedra can be
viewed as dual objects for integer and mixed integer
programs.

4. An axiomatic approach to non-

linear integer optimization

Let f: R™ — R be a nonlinear function. We con-
sider the discrete optimization problem
min{f(z):x € PNZ"}. (4)
Let us assume that P is a polytope presented by
means of an inequality description, i.e., P = {x €
R™ : Az < b}, A € Z™"™, and b € Z™. We say
that Problem can be solved in polynomial time
if in time bounded by a polynomial in the size of its
input, we can either determine that the problem is
infeasible, or we can find a feasible minimizer.
When f(x) is a convex function, Problem (4]) with
fixed n and bounded P can be solved in polyno-
mial time by a Lenstra-type algorithm, see [5, 3] and
[26]. On the other hand if f is concave with fixed n,
then by computing the integer hull of P using [25]
the problem is also polynomial time solvable. There
are a few other polynomially solvable special cases
when n is fixed. In particular, when f is a poly-
nomial of fixed degree, then in joint work with my
colleagues Jests de Loera, Raymond Hemmecke and
Matthias Koppe [24] we developed an FPTAS (fully
polynomial time approximation scheme) for maxi-
mizing non-negative polynomials over integer points
in a polytope. For n < 2, and f being a polyno-
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mial of degree at most three, the problem is also
polynomial-time solvable, see [27] and [22].

This raises the question of how we can combine
all these techniques to obtain complexity results for
larger classes of functions.

In order to develop an FPTAS for classes of nonlin-
ear functions to be minimized over integer points in
polyhedra, we recently proposed a framework. This
is joint work with Robert Hildebrand and Kevin
Zemmer [13]. The idea is to combine the tech-
niques of Papadimitriou and Yannakakis [23] with
ideas similar to those commonly used to derive cer-
tificates of positivity for polynomials over semialge-
braic sets. Generally speaking, in the latter context
one is given a finite number of “basic polynomials”
fi,..+, fm which are known to be positive over the
integers in a polyhedron P. A sufficient condition
to prove that another polynomial f is positive over
P NZ"is to find a decomposition of f as a sum
of products of a sum of squares (SOS) polynomial
and a basic function f;. A polynomial p(z) is SOS
if there exist polynomials g1 (), ..., gm(z) such that
pl) = Y7, ¢¥(o).

We would like to use a similar approach to arrive
at an FPTAS. Again we work with classes of “basic
Then, for a given f, we try to detect
a decomposition of f as a finite sum of products of
a so-called “sliceable function” and a basic function
fi- Roughly speaking, sliceable functions — thanks
to the result of [23] — can be approximated by sub-
dividing the given polyhedron.

functions.”

For instance, the set of all convex functions pre-
sented by a first-order oracle that are nonnegative
over P NZ" could serve as a class of basic func-
tions, because we can solve Problem for any
member in the class in polynomial time when n is
fixed. The nonnegativity assumption implies sign-
compatibility, which is a necessary property of the
set of basic functions. Another example is the set
of all concave functions presented by an evaluation
oracle that are nonnegative over P N Z". The same
property holds true in this case. These two examples
demonstrate that we consider not only polynomials
fi, but also more general classes of basic functions.
For example, we can decompose the polynomial
22 + y? — 22 as the product of two non-polynomial
functions: a basic function \/22 + y?—|z| and a slice-
able function /22 + y?+|z|. Our technique also ap-
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plies, for instance, to the Motzkin polynomial, and
even to functions f that are not polynomials.

In the aforementioned paper we explain axiomati-
cally what we mean by basic and sliceable functions
that for the sake of brevity I refrain from explaining
here in detail. As a consequence of our technique we
easily derive the following result

Theorem. Let Q € Z™ ™ be a symmetric ma-
trix and let n be fired. Then there is an FPTAS
for Problem with f(x) = 27 Qx in the following

cases:
1. @ has at most one negative eigenvalue;
2. @ has at most one positive etgenvalue.

This decomposition technique might be viewed as
a first step towards a systematic approach of which
classes f of functions admit an FPTAS for the cor-
responding optimization problem (4) when n is a
constant.
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This article summarizes the paper [I5] and some
recent developments which are concerned with the
disjunctive conic sets of form

S(AK,B) :={xc€E: Az € B, z € K},

where E is a finite dimensional Euclidean space with
inner product (-,-), A : E — R™ is a linear map,
() # B C R™ is a set of right-hand side vectors, and
K C E is a regular (closed, convex, full-dimensional,
and pointed) cone. We restrict our attention to the
interesting cases where S(A, IC, B) is nonempty and
nonconvex. Thus, we assume B # () but make no
other assumptions on B; in particular, B may be ei-
ther finite or infinite. Examples of regular cones in-
clude the nonnegative orthant R”, the second-order
(Lorentz) cone L™, and the positive semidefinite cone
St.

Disjunctive conic sets arise naturally in the so-
lution set representations of Mixed Integer Conic
Programs (MICPs) where nonlinear convex relations
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among variables are captured in the conic constraint
x € K and integrality restrictions are encoded in
A and B by an appropriate selection. These sets
also form the basis of fundamental structured re-
laxations used in generating cutting planes/surfaces
for MICPs. For example, a disjunctive conic sets
S(A,K,B) can represent multi-term (or split) dis-
junctions on regular cones and their cross-sections.
Besides, the separation of a fractional solution from
the feasible set of a Mixed Integer Linear Program
(MILP) can be encoded as a set S(A4,R’,B) with a
closed set B satisfying 0 ¢ B [, 12 [14]. Moreover,
the flexibility in the choice of B makes these sets a
relevant model for conic optimization problems with
complementarity constraints. See [I5, Sec 1.2] for
illustrative examples.

The set S(A,R’}, B) has compelled significant at-
tention. When B is a finite set, S(A4,R"}, B) is noth-
ing but a disjunctive set such as those introduced and
studied by Balas [2]. Johnson [14] characterized min-
imal valid linear inequalities for S(A4, R’} , B) through
support functions of certain sets. Jeroslow [12] and
Blair [5] presented similar characterizations via the
value functions of MILPs with bounded feasible sets
(in the former) and with rational data (in the lat-
ter). This body of work has strong connections to
the strong duality theory for MILPs [11 [I1].

In this paper, we generalize earlier results on clas-
sification and characterization of strong valid lin-
ear inequalities for the convex hull description of
S(A,KC,B) to the case where K is a general regu-
lar cone without relying on the prior assumptions
such as the finiteness of B, etc. In order to capture
dominance relations among valid linear inequalities,
we introduce the notion of conic minimality of an
inequality. This definition exposes a shortcoming in
the usual minimality definition and offers a potential
remedy via using K to encode structural informa-
tion on the problem. We perform a systemic study
of conic minimal inequalities in terms of their exis-
tence, sufficiency, strength, necessary conditions and
sufficient conditions for their characterization, and
establish connections with functions that generate
these inequalities.
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Introducing some notation

For a set @@ C R”, we denote its topological interior
by int (@) and its closed convex hull by conv(S).
The support function of a set ) C R" is defined as
oQ(z) = supqeRn{qu : ¢ € Q}. Support functions
are sublinear (positively homogeneous, subadditive,
and thus convex); and when @ # (), we also have
og(0) =0.

Given two Euclidean spaces E, F, we define the
kernel of a linear map A : E — F as Ker(4) :={u €
E: Au = 0} and its image as Im(A) := {Au: u €
E}. We use A* to denote the conjugate linear map
given by the identity (y, Az)r = (A*y,z)g V(z €
E,y € F). When the Euclidean space E is just R™,
we use the dot product as the corresponding inner
product.

For a given cone K C E, we let K* denote its dual
cone given by K* = {yeE: (z,y) >0 Vzre K}
and Ext(K) denote the set of the extreme rays of .
We let [n] := {1,...,n} for any positive integer n.

A hierarchy on valid linear inequal-
ities

We pursue a principled study of the structure of valid
linear inequalities defining the closed convex hull of
S(A, K, B). Given any vector 4 € E and a number
o < ¥(p) where ¥(u) is defined as

V(p) := inf {(p,z) :

inf x e SAK,B)},

the linear inequality of the form (u,z) > po is a
valid inequality for S(A, K, B). We refer to a valid
inequality (u,z) > po as trivial if pg = —oo, and
as tight if up = Y(u). We say that a valid linear
inequality for S(A, K, B) is extreme if it is a valid
equation or if it cannot be written as the sum of two
distinct valid linear inequalities (sums of valid equa-
tions are excluded here). While extreme inequalities
are necessary and sufficient for a complete descrip-
tion of conv(S(A, K, B)), their identification or al-
gebraic characterization is often quite complicated.
We compromise on this by examining the structure
of slightly larger classes of inequalities — minimal
and sublinear inequalities defined with respect to the
cone K.
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Let us start by pointing out a simple class of valid
inequalities. From the definition of K*, any inequal-
ity (0,z) > 0 with § € K£* is valid for S(A, K, B)
since S(A,IC,B) C K. We refer to these as cone-
implied inequalities. Cone-implied inequalities may
be extreme in certain cases; even so, they are not in-
teresting because the constraint z € K captures all
of them.

Cone K in the description of S(A,K,B) plays
a critical role in identifying dominance relations
among valid linear inequalities. Consider two valid
inequalities for S(A, IC, B) given by (u,z) > up and
(p,x) > po. We say that (p,x) > po dominates
(u,x) > po with respect to the cone K whenever
w—p € K*\ {0} and pg > pp. In fact, when
(p,x) > po dominates (u,x) > po, we have

<,LI,,CC> = <p,az>—i—<,u—,o,x> 2/30 ZMOy

>po >0

where the first inequality follows from z € K and
i —p € K*. Then in such a case, (u,z) > po is
a consequence of the inequality (p,z) > po and the
conic constraint x € K. This motivates our defini-
tion of conic minimal inequalities:

Definition 1. A walid inequality (u,z) > po for
S(A,K,B) is called K-minimal if for all inequalities
{p,x) > po valid for S(A, K, B) with p—p € K*\{0},
we have py < pg.

