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Chair’s Column
Sanjay Mehrotra
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(mehrotra@iems.northwestern.edu)

It is heartening to see that despite its long
history, optimization as an area is continuing to
grow methodologically as well as in its applications.
Whether it is saving lives, management of natural
energy sources, designing better materials, improv-
ing return on investments, or machine learning with
large datasets - optimization applications are every-
where - fueling the need to grow the field towards
developing more realistic models, as well as faster
algorithms and their implementations.

The present issue of the INFORMS Optimiza-
tion Society newsletter, “INFORMS OS Today,” fea-
tures articles by the 2012 OS prize winners: András
Prékopa (Khachiyan Prize for Lifetime Accomplish-
ments in Optimization), Michel X. Goemans (Farkas
Prize for Mid-career Researchers), Sergei Chubanov
(Prize for Young Researchers), and Diego A. Morán
R. (Student Paper Prize). These articles summarize
their motivation of working on optimization prob-
lems, and the prize winning works. In his arti-
cle “Bridging the Gap between Theory and Appli-
cations,” András Prékopa takes us through his life
journey and key problems motivating his work in
stochastic and probabilistic constrained optimiza-
tion. In a similar spirit Michel Goemans’s arti-
cle “My Path through Combinatorial Optimization”
takes us through his work in combinatorial opti-
mization, approximation algorithms and the max-
cut problem. Sergei Chubanov summarizes his very
interesting work on linear programming, presenting
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new polynomial complexity algorithms motivated
from Pythagorean theorem and the relaxation meth-
ods of Agmon, and Motzkin and Schoenberg. Fi-
nally, the article by Diego Morán describes his strong
duality results for Conic Mixed-Integer Programs.

In this issue, we also have announcements of key
OS activities: calls for nominations for the 2013 OS
prizes, a call for nominations of candidates for OS of-
ficers, and a call for hosting the OS 2014 Conference.
The previous four conferences have had a diverse
set of themes: “Optimization and HealthCare” (San
Antonio, 2006); “Theory, Computation and Emerg-
ing Applications” (Atlanta, 2008); “Energy, Sustain-
ability and Climate Change,” (Gainesville, 2012);
and “Optimization and Analytics” (Coral Gables,
2012). Please consider being active in the nomina-
tion process, as well as hosting the 2014 OS confer-
ence.

Optimization Society has traditionally had a very
strong organized presence at the annual INFORMS
meetings, the next one being at the Minneapolis
Convention Center and Hilton Minneapolis on Oc-
tober 6-9, 2013. Our participation is organized via
the OS sponsored clusters, which are organized by
our Vice Chairs:

Brian Borchers, Computational Optimization
and Software (borchers@nmt.edu)

Leo Liberti, Global Optimization
(leoliberti@gmail.com)

Santanu S. Dey, Integer Programming
(santanu.dey@isye.gatech.edu)

Mohammad Oskoorouchi, Linear Programming
and Complementarity (moskooro@csusm.edu)

Baski Balasundaram, Networks
(baski@okstate.edu)

Andreas Wachter, Nonlinear Programming
(andreas.waechter@northwestern.edu)

Andrew Schaefer, Stochastic Programming
(schaefer@engr.pitt.edu)

Our very strong presence within INFORMS is due
to the hard work of our vice-chairs, and it reflects
the very large membership of the OS. Please con-
tact appropriate Vice Chairs to get involved. I want

to remind you that Pietro Belotti continues to be
the OS webmaster, and he is always pleased to get
your feedback on our website: www.informs.org/

Community/Optimization-Society.

I look forward to seeing you at Minneapolis in Oc-
tober, in particular, at the OS Prize Session, and
the OS Business Meeting. The latter is always one
of the highlights of an INFORMS meeting to have
some refreshments, meet with old friends and make
new ones.

Bridging the Gap between
Theory and Applications

András Prékopa
Rutgers Center of Operations Research, Rutgers University

(prekopa@rutcor.rutgers.edu)

First I would like to express my thanks to
the Committee: Kurt Anstreicher (Chair), Egon
Balas, Claude Lemaréchal, Éva Tardos, for award-
ing me the 2012 INFORMS Optimization Society
Khachiyan Prize. This paper summarizes my most
important results in optimization.

I was born in Nýıregyháza, Hungary, and grad-
uated from high school in the same town. After
graduation in 1947 I joined the nearby University of
Debrecen. During my university years a young pro-
fessor of mathematics was appointed: Alfréd Rényi.
He brought fresh air, introduced us to modern prob-
ability theory and emphasized the importance of ap-
plications. He impressed me a great deal and after
he became the director of the Institute for Applied
Mathematics of the Hungarian Academy of Sciences
(H.A.S.) in Budapest, he took me there and I be-
came his Ph.D. student. That status was called as-
pirant and meant independent study with the su-
pervisor for three years. The degree received after
the defense of a thesis was called candidate of math-
ematical (or other) sciences. I received it in 1956
from L. Eötvös University of Budapest. Ph.D. did
not exist for a few years but it was reestablished
after 1956, and those who became candidates ear-
lier, received Ph.D. automatically. I received it from
the University of Budapest, in 1960. My thesis was
about stochastic set functions, random measures in
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abstract spaces. I proved extension theorems from
algebra to σ-algebra and defined Poisson, Gaussian
and more general random measures.