Conic minimality definition specifically restricts
our attention to the class of valid inequalities that
cannot be written as the sum of another valid in-
equality and a cone-implied inequality. Thus, none
of the cone-implied inequalities is K-minimal. How-
ever, some K-minimal inequalities can be expressed
as the sum of two other non-cone-implied valid in-
equalities. Hence, not all -minimal inequalities are
extreme.

In finite and infinite relaxations associated with
MILPs, minimality of a valid inequality is tradi-
tionally defined with respect to the nonnegative or-
thant, ie., K = R’}. That is, a valid inequality
(u,z) > po is R -minimal if reducing any coeffi-
cient p; for i € [n] leads to a strict reduction in the
right-hand side value po (see [14]). Therefore, our
conic minimality concept for disjunctive conic sets is
a natural generalization of R’ -minimality.
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Extending earlier results from [IT}, [14] given in the
case of K = Rl to general regular cones K, we can
easily see that K-minimal inequalities exist only if
the following assumption holds (see [15, Prop 1)):

Assumption 2. For each § € K*\ {0}, there exists
some x5 € S(A, K, B) such that (0, z5) > 0.

When, for example, conv(S(A4, K, B)) is full di-
mensional, Assumption [2] is satisfied and hence KC-
minimal inequalities exist. Also, under Assump-
tion [2, all non-cone-implied, extreme inequalities are
K-minimal.

Proposition 3 ([15, Prop 2 and Cor 2|). Under
Assumption [9, KC-minimal inequalities together with
the conic constraint x € K are sufficient to describe

conv(S(A, K, B)).

This prompts an interest in K-minimal inequali-
ties and suggests that in an efficient cutting plane
procedure we should at the least aim at separating
inequalities from this class.

On the selection of cone K in disjunctive
conic representations

In all of the previous literature, minimality of an
inequality is defined with respect to the nonnegative
orthant. We next expose a shortcoming of this and
illustrate how encoding structural information in the
cone K is rather pivotal in providing a more refined
characterization of extreme inequalities. This point
is important even in the case of a disjunctive set
associated with an MILP; yet it has been completely
overlooked in the literature.

First note that we are essentially interested in the
closed convex hull characterizations of disjunctive
conic sets and because of our flexibility in selecting
B and K, we may have a choice among several dif-
ferent representations S(A1, K1, B1), S(A42,Ka, B2),
etc. Moreover, whether a valid inequality is neces-
sary for the convex hull description, i.e., extreme,
depends on only the closed convex hull and is in-
dependent of the choice of A, B, and K used in
the representation. Besides, as long as the closed
convex hull remains the same, K-minimality defi-
nition is independent of A and B used in the rep-
resentation but depends on only K. That said,
when K # Ko, Ki-minimal inequalities might dif-
fer significantly from Ko-minimal inequalities even
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when W(S(Al, K1, Bl)) = W(S(Ag, Ko, Bg))
For example, suppose K; C Ko as well as
W(S(Al, K1, Bl)) = W(S(AQ, Ko, 82)); then all
K1-minimal inequalities are also KCo-minimal but not
vice versa. This, in the light of Proposition
demonstrates how the selection of cone K in dis-
junctive conic representations is critical in identify-
ing more refined dominance relations among valid
inequalities. We consequently deduce that minimal-
ity should be defined with respect to the smallest
cone K as it encodes the largest amount of struc-
tural information. See [I5, Rem 1, 5, and 7 and Sec
2.2] as well.

Usually, additional structural information of a
problem is available in the form of a convex or poly-
hedral relaxation; and such information can be en-
coded in a cone K in a lifted space by a single addi-
tional variable through homogenization as described
in [I5, Ex 4].

K-minimality and tightness

A first and foremost desirable feature of a strong
valid inequality (u,z) > po is its tightness, i.e., po =
¥(p). The concepts of tightness and K-minimality
are intrinsically different. Still, for certain vectors
p € E, K-minimality not only immediately implies
tightness of the inequality but also determines the
sign of ¥(u).

Proposition 4 ([15, Prop 3]). Let (u,z) > po with
uw € £K* be a K-minimal inequality. Then py =
Y(p); and furthermore, p € K* (resp., p € —K*)
implies ¥(p) > 0 (resp., ¥(u) <0).

However, there are K-minimal inequalities with
u & +K* that are not tight. In fact, a pathology
occurs when Ker(A4) Nint (K) # @ and p € Im(A*).

Proposition 5 ([I5, Prop 4]). Suppose Ker(A) N
int (K) # (0. Then, for any p € Im(A*), the in-
equality (i, ) > po with any po € (—oo,V(w)] is
K-minimal; yet only one of these is tight.

Because tightness has a direct characterization
through J(u), we keep it as a separate consideration.
Algebraic necessary conditions

K-minimality concept has a number of algebraic im-
plications.
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Any nontrivial valid inequality (u,z) > po with
to € R has to satisfy p € K*+Im(A*) (see [15, Prop
6]). Based on this, we can then associate with such
an inequality the following nonempty set

D,:={AeR": p—A*"XeK'}.

Because of their structure and relation to cut-
generating functions, we refer to these sets D, as
cut-generating sets. Given a nontrivial valid inequal-
ity, there is a unique set D, associated with it. Yet,
it is possible to have two distinct vectors p/ and p
yielding the same set D, = D,/ (see [15, Ex 8]).

The support function op, plays an important role
in our analysis. First of all, given p € K* 4+ Im(A*),
op, is helpful in determining a lower bound on (1),
i.e., ¥(u) > infpepop, (b) and thus ensuring the va-
lidity of (u,x) > po for S(A,K,B). For K = R,
this result was first proven in [I4, Thm 9]. Below,
we provide its refinement and generalization for ar-
bitrary regular cones K.

Proposition 6 ([I5, Prop 7 and 8]). For any p €
K*+Im(A*), 9(u) > infpegop, (b). Moreover, when
at least one of the following conditions holds: (i) K
is polyhedral, (i1) Ker(A) Nint (K) # 0, (iii) p €
int (C*) + Im(A*), we have ¥(u) = infyeg op, (D).

For any nontrivial valid inequality (u,x) > upo,
there exists at least one z € Ext(K) such that
op,(Az) = (u, z) (see [I5, Lem 2, Cor 3, and Prop
9]). Further, there is a much more elegant connec-
tion between R’} -sublinear inequalities and the sup-
port functions of cut-generating sets D,. This has
striking consequences that we will comment more on
later.

A key necessary condition for X-minimality is
based on a certain non-expansiveness property. For

this, we introduce the cone of K* — K* posi-
tive linear maps given by Fx = {(Z : E —
E) : Zis alinear map, and Z*v € K Yv € K},

where Z* denotes the conjugate linear map of Z.

Proposition 7 ([15, Prop 5]). A walid inequality
(1, x) > po is K-minimal only if p— Zp & K*\ {0}
for all Z € Fx such that AZ* = A.

Description of Fi, unfortunately, can be rather
nontrivial. For example, deciding whether a given
linear map takes S! to itself is an NP-Hard opti-
mization problem [4]. Because of the general diffi-
culty of working with Fx and thereby verifying the
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necessary condition for KC-minimality stated above,
we next consider an appropriate relaxation of this
condition and introduce the class of K-sublinear in-
equalities.

Definition 8. Given S(A,K,B), a valid inequality
(u, ) > po is K-sublinear if for all o € Ext(K*) it
satisfies 0 < (u,u) for all u such that Au = 0 and
(a,v)u+v € K Vv € Ext(K).

Every KC-minimal inequality is also K-sublinear
[15, Thm 1]. Without any technical assumptions
such as Assumption the existence, sufficiency,
properties of K-sublinear inequalities, and their con-
nection with CGF's are pursued further in [16].

Sufficient conditions

The following sufficient conditions complement our
necessary conditions and also suggest practical ways
of verifying K-sublinearity and/or K-minimality of
inequalities.

Proposition 9 ([I5, Prop 10]). Let (u,z) > po be
a nontrivial valid inequality. If there exists a collec-
tion I of vectors ' € Ext(K) such that op,(Az") =
(w,z') for all i € I and ) ,.;x' € int (K), then
(u, ) > po is K-sublinear.

Proposition 10 ([15, Prop 11]). Suppose Assump-
tion[q holds. Consider a valid inequality (u, ) > po.
If there exists a collection I of vectors x* € K such
that Y ,c 2" € int (K), Az* € B and (u,z") = po,
then (u,x) > po is K-minimal.

Proposition in particular states that a valid
inequality is K-minimal whenever the inequality is
satisfied as equality at a point at the intersection of
int (K) and conv(S(A4, K, B)). For MILP problems,
this resembles a sufficient condition for an inequality
to be facet defining. Nonetheless, conic minimality
notion is much weaker than extremality.

Cut generating functions

Given a nonconvex set B C R™, an important class
of problems is defined by the infinite family of sets of
form S(A,R’,B) given by any realization of n € N
and A € R™*™, This family of sets is characterized
by solely B which, in its most general form, is as-
sumed to be a closed set satisfying 0 ¢ B. Then
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0 ¢ conv(S(A,R%,B)) follows easily [7, Lem 2.1].
This motivates the definition of cut-generating func-
tions (CGFs) — a priori formulas to generate cuts

that separate the origin from the convex hull of any
instance of S(A, R’ , B) determined by n and A:

Definition 11. Given a nonempty and closed set
B C R™ satisfying 0 € B, a cut-generating func-
tion for B is a function ¢ : R™ — R such that the
inequality given by > (Ai)x; > 1 is valid for
S(A, R, B) where A; is the i-th column of the ma-
trix A, for any natural number n € N and any matriz
A € R™*™,

This framework has its roots in Gomory functions
[9] and Gomory and Johnson’s infinite group relax-
ations studied in the MILP context [10) 13 [I]. Re-
cent work has focused on a variety of structural as-
sumptions on B such as B is a general lattice [6],
B is composed of lattice points contained in a ra-
tional polyhedron [§, 3], and B is a closed set [7],
and demonstrated strong connections between R} -
minimal inequalities and CGFs obtained from the
gauge functions of maximal lattice-free sets.

This framework and CGFs are intimately con-
nected to our results on R’ -sublinear inequalities
and their relation with support functions of cut-
generating sets. We discuss this next; see [I5, Sec
4.3] for a detailed account.

Decades ago, Johnson [14] considered S(A, R, B)
with £ = R’} and introduced subadditive inequali-
ties. These inequalities are equivalent to the R -
sublinear inequalities (see e.g., [15, Rem 9]). We
restate their definition below:

Definition 12. Given S(A, R}, B), a valid inequal-
ity (u,x) > po is R7-sublinear if for all i € [n],
(u,u) > 0 holds for all w such that Au = 0 and

u+e; € R} where e; denotes the it unit vector in
R™.

A fundamental result of Johnson [I4, Thm 10]
asserts that the cut coefficient vector of any R -
sublinear inequality is generated by its support func-
tion op,, which is also piecewise linear. Our Propo-
sition [9] complements this result and proves that the
conditions of Proposition [J] are necessary and suffi-
cient for R’} -sublinearity. That is, a valid inequality
(, ) > po is R} -sublinear and tight if and only if
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its support function op, generates its coefficient vec-
tor p and its right-hand side value pg. The following
theorem summarizes these results [14, Thm 10] and
[15, Props 6, 8, and 10, and Thm 4] for L = R} ; see
also [I5] Rem 10 and 11].

Theorem 13. Consider S(A,R"},B). Then any
nontrivial valid inequality (u,x) > po satisfies p €
R? +Im(A") and 9(p) = infyepop, (b) > po > —oo.
Moreover, (p,x) > po is R7 -sublinear if and only if
it is wvalid (9(u) > po) and p; = op,(A;) for all
i € [n] where A; denotes the i-th column of the ma-
triz A.

More recently, Kiling-Karzan and Steffy [16] noted
that support function op, associated with any non-
trivial valid inequality (u,x) > po can be utilized in
obtaining a stronger and R’} -sublinear inequality.

Proposition 14 ([I6, Prop 3]). Any nontrivial valid
inequality (p,x) > po for S(A, R, B) is equivalent
to or dominated by an R’} -sublinear inequality given
by > op,(Ai)x; > infyegop, (b) > po where the
domination is with respect to the cone K = R'}.

Thus, R" -sublinear inequalities are always suffi-
cient to describe conv(S(A, R, B)). Proposition
also inspired the following definition of relazed CGF's
as the support functions of nonempty sets D in [16]:

Definition 15. Given S(A,R%,B) and a set ) #
D C R™, we say that the support function op :
R™ — R U {400} of D is a relaxed cut-generating
function for S(A, R, B).

Clearly, the support functions associated with R’} -
sublinear inequalities are relaxed CGFs. Although
the relaxed CGFs such as op, are seemingly tied to
a particular set S(A,R",B) defined by fixed n, A,
and B, the subadditivity of these support functions
permits us at once to generate valid inequalities for
any instance S(A’,RT}F/,B) with data 4’ € R™*"'
i.e., varying n and A, as long as the set B is kept the
same.

Proposition 16 ([16, Prop 4]). Suppose B C R™ is
gwen. Let op(-) be a relazed CGF for S(A,R’, B)
associated with a nonempty set D C R™. Then, the
inequality Zlil op(A)x; > infpep op(b) is valid for
any S(A’,R’}FI,B) where the dimension n' and the
matriz A’ € R™" are arbitrary, and A’ denotes

the i-th column of the matriz A" for all i € [n].
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When B is a closed set satisfying 0 ¢ B, Proposi-
tion [16] essentially binds together relaxed CGF's and
regular CGFs. For a relaxed CGF op to be a regular
CGF, we need to ensure: (i) infpepop(b) > 1 and
(ii) op is finite valued. All R"}-sublinear inequalities
of form (u, z) > 1 immediately have infycsop, (b) >
1. Then we infer from Theorem and Proposi-
tions [14] and [16] that without any structural or tech-
nical assumptions, the relaxed CGF's, specifically the
ones associated with the sets D), of R’} -sublinear in-
equalities, are sufficient to generate all necessary in-
equalities for the description of conv(S(A,R’, B))
for all choices of n and A. When the set B is com-
posed of lattice points, a classical result [6, Thm
1.2] states that all R} -minimal inequalities are gen-
erated by sublinear functions which are also piece-
wise linear. Johnson’s [I4] analysis along with ours
easily recovers this. Sufficiency of regular CGF's
for generating all cuts separating the origin in the
case of general B relies on additional structural as-
sumptions [7, Ex 6.1 and Thm 6.3]. This is in con-
trast to the sufficiency of relaxed CGFs for any B.
In this respect, the main challenge in transforming
a relaxed CGF op into a regular CGF resides in
ensuring finite valuedness of op while maintaining
infpegop(b) > 1. Whenever op is not finite valued,
i.e., D is unbounded, under certain assumptions, the
relaxed CGFs obtained from bounded sets D C D
offer a solution for this challenge.

The sufficiency of CGFs for describing the con-
vex hulls of disjunctive conic sets is intrinsically re-
lated to the strong duality theory for integer pro-
grams. Moran et al. [I9, Thm 2.4] has extended
the strong duality theory for MILPs to MICPs of
a specific form. Under technical assumptions, these
theorems assert that for every integer programming
instance, there is a dual problem achieving zero du-
ality gap where the ‘dual variables’ are finite-valued
subadditive functions that are nondecreasing with
respect to the underlying cone. These functions in-
deed act locally on each variable x; and produce cut
coefficient p; by considering only the data A; associ-
ated with z;; therefore, they are simply CGFs. Then
the sufficiency of CGF's for generating all cuts of the
form (u,z) > 1 follows from strong MICP duality
theorem. Nevertheless, not only the strong duality
results for MILPs and MICPs rely on some technical
assumptions but also the sets S(A, R’ , B) represent-
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ing MILPs and the specific form of MICPs from [19]
impose a specific structure on B (see [15, Ex 3]). Ad-
ditional discussion relating [I9] to CGFs is given in
[15, Rem 12] and [16, Rem 2].

Our results naturally capture some of the earlier
results from the MILP setup and generalize them
to the cases with arbitrary nonconvex sets B. That
said, our study also reveals some problems associ-
ated with such a CGF-based view that treats the
data associated with each individual variable inde-
pendently in the case of general regular cones other
than the nonnegative orthant. Namely, [15, Ex 8
and Rem 12] features an extreme inequality for a set
S(A,K,B) with £ = L? that cannot be generated
by any CGF or relaxed CGF.

Final remarks

In the context of disjunctive conic sets, characteri-
zation of K-minimal and tight inequalities has un-
derlied the development of structured convex (or
conic representable) cuts for two-term linear disjunc-
tions applied to a second-order cone (see [18]). The
flexible representation structure offered by disjunc-
tive conic sets can easily allow us to pursue a simi-
lar principled study of other simple, yet fundamen-
tal, nonconvex sets defined by multi-term disjunc-
tions or quadratics on regular cones. In this regard,
characterizations of extreme inequalities beyond /C-
minimality are very appealing as well.

We also hope that the understanding and con-
nections we built on CGFs and relaxed CGFs will
be instrumental in understanding when minimal or
extreme CGFs will produce strong linear inequali-
ties such as facets for given problem instances. On
a related note, the sufficiency of CGFs to generate
all valid inequalities for the convex hull description
of disjunctive sets or all cuts that separate the ori-
gin from the convex hull of disjunctive sets is an
indispensable question for the justification of this re-
search focus on CGFs. Along these lines, our results
have recently contributed to the foundation of the
most general conditions guaranteeing the sufficiency
of CGFs for general B [17].
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Convex optimization has found a wide range of ap-
plications across engineering and economics [I]. In
the past several years, great effort has been devoted
to casting many real-world problems as convex op-
timization problems. Nevertheless, several classes
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of optimization problems, including polynomial op-
timization and quadratically constrained quadratic
program (QCQP) as a special case, are nonlinear,
non-convex, and NP-hard in the worst case. In
particular, there is no known effective optimization
technique for integer and combinatorial optimization
as a small subclass of QCQP. Given a non-convex
optimization problem, there are several techniques
to find a solution that is locally optimal. However,
seeking a global or near-global solution in polyno-
mial time is a daunting challenge. There is a large
body of literature on nonlinear optimization witness-
ing the complexity of this problem.

To reduce the computational complexity of a
non-convex optimization problem, several convex
relaxation methods based on linear matrix in-
equality (LMI), semidefinite programming (SDP)
and second-order cone programming (SOCP) have
gained popularity [2, [3]. These techniques enlarge
the possibly non-convex feasible set into a convex
set that is characterizable via convex functions, and
then provide the exact or a lower bound on the opti-
mal objective value associated with a global solution.
The effectiveness of this technique has been substan-
tiated in different contexts [4] Bl 6, [7, 8, @, [10]. The
SDP relaxation converts an optimization problem
with a vector variable to a convex program with a
matrix variable, via a lifting technique. The exact-
ness of the relaxation can then be interpreted as the
existence of a low-rank (e.g., rank-1) matrix solution
for the SDP relaxation.

To explain the SDP relaxation technique, consider
the polynomial optimization problem

min  fo(z) Q)
s.t. fi(x) <0, i=1,....m

where fo, ..., fi, are arbitrary polynomial functions.
This problem can be reformulated as

min 2" MyZ
ZeR™ (2)
st. M,z <0, i=1,2,....™m

for some non-unique numbers 7 and m. In this prob-
lem, the variable & consists of multiple copies of the
entries of x as well as some auxiliary parameters,
and the matrices My, M1, ..., My, are all sparse [11].
Given a convex function pu(-), consider the convex
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program
min trace{ MoW} 4+ p(W)
Wesn
s.t. trace{M;W} <0, i=1,...m (3)

W =0

where W is a matrix variable. We refer to this prob-
lem as penalized SDP. This problem is equivalent to
the QCQP problem under the additional rank
constraint rank{W} = 1, provided that (W) =0
(note that W plays the role of z*). Hence, penal-
ized SDP is a convex relaxation of the original prob-
lem whenever p(W) = 0, but it is advantageous
to design a nonzero function p(W) to compensate
for the dropped rank constraint rank{IV'} = 1. It is
shown in [I1] that the non-unique conversion from
to can be carried out in such a way that the
penalized SDP will have a low-rank solution W°Pt
for a wide class of penalty functions u(-) (includ-
ing u(W) = 0). This result has two implications.
First, the NP-hardness of various subclasses of poly-
nomial optimization, e.g., combinatorial optimiza-
tion, is only related to the existence of a low-rank
SDP solution that is not rank 1. Second, by approx-
imating the low-rank solution of the SDP relaxation
with a rank-1 matrix, an approximate solution of the
original problem may be obtained whose closeness
to the global solution can also be upper bounded.
Some of our recent results on low-rank SDP relax-
ations together with their applications in electrical
power networks will be explained next.

Notations Before providing a survey of our re-
cent results, the notations used in this paper will
be defined below. R, C, S* and H" denote the sets
of real numbers, complex numbers, n X n symmet-
ric matrices and n x n Hermitian matrices, respec-
tively. Re{W}, Im{W}, rank{IWW} and trace{W}
denote the real part, imaginary part, rank and trace
of a matrix W, respectively. The notation W > 0
means that W is Hermitian and positive semidefi-
nite. Given a matrix W, its (I,m) entry is denoted
as Wiyy,. The superscript (-)°P! is used to show the
globally optimal value of an optimization parameter.
The symbol (-)* represents the conjugate transpose
operator. Given an undirected graph G, the notation
i € G means that ¢ is a vertex of G, and (i,5) € G
means that (4, 7) is an edge of G and besides i < j.
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1. Motivation: Power Optimiza-
tion Problems

The real-time operation of an electric power net-
work depends heavily on several large-scale opti-
mization problems solved from every few minutes
to every year. State estimation, optimal power
flow (OPF), security constrained OPF, unit com-
mitment, transmission planning, sizing of capacitor
banks, and network reconfiguration are some funda-
mental optimization problems solved for transmis-
sion and distribution networks. Since these different
problems have all been built upon the power flow
equations, they are referred to as OPF-based opti-
mization in this paper. Regardless of their large-
scale nature, it is a daunting challenge to solve these
problems efficiently. This is a consequence of the
nonlinearity /non-convexity created by two different
sources: (i) discrete variables such as the ratio of a
tap-changing transformer, the on/off status of a line
switch, or the commitment parameter of a genera-
tor, and (ii) the laws of physics. Issue (i) is more
or less universal and researchers in many fields of
study have proposed various sophisticated methods
to handle integer variables. In contrast, Issue (ii) is
pertinent to power systems, and it demands new spe-
cialized techniques and approaches. More precisely,
complex power being a quadratic function of com-
plex bus voltages imposes quadratic constraints on
OPF-based optimization problems. Issue (ii) makes
these problems NP-hard and has the following im-
plications [12]:
e The well-established numerical algorithms, e.g.,
Gradient descent, Newton’s method and primal-

dual algorithm, may only find non-global local
minima.

e Given a local solution, it is hard to verify how
close to a global minimum the solution is.

e These algorithms may not converge if they start
from a bad initial point.

e These algorithms may suffer from the lack of
numerical robustness.

e In the case of non-convergence, it is hard to de-
termine whether the problem was infeasible or
the initial guess for the solution was not good
enough.
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OPF is at the heart of Independent System Oper-
ator (ISO) power markets and vertically integrated
utility dispatch [13]. This problem needs to be
solved annually for system planning, daily for day-
ahead commitment markets, and every 5-15 minutes
for real-time market balancing. Due to the issues
outlined above, the existing solvers for OPF-based
optimization either make potentially very conserva-
tive approximations or deploy general-purpose local-
search algorithms. For example, a linearized version
of OPF, named DC OPF, is normally solved in prac-
tice, whose solution may not be physically meaning-
ful due to approximating the laws of physics. Al-
though OPF has been studied for 50 years, the algo-
rithms deployed by ISOs suffer from several issues,
which may incur tens of billions of dollars annu-
ally [I3]. More sophisticated OPF-based problems
are even harder to solve and may need much coarser
approximations. As the power industry moves to-
wards the upgrade of legacy grids into smart grids,
new optimization problems emerge for both distri-
bution and transmission systems, which are large-
scale (with hundreds of thousands of variables) and
may need to be solved on a short time scale (to cope
with the intermittency and variability of renewable
energy). The non-convexity issue worsens the situa-
tion greatly.

The power flow equations for a power network
are quadratic in the complex voltage vector. Using
this fact, it can be shown that all constraints of the
above-mentioned OPF-based problems can often be
cast as quadratic constraints after introducing cer-
tain auxiliary parameters. We have shown in a series
of papers that an SDP relaxation is exact and finds
global solutions for benchmarks examples of OPF-
based optimization[14, [15] [16] 17, 18| @ 19] 20} 211
22, 23]. By leveraging the physics of power grids,
it is also theoretically proven that the SDP relax-
ation is always exact for every distribution network
and every transmission network containing a suffi-
cient number of transformers (under some technical
assumptions) [I7, 24]. The papers [22] and [19] show
that if the SDP relaxation is not exact due to the
violation of certain assumptions, a penalized SDP
relaxation would work for a carefully chosen penalty
term, which leads to recovering a near-global solu-
tion. This technique is tested on several real-world
grids and the outcome is partially reported in Table[l]
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Test Near- Global Run
cases optimal | optimality | time
cost guarantee

Polish 2383wp | 1874322.65 99.316% 529
Polish 2736sp 1308270.20 99.970% 701
Polish 2737sop | 777664.02 99.995% 675
Polish 2746wop | 1208453.93 99.985% 801
Polish 2746wp | 1632384.87 99.962% 699
Polish 3012wp | 2608918.45 99.188% 814
Polish 3120sp 2160800.42 99.073% 910

Table 1: Performance of penalized SDP for OPF
(run time is in seconds).

(see our solver [25] for more details). It can be ob-
served that the SDP relaxation has found operating
points for the nationwide grid of Poland in different
times of the year, where the global optimality guar-
antee of each solution is at least 99%, implying that
the unknown global minima are at most 1% away
from the obtained feasible solutions. The above ob-
servations show the significant potential of conic re-
laxation for structured optimization problems, such
as those appearing in electrical grids. Some of our
theoretical results on structured optimization prob-
lems will be outlined below.

2. Highly Structured Optimiza-

tion

In this part, we offer some theoretical results on how
structure helps. Consider the problem

min z*Myz
zehn

s.t. "Mz <0,

_ (4)
1=1,2,...

,m
where D is either R or C. Note that every polyno-
mial optimization problem can be reformulated as
above, and therefore includes a broad class of
problems. Assume that My, ..., M,, are symmetric
matrices in the real case and Hermitian matrices in
the complex case. An SDP relaxation of this non-
convex optimization problem can be naturally found
based on the discussion provided in the preceding
section. This relaxation is exact if it has a rank-1
solution W°P'  in which case an optimal solution of
problem can be recovered from WP, To study



Volume 6 Number 1 May 2016

the exactness of the SDP relaxation, consider a gen-
eralized weighted graph G with n nodes constructed
as follows:

e Given every two nodes i,j € {1,...,n} such that
i # j, there exists an edge between the nodes
i and j if and only if the (7, j) off-diagonal en-
try of at least one of the matrices My, ..., M, is
nonzero.

e For every (i,j) € G, the union of the nonzero
(i,7)t" entries of My, ..., M, will be assigned as
a weight set to the edge (i, 7).

This graph captures the sparsity of the problem and
the connection among its coeflicients. It is desirable
to relate the exactness of the SDP relaxation to cer-
tain properties of the generalized weighted graph G.
To this end, we will introduce the notion of “sign-
definite set.” A finite set 7 C R is said to be sign
definite with respect to R if its elements are either
all negative or all nonnegative. 7T is called negative
if its elements are negative and is called positive if
its elements are nonnegative. A finite set 7 C C is
said to be sign definite with respect to C if when the
sets 7 and —7 are mapped into two collections of
points in R?, then there exists a line separating the
two sets (the elements of the sets are allowed to lie
on the line). The following results hold in both real
and complex cases (see [24] for more details):

Real case D = R: The SDP relaxation is exact if
two groups of conditions are satisfied for G:

e Fdge conditions: The weight set for every edge
of G is sign definite with respect to R.

e (Cycle conditions: Every cycle of G has an even
number of edges with positive weight sets.

The above conditions are naturally satisfied in three
special cases: (1) G is acyclic with sign-definite edge
weight sets, (2) G is bipartite with positive weight
sets, (3) G is arbitrary with negative weight sets. If
the SDP relaxation is not exact, it still has a low-
rank solution for a broad class of graphs. In partic-
ular, if the edge conditions are satisfied but some of
the cycle conditions are violated, then the SDP re-
laxation has a solution whose rank is upper bounded
by n— Rmin(G), where Rpy,in(G) denotes the minimum
positive-semidefinite rank of the graph. The number
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n — Ruyin(G) turns out to be small for a large class
of graphs.

Complex case D = C: The SDP relaxation is exact
if all weight sets are sign definite with respect to C
and one of the following conditions is satisfied:

i) G is acyclic.

ii) G is bipartite and weakly cyclic with positive
and negative real weight sets (a graph is called
weakly cyclic if its cycles are edge disjoint).

G is a weakly cyclic graph with only imaginary
weight sets such that all elements in each set
have the same sign for their imaginary parts.

iii)

G can be decomposed as a union of edge-disjoint
subgraphs in an acyclic way such that each
subgraph satisfies one of the structural prop-
erties (i)-(iii) stated above.

iv)

As shown in [24], the above results are valid for a
large class of optimization problems, which goes far
beyond (it includes polynomial, exponential and
logarithmic problems).

2.1 Applications in Power Systems

A majority of real-world optimization problems can
be regarded as “optimization problems with graph
structures”, meaning that each of those problems has
an underlying graph structure characterizing a phys-
ical system. For example, optimization problems in
circuits, antenna systems and communication net-
works fall within this category. Then, the question
of interest is: how is the computational complexity
of an optimization problem related to the structure
of the system over which the optimization problem
is performed? This question will be explored here
in the context of electrical power grids. Consider an
arbitrary AC power network with n nodes (known
as buses). For every edge (7,7) of the network, the
nodes ¢ and j are connected to each other via a trans-
mission line with the admittance g;; +b;;i (note that
the symbol “i” denotes the imaginary unit). Assume
that each node of the network is connected to an ex-
ternal device, which exchanges electrical power with
the power network.

Figure|[I|(a) exemplifies a sample power network in
which two external devices generate power while the
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Generator Load

Generator Load

(a)
Pij Piji
(o= —(x)
qjj gji

(b)

Figure 1: (a) An example of a power network; (b)
this figure illustrates that each transmission line has
four flows.

remaining ones consume power. As shown in Fig-
ure [1[(b), each line (i, j) of the network is associated
with four power flows:

e p;j: Active power entering the line from node 4
e pj;i: Active power entering the line from node j

e ¢i;: Reactive power entering the line from node
i

e ¢j;: Reactive power entering the line from node
J

Note that p;; + pj; and ¢;; + gj; represent the active
and reactive losses incurred in the line. Let z; de-
note the complex voltage (phasor) for node i of the
network. One can write:

pij(z) = Re {@;(z; — 2;)"(g:5 — biji)},
pji(z) = Re{z;(z; — x:)"(9i5 — biji)}
¢ij(v) = Im {zi(z; — 2;)"(gij — bii)}
gji(z) = Im{x;(z; — x;)"(9s; — bizi)}

Note that since the flows all depend on z, the argu-
ment z has been added to the above equations (e.g.,
pij(x) instead of p;j). The flows p;;(z), pji(z), ¢ij(z)
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and gj;(z) can all be expressed in terms of |z;|?, |z;|*
and Re {cl(f):le;‘} for k =1,2,3,4, where

2)

1 . :
CZ(-J-) = —gij + biji, Cz(j = —gij — biji,

3 . 4 .
ng) = bij + giji, Cl(j) = b;j — giji.
Define p(z) as the vector of all active flows p;;(x) and
pji(x) for every line (7,j) of the network. Likewise,
define ¢(x) as the vector of all line reactive flows.
Consider the optimization problem

min ho(p(r), a(r) y(x))

s.t. hj(p(x),q(z),y(x)) <0, j=1,2,..,m

for given functions hy, ..., hy,, where y(z) is the vec-
tor of squared voltage magnitudes |x;|? for i =
1,2,...,n. Assume that the function h;(-, -, -) accept-
ing three arguments (inputs) is monotonic with re-
spect to its first and second vector arguments, for
7 =0,...,m. The above optimization problem aims
to optimize the flows in a power grid. The con-
straints of this optimization problem account for net-
work, technological and physical constraints. For
example, they limit line flows, voltage magnitudes,
power delivered to each load, and power supplied by
each generator. Observe that p(x) and ¢(z) are both
quadratic in . The SDP relaxation method intro-
duced before can be used to eliminate the effect of
quadratic terms, which replaces p(x), ¢(z) and y(x)
with linear functions of a matrix W (playing the role
of zx*). To study under what conditions the relaxed
matrix optimization problem is exact (or has a rank-
1 solution W°P')| we can map the structure of the
problem into a generalized weighted graph G. This
graph has the same topology as the physical power
network, where the weight set for each edge (i, )

L) 2 6) @)

is equal to {clj 1 Cig 1 Ci 5 Cig }. A customary trans-
mission line is a passive device with nonnegative re-
sistance and inductance, implying the inequalities

gij > 0 and b;; < 0. As a result of this property,

the set {cz(jl.), cz(?), CS’), cl(;l)} turns out to be sign def-
inite with respect to C. Using a general version of
the result outlined in the preceding section, it can
be concluded that the proposed matrix relaxation is
exact as long as G is acyclic (note that most distri-
bution networks are acyclic). This result also holds

for cyclic (transmission) networks having a sufficient
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number of phase shifters [I7]. This implies that the
physics of power networks reduce the computational
complexity.

3. Low Rank Solutions

In this section, we study the existence of low-rank
solutions for SDP relaxations. This is helpful for
retrieving a near-global solution of the original non-
convex problem in the case where the relaxation is
not exact.

3.1 Positive Semidefinite Matrix Com-
pletion

The low-rank positive semidefinite matrix comple-
tion problem aims to design the unknown entries of
a partially filled matrix so that the resulting ma-
trix becomes positive semidefinite with a minimum
rank. This fundamental problem serves as a basis
for studying the SDP relaxation for polynomial op-
timization problems. To introduce the problem, con-
sider a simple graph G = (V,€) with n vertices to-
gether with a known positive-definite matrix Wesr
(the symbols V and € denote the vertex set and edge
set of the graph). The goal is to solve the following
optimization problem:

nin rank{W} (6a)
st Wiy =Wy, V(i,j) €&  (6b)
Wik = Wi, Vk eV (6¢)

W =0 (6d)

Note that the matrix W inherits the values of its di-
agonal and those off-diagonal entries corresponding
to the edges of G from the given matrix W. This
problem is difficult to tackle due to its non-convex
objective function. To reduce the complexity of
the problem, we will propose two convex relaxations
based on the graph notions of OS and treewidth.

Definition 1. Given a graph G = (V,€), let O =
{or};_, be a sequence of wertices of G with s el-
ements. Denote as G the subgraph induced by
{o1,..., 01}, fork =1,...;s. Let G, be the connected
component of G containing og. O is called an OS-
vertex sequence of G if for every k € {1, ..., s} there
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exists a vertexr wy € V with the following three prop-
erties:

1. wg is a neighbor of oy, i.e., (op, wx) € €

2. wy, does not belong to the set {01, 02, ...,0r}

3. wy s not connected to any verter in g,; other
than oy,

Denote the mazimum cardinality among all OS-
vertex sequences of G as OS(G) [26].

To develop a convex relaxation for the matrix com-
pletion problem (@), let G¢ = (V¢, £°) be an arbitrary
graph such that V¢ =V and £°NE = ¢.

Convex Relaxation I: This problem is defined as

Jmin, (Z%E:gc tij Wij (7a)
st Wi = Wy, V(i,j) €& (Th)
Wi = Wik, VkeV (7¢)

W =0 (7d)

where #;;’s are arbitrary nonzero scalars.
As shown in [27], every solution of Convex Relax-
ation I, denoted as W°P!, satisfies the inequality

rank{W°P'} < n—rréisn {OS(QSUQC) ‘ g° C g} (8)

where

e The notation G° C G means that G° is a graph
with n vertices whose edge set is a subset of the
edge set of G.

e G°UGC denotes the edge-wise union of the graphs
G*® and G°.

Note that the inequality holds for all possible
nonzero values of the coefficients ¢;;’s. Hence, the
convex program provides a suboptimal solution
for the non-convex problem @ together with an up-
per bound on its optimal objective value. Roughly
speaking, a suitable choice of G¢ makes the upper
bound n—mingscg OS(G*UG®) very small for a large
class of sparse graphs G. In particular, given an ar-
bitrary tree decomposition of G with width ¢, the
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graph G¢ can be designed based on the tree in a way
that

n—rréisn{OS(gsUgc) ‘ QSQQ}SIH-L (9)

provided that all supernodes of the tree decomposi-
tion have the same size (see [27] for the general case
where the supernodes have different sizes). Hence,
the convex problem @ is able to provide a subopti-
mal solution for problem @ with the property that
rank{W°P*} < ¢ + 1. In particular, if an optimal
tree decomposition is deployed for the construction
of G° then the relation rank{W°P'} < tw(G) + 1
holds for all nonzero values of the coefficients ¢;;’s,
where tw(G) denotes the treewidth of G. Note that
the existence of a solution for problem @ of rank at
most tw(G) + 1 has already been proved in [28] for
real-valued problems, but the technique stated above
works for both real and complex problems. In ad-
dition, the above technique designs infinitely many
optimization problems, each of which returns such a
solution. The importance of this result will become
clear later in this paper.

Assume that G is a large-scale graph with no clear
sparsity pattern. In this case, it could be difficult
to find a good tree decomposition or directly de-
sign a subgraph G¢ minimizing the upper bound
n — mingscg OS(G* U G°). Under this circumstance,
we use another convex relaxation for @

Convex Relaxation II: This problem is defined as

Wr/réiﬁln (Mgg:ugc ti; Im{W;;} (10a)
st. Re{W;} =W, V(i,j) €€  (10b)
Wik = Wik, Vk ey (10c)

W =0 (10d)

with nonzero coefficients ¢;;’s, where the variable of
the optimization is the complex-valued matrix W.

Let W°Pt denote an arbitrary solution of the above
optimization problem. The matrix Re{W°P'} turns
out to be a suboptimal real-valued solution of the
matrix completion problem @ satisfying the in-
equality

rank{Re{W°P'}} <2(n - 0S(GUG")). (11)

At the cost of adding the factor 2, the bound pro-
vided in is simpler than the one given in
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due to obviating the need for taking the minimum of
OS(+) over a set of subgraphs G°. The above bound is
very useful since it is small for a large class of sparse
graphs, even in the case where G¢ is considered as a
trivial graph with no edges.

3.2 Sparse Quadratic Optimization
Consider the standard non-convex QCQP:

min  z* Aoz + 2b5z + ¢o (12a)
zeERP—1
st " Agx +2bix + ¢ <0, k=1,...,m (12b)

where A;, € S* 1, b, € R* ! and ¢;, € R, for k =
0,...,m. Define

_ o by
Mk[bk Ak]' (13)
The problem can be reformulated as
i t M,
min, race{ MoW}
s.t.  trace{ MW} <0, k=1,....,m
Wiy =1, (14)
W =0,
rank{W} =1,
where W plays the role of
1 «
[ N ] 1 z']. (15)

In the above reformulation of QCQP , the con-
straint rank{WW} = 1 carries all the non-convexity.
Neglecting this constraint yields an SDP relaxation.
Let W denote an arbitrary solution of the SDP re-
laxation of the non-convex problem . There are
cases where W has full rank and yet there exists a
low-rank solution simultaneously. Indeed, the SDP
relaxation could naturally have infinitely many solu-
tions, and therefore a solution with the lowest rank
should be sought.

Low-Rank Solution: In an effort to find a low-
rank SDP solution, let G = (V, &) be a graph with
n vertices such that (i, j) € G if the (i, 7) entry of at
least one of the matrices My, M, ..., M,, is nonzero.
The graph G captures the sparsity of the optimiza-
tion proble/le . Observe that those off-diagonal

entries of W that correspond to non-existent edges



Volume 6 Number 1 May 2016

of G play no direct role in the SDP relaxation. As a
result, it can be inferred that every solution WPt
to the matrix completion problem @ or its con-
vex relaxations and is also a solution to
the SDP relaxation of the QCQP problem . De-
pending on the choice of G¢ in and , differ-
ent low-rank solutions of the SDP relaxation can be
generated for a sparse graph G. In particular, there
are infinitely many optimization problems with lin-
ear objectives such that each one generates a solu-
tion WPt of the SDP relaxation with rank at most
tw{G} + 1, provided that the optimal tree decom-
position of G is known. Without taking advantage
of a tree decomposition, we can generate a solution
with rank at most 2(n — OS(G)) in polynomial time
(note that this solution can be found efficiently, even
though computing the theoretical upper bound on its
rank would be an NP-hard problem). Note that it
is shown in [II] that every polynomial optimization
problem can be reformulated in a higher dimensional
space (still polynomial size description) such that its
corresponding treewidth becomes 1. For such a for-
mulation, the SDP relaxation has rank at most 2.
Although this reformulation improves the rank for
approximation purposes, it offers a looser (rather
than tightened) lower bound on the globally opti-
mal objective value, and this introduces a trade-off.

Penalized SDP Relaxation: The strategy delin-
eated above consists of two steps: (i) finding an arbi-
trary (potentially high-rank) solution W of the SDP
relaxation for QCQP, and (ii) turning the solution
into a lower rank solution W°P' by solving a second
convex optimization based on the matrix completion
approach. It is advantageous to integrate these two
steps. This will be carried out in the sequel. Con-
sider the convex optimization problem

in t MyW t w ti; Wis
nin race{ MoW} + e1trace{ }—i—ezz ii Wi

(i,5)€&*
s.t.  trace{ MW} <0, k=1,....,m
Wi =1,
W =0

(16)
for a given graph G¢, a scalar €1, and nonzero num-
bers €2 and t;;’s. Notice that the objective of this
optimization has two penalty terms: (i) a trace
term motivated by the nuclear norm technique for
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rank compensation, and (ii) a weighted sum of some
off-diagonal entries of W motivated by the matrix
completion approach described earlier. As before
and under some technical ssumptions, every solution
WOPt of the above penalized SDP problem satisfies
the inequality

rank{W°P*} < n — min OS(G* U G°)
geCg

(17)

where the right side of the inequality can be replaced
by t 4+ 1 if G¢ is constructed from a tree decomposi-
tion of G with width ¢ such that its supernodes are of
identical size. Note that the penalized SDP may be-
come arbitrarily close to the SDP problem by mak-
ing €1 sufficiently small or equal to zero. This means
that an e-approximation of a low-rank solution of the
SDP relaxation of QCQP can be obtained through
the penalized SDP problem. In other words, the
proposed penalization eliminates high-rank solutions
of the SDP relaxation. A similar penalization tech-
nique can be derived based on problem , leading
to the upper bound 2(n - 0S(GU gC)) on the rank
of all solutions of the corresponding penalized SDP.

Consider a QCQP problem whose underlying spar-
sity graph G has a relatively small treewidth. The
above penalized convex relaxation generates only
low-rank solutions for an infinite choice of the coeffi-
cients €1, £2 and ¢;;’s. Our simulations on thousands
of power optimization and optimal distributed con-
trol problems suggest that it is possible to generate
a near-global rank-1 solution by meticulously devis-
ing ¢;;’s and tuning the regularization parameters €1
and £, [10, 29, 22, 30, 31].
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1. Boosting Algorithms in Linear

Regression

Boosting [15] [0, O, 16, 12] is an extremely success-
ful and popular supervised learning technique that
combines multiple “weak” learners into a more pow-
erful “committee.” AdaBoost [7 [16] [12], developed
in the context of classification, is one of the earli-
est and most influential boosting algorithms. In our
paper [5], we analyze boosting algorithms in linear
regression [8] [9 [3] from the perspective of modern
first-order methods in convex optimization. This
perspective has two primary upshots: (i) it leads
to first-ever computational guarantees for existing
boosting algorithms, and (%i) it leads to new boost-
ing algorithms with novel connections to the LASSO
[18].
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Notation We use the usual linear regression nota-
tion with model matrix X = [Xy,...,X,] € R"*P,
response vector y € R™ ! and regression coeffi-
cients 8 € RP. Each column of X corresponds to
a particular feature or predictor variable, and each
row corresponds to a particular observed sample.
We assume herein that the features X; have been
centered to have zero mean and unit fo norm, i.e.,
IXill2 = 1 for ¢ = 1,...,p, and y is also cen-
tered to have zero mean. For a regression coeffi-
cient vector (3, the predicted value of the response
is given by X3 and r = y — X3 denotes the resid-
uals. Let e; denote the j*® unit vector in RP and
let ||v[jo denote the number of nonzero coefficients
in the vector v. Denote the empirical least squares
loss function by L,(B) := 5|y — XB|[3, let L} =
mingege Ly (), and let BLS denote an arbitrary min-
imizer of L,(8), i.e., frs € arg mingege Ly, (5). Fi-
nally, let )\pmin(XTX) denote the smallest nonzero
(and hence positive) eigenvalue of XX,

Boosting and Implicit Regularization The
first boosting algorithm we consider is the Incremen-
tal Forward Stagewise algorithm [12] [3] presented
below, which we refer to as FS..

Algorithm: Incremental Forward Stagewise
Regression — FS,

e Fix the learning rate € > 0 and number of iter-
ations M.

e Initialize at 1 =y, 39=0,k=0.
e For 0 < k < M do the following;:
1. Compute: jj € argmax |(#*)TX}]|

je{17"'7p}
2. Bf:l — Afk + ¢ sgn((F)TX;,) and

BEFL B G # i
PR R — e sen((7)TX;, )X, -

At the k' iteration, FS. chooses a column X, , cor-
responding to a particular feature that is the most
correlated (in absolute value) with the current resid-
uals and then updates the corresponding regression
coefficient by an amount € > 0, called the learning
rate (or shrinkage factor).
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A close cousin of F'S; is the least squares boosting
algorithm, or LS-BoosT(¢), proposed in [§]. The
LS-BoosTt(¢e) algorithm is identical to FS. except
that LS-B0o0sT(e) changes the amount by which the
selected coeflicient is updated at each iteration — at
the k' iteration, LS-BoosT(g) updates:

S BE e (PM)TX,) and BT« BE 5 £

PR P — e ((PM)TX,) X,
where now ¢ € (0, 1].

Note that both algorithms often lead to models
with attractive statistical properties [§, 12} 1 2]. In
this linear regression setting, while there may be
several important concerns, it is often of primary
importance to produce a parsimonious model with
good out of sample predictive performance. When
p is small relative to n, minimizing the empirical
least squares loss function L, (8) usually achieves
this goal. On the other hand, when n,p > 0 (and
particularly when p > n), BLS often has poor predic-
tive performance; in other words, BLS overfits the
training data. Additionally BLS is almost always
fully dense. Regularization techniques enable one
to find a model with better predictive performance
by balancing two competing objectives: (i) data fi-
delity, or how well the model fits the training data,
and (%) “shrinkage,” or a measure of model simplic-
ity. Shrinkage is often measured using ||3]| for some
appropriate norm || - ||, whereby a coefficient vector
with a relatively small value of |||l exhibits more
shrinkage. The FS. and LS-Boost(e) algorithms
are effective, even in settings where n,p > 0 and/or
p > n, because they each impart a type of implicit
reqularization by tracing out a path of models with
varying levels of data fidelity and shrinkage.

For both FS. and LS-BoosT(g), the choices of ¢
and M play crucial roles in the statistical behavior of
the algorithm. Let us consider LS-B0oosT(g) alone
for now. Setting € = 1 corresponds to minimizing
the empirical least squares loss function L, () along
the direction of the selected feature, i.e., it holds that
(PTX;, = argming,cg L, (8% +uej, ). Qualitatively
speaking, LS-B0o0sT(¢) does eventually minimize
the empirical least squares loss function as long as
e > 0, but a small value of ¢ (for example, e = 0.001)
slows down the rate of convergence as compared to
the choice ¢ = 1. Thus it may seem counterintu-
itive to set € < 1; however with a small value of ¢ it
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is possible to explore a larger class of models, with
varying degrees of shrinkage. It has been observed
empirically that small values of € often lead to mod-
els with better predictive power [§]. In practice, one
might set ¢ relatively small and use a holdout dataset
to select the best performing model found through-
out the course of the algorithm; in many instances
the selected model is found long before convergence
to the empirical least squares solution. The role of
M and e in FS; is very similar. In short, both M
and e together control the training error (data fi-
delity) and the amount of shrinkage (regularization)
for both LS-Boo0sT(¢) and F'S.. We refer the reader
to Figure [1} depicting the evolution of the algorith-
mic properties of FS. and LS-BoosT(¢) as a func-
tion of M and e.

2. Computational Guarantees for
FS. and LS-Boost(c) Through
the Lens of Subgradient De-
scent

Up until the present work, and as pointed out by [12],
the understanding of how the algorithmic parame-
ters € and M control the tradeoffs between data fi-
delity and shrinkage in FS. and LS-BoosT(¢) has
been rather qualitative. One of the contributions of
the full paper is a precise quantification of this trade-
off, for both FS. and LS-BoosT(¢). Indeed, the pa-
per presents, for the first time, precise descriptions
of how the quantities ¢ and M control the amount
of training error and regularization in FS,; and LS-
BoosTt(g). These precise computational guarantees
are enabled by new connections to first-order meth-
ods in convex optimization. In particular, the paper
presents a new unifying framework for interpreting
FS. and LS-B0oo0sT(¢g) as instances of the subgradi-
ent descent method of convex optimization, applied
to the problem of minimizing the largest correlation
between residuals and predictors.

Boosting as Subgradient Descent Let P :=
{r e R":r =y — Xp for some € RP} denote the
affine space of residuals and consider the following
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convex optimization problem:

o) =
T € Pres

CM: HXTT'Hoo

rnTin )

S.t. ( )
which we dub the “Correlation Minimization” prob-
lem, or CM for short, since f(r) is the largest ab-
solute correlation between the residual vector r and
the predictors. Note an important subtlety in the
CM problem, namely that the optimization variable
in CM is the residual r and not the regression coef-
ficient vector .

The subgradient descent method (see [17], for ex-
ample) is a simple generalization of the method of
gradient descent to the case when f(-) is not differ-
entiable. As applied to the CM problem , the
subgradient descent method has the following up-
date scheme:

Compute a subgradient of f(-) at 7*:
g* e afirt)

Perform update at r*:

Tk+ k

! A HPres(r - akgk)7 (3)
where 0f(r) denotes the set of subgradients of f(-)
at r and Ilp, . denotes the (Euclidean) projection
operator onto Pyes, namely Ilp_ (7) := argmin ||r —
7€ Pres

fug.

The following proposition states that the boosting
algorithms FS, and LS-B00sT(¢) can be viewed as
instantiations of the subgradient descent method to
solve the CM problem .

Proposition 1. Consider the subgradient descent
method (2)—(3)) with step-size sequence {ou,} to solve
the correlation minimization (CM) problem (1)), ini-
tialized at 70 =y. Then:

(i) the FS. algorithm is an instance of subgradient
descent, with a constant step-size oy, = € at
each iteration,

(ii) the LS-B0OST(g) algorithm is an instance of
subgradient descent, with non-uniform step-
sizes oy, = €|ly,| at iteration k, where 4j, =
(fk)TXjk = argmin,, Hf’k - X]k“”%
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Training Error

{1 norm of Coefficients
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p=0.9

log,o(Number of Boosting Iterations)

Figure 1: Evolution of LS-BoosT(e) and FS, versus iterations (in the log-scale), run on a synthetic dataset with

n = 50, p = 500; the features are drawn from a Gaussian distribution with pairwise correlations p. The true 8 has
ten nonzeros with 8; = 1,7 < 10 and SNR = 1. Three different values of p have been considered (p = 0,0.5 and 0.9)
and ¢ varies from € = 107° to € = 1. The top row shows the training errors for different learning rates, and the

bottom row shows the ¢; norm of the coefficients produced by the different algorithms for different learning rates.

(Here the values have all been re-scaled so that the y-axis lies in [0, 1]).

Some Computational Guarantees for FS.
Proposition [1] is interesting especially since FS. and
LS-BoosT(¢g) have been traditionally interpreted as
greedy coordinate descent or steepest descent type
procedures [12] [10]. Furthermore the following theo-
rem presents relevant convergence properties of F'S,,
some of which are direct consequences of Proposi-
tion [I| based on well-known computational guaran-
tees associated with the subgradient descent method
(14l [13].

Theorem 2. (Some Convergence Properties of
FS.) Consider the FS: algorithm with learning rate
€. Let M > 0 be the total number of iterations.
Then there ezists an index i € {0,..., M} for which
the following bounds hold:

(i) (training error):

X513
e(M+1)

+ée

A . p
L,(8")—L; <
(F)—La = 2nApmin (XTX) [

(ii) (¢1-shrinkage of coefficients): ||3Z||1 < Me

(iii) (sparsity of coefficients): ||B'|lo < M .

Theorem [2] gives a flavor of some of the compu-
tational guarantees included in the full paper; the
paper includes additional results regarding conver-
gence of regression coefficients, prediction distances,
and correlation values. Furthermore, the paper also
includes an analogous theorem for LS-BooOsT(¢),
which highlights the differences in convergence pat-
terns between the two algorithms. Theorem 2| (and
related results included in the paper) provides, for
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the first time, a precise theoretical description of the
amount of data fidelity and shrinkage/regularization
imparted by running FS. for a fixed but arbitrary
number of iterations, for any dataset. Moreover,
this result sheds light on the data fidelity wis-a-vis
shrinkage characteristics of FS.. In particular, The-
orem demonstrates explicitly how (bounds on) the
training error and /;-shrinkage depend on the al-
gorithmic parameters ¢ and M, which implies an
explicit tradeoff between data fidelity and shrink-
age that is controlled by these parameters. Indeed,
let TBouND and SBOUND denote the training er-
ror bound and shrinkage bound in parts (i) and (ii)
of Theorem [2] respectively. Then simple manipula-
tion of the arithmetic in these two bounds yields the
following tradeoff equation:

p

TBOUND =
U pmn (XTX)

~ 9 2
X fus +€]

SBOUND + ¢

In the full paper, we extensively discuss the conse-
quences of Theorem [2] and related results in terms of
improved understanding of the behavior of FS, and
LS-Boosrt(e).

3. Boosting and Lasso

As mentioned previously, FS. and LS-B0oosT(¢)
are effective even in high-dimensional settings where
p > n since they implicitly deliver regularized mod-
els. An alternative and very popular approach in
such settings is based on an explicit regularization
scheme, namely ¢1-regularized regression, i.e., LASSO
[18]. The constraint version of LASSO with regular-
ization parameter § > 0 is given by the following
convex quadratic optimization problem:

LAssO @ Li,:= mﬂin s=lly — X813 n
st. Bl <4
Although LLASSO and the previously discussed boost-
ing methods originate from different perspectives,
there are interesting similarities between the two, as
is nicely explored in [12| 3, [11]. Figure 2| (top panel)
shows an example where the LASSO profile/path (the
set of solutions of (4)) as § varies) is similar to the tra-
jectories of FS, and LS-BoosT(¢) (for small values
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of €). Although they are different in general (Fig-
ure [2| bottom panel), [3| [I1] explores the connection
more deeply.

One of the aims of our work is to contribute some
substantial further understanding of the relationship
between LaAsso, FS., and LS-BoosT(¢), particu-
larly for arbitrary datasets where such understand-
ing is still fairly limited. Motivated thusly, we in-
troduce a new boosting algorithm, called R-FS, s
(regularized F'S;), that includes an additional shrink-
age step as compared to F'S.. That is R-FS, 5 first
shrinks all of the coefficients, then adds ¢ to the se-
lected coefficient; R-F'S, 5 replaces Step 2 of F'S. by:

A;?}:Fl — (1A— %) AJ’?k—l—e sgn((fk)TXjk) and B;?H —
R [Sgn((fk)TXjk)Xjk + %(fk - y)]

where ¢ > 0 is an additional algorithmic parameter.
Note that one can easily verify the formula for up-
dating the residuals based on the coefficient update.
Furthermore, R-FS, 5 with 6 = +o0 is exactly FS..

It turns out that R-FS, s is precisely related to the
LAsso problem through duality. Consider the fol-
lowing parametric family of optimization problems
indexed by ¢ € (0, c0]:

RCM; : fs(r) =

r € Pres ,

min IXTrlloo + 251l — ¥ 113

s.t.

(5)

where Pes = {r € R" : r = y — X3 for some f €

RP} and “RCM” connotes Regularized Correlation

Minimization.

In the full paper, we establish the following con-

nections between R-FS. s, the RCM problem, and
the LASSO problem:

1. The RCM problem is equivalent to the dual
problem of the LAsso (4)).

2. R-FS. s is an instance of subgradient descent
applied to the RCM problem .

The R-FS. ;s algorithm is also related to a vari-
ant of the Frank-Wolfe method in convex optimiza-
tion [4], applied directly to LAsso.

Furthermore, we show the following properties of
the new algorithm R-F'S, s:
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Coefficient Profiles: LS-BoosT(¢), FS. and Lasso
Lasso LS-BoosT(g), € = 0.01 FS., e =10—°
3
g
&

Regression Coefficients

¢1 shrinkage of coefficients

£1 shrinkage of coefficients

1 shrinkage of coefficients

Figure 2: Coefficient Profiles for different algorithms as a function of the ¢; norm of the regression coefficients on

two different datasets. The top row corresponds to a dataset where the coefficient profiles look very similar, and

the bottom row corresponds to a dataset where the coefficient profile of LLASSO is seen to be different from FS. and

LS-B0o0sT(¢).

e As the number of iterations become large,
R-FS 5 delivers an approximate LASSO solu-
tion.

e R-FS.; has computational guarantees analo-
gous to Theorem [2] that provide a precise de-
scription of data-fidelity wvis-a-vis ¢1 shrinkage.

e R-FS. ;5 specializes to FS., LS-BoosT(¢) and
the LASSO depending on the parameter value §
and the learning rates (step-sizes) used therein.

e An adaptive version of R-FS, 5, which we call
PATH-R-FS,, is shown to approximate the path
of LASSO solutions with precise bounds that
quantify the approximation error over the path.

e In our computational experiments, we observe
that R-FS.s leads to models with statistical
properties that compare favorably with the
LaAsso and FS.. R-FS.; also leads to models
that are sparser than FS..

In total, we establish that FS., LS-BoosT(¢) and
LASSO can be viewed as special instances of one

“grand” algorithm: the subgradient descent method
applied to the RCM problem .

4. Summary

We analyze boosting algorithms in linear regression
from the perspective modern first-order methods in
convex optimization. We show that classic boost-
ing algorithms in linear regression, FS. and LS-
Boost(g), can be viewed as subgradient descent
to minimize the maximum absolute correlation be-
tween features and residuals. We also propose a
modification of FS, that yields an algorithm for the
LAsso, and that computes the LASSO path. Our
perspective leads to first-ever comprehensive com-
putational guarantees for all of these boosting algo-
rithms, which provide a precise theoretical descrip-
tion of the amount of data-fidelity and regulariza-
tion imparted by running a boosting algorithm with
a pre-specified learning rate for a fixed but arbitrary
number of iterations, for any dataset.
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The IOS 2016 Optimization

Conference: A Whole Lot of
Learning Going on!

Warren B. Powell (conference general chair)
Princeton University

powell@princeton.edu

The 2016 edition of the INFORMS Optimization So-
ciety conference held March 17-19, 2016 at Prince-
ton University was a tremendous success, attracting
over 200 participants attending 52 sessions (which
included 8 tutorial sessions) along with four out-
standing plenaries.

The theme of the conference was “Optimization
and Learning,” and while this attracted considerable
interest from the interface of optimization and ma-
chine learning, the real goal was to focus on learn-
ing new applications and new research challenges,
regardless of the problem domain or research focus.

Arguably the highlight of the conference were the
four outstanding plenary speakers. Richard O’Neill
from the Federal Energy Regulatory Commission
(FERC), with his extensive experience investigat-
ing the interface of optimization and power sys-
tems, gave a lecture that highlighted the many opti-
mization challenges that remain in getting our arms
around a robust grid. These span integer program-
ming problems for deterministic unit commitment
that continue to challenge the limits of the most
powerful commercial packages, stochastic optimiza-
tion problems to handle the growing presence of
renewables, and complex nonlinear models of opti-
mal power flow problems at increasingly fine-grained
time scales.

Professor Han Liu from Princeton University then
gave an exceptionally clear overview of optimization
challenges in machine learning, listing four major
areas: matrix optimization, distributed optimiza-
tion, nonconvex optimization, and big data opti-
mization. These were elegantly illustrated in the
context of non-paranormal and exponential family
graphical models, motivated by applications in ge-
nomics, neuroscience, climate science, and finance.
The growing interest in this area was reflected by 11
separate sessions on machine learning-related topics.
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Russ Tedrake from MIT then followed with an en-
tertaining and informative summary of the optimal
control problems that arise in robotics. He intro-
duced the audience to some cutting-edge research in
robotics, showcasing a trend towards optimization-
based algorithmsfor some fundamental problems of
the field. These include motion planning, collision
avoidance, sensing, safety verification, walking over
rough terrains, and autonomous flying, just to name
a few. The problems introduce challenges in lin-
ear complementarity problems, automatic construc-
tion of Lyapunov functions, and sum of squares and
semidefinite optimization. The growing presence of
robotics is sure to create a source of exciting prob-
lems for optimization.

Peter Frazier from Cornell University closed the
conference with an entertaining lecture on stochastic
optimization problems (in particular, learning prob-
lems) that he has encountered working with Uber
(where he is spending a sabbatical) and Yelp. The
companies offer a range of stochastic optimization
spanning learning how a market will respond to new
websites, to the combined response of drivers and
passengers to surge pricing. Stochastic optimization
introduces issues such as modeling the different types
of uncertainty, in addition to finding effective poli-
cies that reflect the different types of metrics that
arise. 15 separate sessions addressed some form of
optimization under uncertainty.

These talks alone contained enough research top-
ics to keep an entire team of researchers busy for
a lifetime! But these were just the highlights. The
conference featured a series of nine well-attended tu-
torials:

e Machine Learning in Policy Search, by Haitham
Bou Ammar and Jose Marcio Luna

e Optimization over Nonnegative Polynomials:
Algorithms and Applications, by Amir Ali Ah-
madi

e The Lasserre hierarchy for polynomial optimiza-
tion, by Etienne de Klerk

e Applications of machine learning and optimiza-
tion in online revenue management, by David
Simchi-Levi

e Multilevel/multistage discrete
problems, by Ted Ralphs

optimization
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e Nonlinear programming challenges in the opti-
mal power flow problem, by Javad Lavaei

e Robust Optimization methods in Stochastic
Analysis, by Chaitanya Bandi

e Online Convex Optimization, by Elad Hazan

e Optimization with equilibrium constraints, by
Uday Shanbhag

Each tutorial was given a double time-slot, and then
accompanied with closely related talks to build on
the area.

While the plenaries and tutorials helped to high-
light exciting research challenges and problem do-
mains, the real strength of the conference came from
the consistently high quality of talks spread over the
44 remaining sessions. There were complete tracks
on optimization problems in machine learning, and
stochastic and robust optimization (including a ses-
sion on stochastic optimization in learning), with
two additional sessions in parallel tracks on optimal
learning and low-rank approximations in approxi-
mate dynamic programming. Sessions dedicated to
both convex and nonconvex optimization (including
convex relaxations of nonconvex problems) were ev-
idence of the continued interest in these areas. Inte-
ger programming and multilevel optimization were
also represented, along with application sessions in
logistics, finance, and energy.

If there was a consistent theme throughout the
talks, it was the interdisciplinary nature of the work:
optimization in machine learning, machine learn-
ing in stochastic optimization, convex optimization
for nonconvex problems, integer programming for
stochastic optimization, stochastic programming in
statistics (I am sure I have missed a few). Further,
while most of the work in “optimization” would be
properly classified as a form of traditional mathe-
matical programming, topics such as optimal learn-
ing and dynamic programming (which often address
problems with discrete actions) address optimization
problems that are more familiar in probability and
simulation.

The traditional barriers between fields have fallen,
which emphasizes the need for students to get
broad, interdisciplinary educations that span statis-
tics/machine learning, probability /stochastic mod-
eling, and optimization.

37

A word cloud image formed from the titles of all
the talks provides an indication of the range of top-
ics.

While most of the credit for the success of the con-
ference is due to the exceptional content provided by
the attendees, special thanks are due to the local pro-
gram committee (Amir Ali Ahmadi, Mengdi Wang,
Jonathan Eckstein, and Andrzej Ruszczynski), the
INFORMS office (Paulette Bronis and Ellen Tra-
longo), Princeton’s office of Conference and Event
Services (Tara Zarillo), and a team of 15 graduate
students from Princeton who manned the registra-
tion desk and provided a variety of support services.

The conference was not all work. Tours of the his-
torical university campus were conducted after ses-
sions on Thursday. This led to a wine and cheese
party Thursday evening in the elegant Chancellor
Green Hall that featured jazz music from our own
Jonathan Eckstein and Carlos Oliveira. A nice ban-
quet dinner on Friday provided a setting for more
conversation. And as far as I could tell, we met the
most important goal of the conference: flow in =
flow out!
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Nominations for Society
Prizes Sought

The Society awards four prizes annually at the IN-
FORMS annual meeting. We seek nominations (in-
cluding self-nominations) for each of them, due by
July 15, 2016. Details for each of the prizes, includ-
ing eligibility rules and past winners, can be found
by following the links from http://www.informs.
org/Community/Optimization-Society/Prizes.

Each of the four awards includes a cash amount of
US$1,000 and a citation plaque. The award winners
will be invited to give a presentation in a special ses-
sion sponsored by the Optimization Society during
the INFORMS annual meeting in Nashville, TN in
November 2016 (the winners will be responsible for
their own travel expenses to the meeting). Award
winners are also asked to contribute an article about
their award-winning work to the annual Optimiza-
tion Society newsletter.

Nominations, applications, and inquiries for each
of the prizes should be made via email to the corre-
sponding prize committee chair.

The Khachiyan Prize is awarded for outstand-
ing lifetime contributions to the field of optimization
by an individual or team. The topic of the con-
tribution must belong to the field of optimization
in its broadest sense. Recipients of the INFORMS
John von Neumann Theory Prize or the MPS/SIAM
Dantzig Prize in prior years are not eligible for the
Khachiyan Prize. The prize committee for this year’s
Khachiyan Prize is as follows:

e Tamds Terlaky (Chair)
terlaky@lehigh.edu

e Philip Gill

e Dorit Hochbaum

e Werner Romisch

The Farkas Prize is awarded for outstanding con-
tributions by a mid-career researcher to the field of
optimization, over the course of their career. Such
contributions could include papers (published or
submitted and accepted), books, monographs, and
software. The awardee will be within 25 years of
their terminal degree as of January 1 of the year of
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the award. The prize may be awarded at most once
in their lifetime to any person. The prize committee
for this year’s Farkas Prize is as follows:

e Ariela Sofer (Chair)
asofer@gmu.edu

e Ignacio Grossmann

e Ted Ralphs

e Alex Shapiro

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization. The paper must be pub-
lished in, or submitted to and accepted by, a refereed
professional journal within the four calendar years
preceding the year of the award. All authors must
have been awarded their terminal degree within eight
calendar years preceding the year of award. The
prize committee for this year’s Prize for Young Re-
searchers is as follows:

e Sam Burer (Chair)
samuel-burer@Quiowa.edu

e Jon Lee

e Andrew Schaefer

e Cole Smith

The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received or pub-
lished in a refereed professional journal within three
calendar years preceding the year of the award. Ev-
ery nominee/applicant must be a student on the first
of January of the year of the award. All coauthor(s)
not nominated for the award must send a letter indi-
cating that the majority of the nominated work was
performed by the nominee(s). The prize committee
for this year’s Student Paper Prize is as follows:

e James Luedtke (Chair)
jrluedt1@wisc.edu

¢ Giizin Bayraksan

e Shigian Ma

e Mohit Tawarmalani
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Nominations of Candidates
for Society Officers Sought

We would like to thank three Society Vice-Chairs
who will be completing their two-year terms at
the conclusion of the INFORMS 2016 annual meet-
ing: Aida Khajavirad, Daniel Robinson, and Warren
Powell.

We are currently seeking nominations of candi-
dates for the following positions:

e Vice-Chair for Global Optimization
e Vice-Chair for Nonlinear Optimization
e Vice-Chair for Optimization Under Uncertainty

Self-nominations for all of these positions are encour-
aged.

Vice-Chairs serve a two-year term. According to
Society Bylaws, “The main responsibility of the Vice
Chairs will be to help INFORMS Local Organiz-
ing committees identify cluster chairs and/or session
chairs for the annual meetings. In general, the Vice
Chairs shall serve as the point of contact with their
sub-disciplines.”

Please send your nominations or self-nominations
to Burcu Keskin (bkeskin@cba.ua.edu), including
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contact information for the nominee, by June 30,
2016. Online elections will begin in mid-August,
with new officers taking up their duties at the
conclusion of the 2016 INFORMS annual meeting.

Seeking a Host for the 2018
INFORMS Optimization
Society Conference

The INFORMS Optimization Society Conference
is held in the early part of the even years, often in
a warm, or otherwise attractive, location. The most
recent OS conference, held in 2016 at Princeton Uni-
versity, was a great success, offering an opportunity
for researchers studying optimization-related topics
(See the
short report on the conference by its General Chair,
Warren Powell, earlier in this issue.) The Optimiza-
tion Society is currently seeking candidate locations
to host the 2018 conference. If you are interested
in helping to host the conference, please contact
the current Optimization Society chair, Suvrajeet
Sen (sen@datadrivendecisions.org), or the chair-elect
David Morton (david.morton@northwestern.edu).

to share their work in a focused venue.
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