1. OR in Hungary and my life

I received the prestigious Grünwald prize for my the-
sis in 1956 and after the defense became assistant
professor at the L. Eötvös University of Budapest. I
kept my connection to the (at that time already re-
named) Mathematical Institute of the H.A.S., where,
in 1957, I started a seminar on Operations Research.
The book by Charnes, Cooper, Henderson, Linear
Programming [4] could be found in the library of
the Institute. I was fascinated by the possibility to
describe industrial and other social activities by con-
vex polyhedra in multidimensional spaces and solve
extremum problems by exact finite methods. I spent
a lot of time making the subject attractive for stu-
dents in mathematics and in the academic year 1958-
59 gave my first course on Game Theory and Lin-
ear Programming that I repeated in the subsequent
years. A few years later I published a book on the
subject [13].

In 1959 I founded the first scientific research group
on OR in Hungary at the Mathematical Institute of
the H.A.S. under the name: Applications of Math-
ematics to Economics and became the head of it in
part time. One of my successes was the organization
of the 1963 international conference in Budapest en-
titled: Applications of Mathematics in Economics.

There is a Hungarian saying: if somebody says A,
he has to say B, too. For operations research, for

Egon Balas, András Prékopa and Jon Lee

me it meant: if somebody decided to do it, he has
to accept what that science is all about and do all
of its activities: mathematics, applications, comput-
ing. The problem in Hungary was, however, that
it was the mathematical life, where I could hope to
realize my dreams but the mathematicians were not
receptive enough. It is a long story how I did it, with
my students and colleagues, but my school became
the leading OR force in Hungary and its members
were and are primarily mathematicians. I created
an OR master curriculum at the University of Bu-
dapest in 1968, a Committee on OR in the Depart-
ment of Mathematics of the H.A.S, organized several
international and domestic conferences, and super-
vised a large number of Ph.D. students. The number
of those who successfully defended thesis under my
supervision is 54, as of today, and 5 are currently
working. Among those are 16 RUTCOR students.

In Hungary I was teaching at the L. Eötvös Uni-
versity of Budapest (1956-1968, 1983-1985) and the
Technical University of Budapest (1968-1983) and
had part time jobs at the Mathematical Institute
of the H.A.S. (1959-1970), the Computing Center
and the Computing and Automation Institute of the
H.A.S (1970-1985). In 1985 I accepted the invita-
tion to join RUTCOR, and have spent almost twenty
eight fruitful years there, the longest time I have
spent at any university.

During this time I published my book on Stochas-
tic Programming [23] and received important dis-
tinctions: Széchenyi Prize from the Hungarian Gov-
ernment (1996), Gold Medal of the European Oper-
ational Research Societies (2003), Khachiyan Prize
(2012).

2. The Hungarian Inventory con-
trol model

In 1962 the president of the National Planning Board
asked my OR Group to look at the inventory control
problems of the Hungarian enterprises and factories.
They followed a rule to proportionally increase the
inventories with the increase of production. Huge
inventories accumulated nationwide and our job was
to introduce new, more practical rules.

I personally took the job and worked on it with
my colleague Margit Ziermann and two outside
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economists. The main problem was the randomness
in delivery times and amounts of basic materials and
semi-final products: the contracts between parties
fixed the times and amounts for periods, e.g., quar-
ters of years and the material supply departments
tended to balance randomness by large initial safety
stocks. There were no models suitable for applica-
tions in the already existing inventory control liter-
ature. The problem could be formulated (separately
for each material) as: find the smallest initial inven-
tory level that ensures continuous utilization by a
probability at least 1 − ε, where ε is prescribed and
small. After several months of study the situation
we started to apply order statistical formulas (for a
summary, see [24]) that I subsequently generalized
using deep measure theoretical tools. At that time
we always came up with formulas for the initial in-
ventory, corresponding to prescribed safety level.

The models were introduced nationwide and those
were practically the only inventory control models
applied in Hungary for more than twenty-five years.
Right at the introduction of the models the savings
amounted to an equivalent of today’s four billion dol-
lars. The overall savings in the course of the subse-
quent years cannot be assessed but our solution of
the real life problem created recognition for opera-
tions research.

Later on several related optimization models have
been formulated, suitable for application in cases of
more general delivery and utilization processes. The
first one in this respect was Prékopa, Kelle [27].

3. Programming under proba-
bilistic constraint

Charnes, Cooper, Symonds [5] published a paper,
where they solved an oil heating problem and in-
troduced the idea: to impose a lower bound on the
probability that a stochastic constraint should hold.
Subsequently, Charnes, Cooper published other pa-
pers in which they formulated their decision princi-
ple and came up with some theory. Stochastic pro-
gramming started by the works of Dantzig [6], Beale
[1] and the mentioned paper [5]. Coming to OR from
probability theory, I was dissatisfied with the for-
mulation in [5]. The probability bounds were used
individually for each stochastic constraint, neglect-

ing the stochastic dependence between the random
variables. Sometimes the individual “chance con-
straints” were even meaningless as I demonstrated
it in network examples, where stochastic constraints
jointly ensure reliability of the system. I formulated
the problem with joint probabilistic constraint, as I
called it. My first report on it was presented at the
Princeton Symposium on Mathematical Program-
ming in 1967 and appeared in its proceedings [14].
The new model, however, created hard convexity and
computational problems. I knew from reliability the-
ory and other earlier literature, that the logconcav-
ity of univariate probability densities carries over to
distribution functions, so I tried to prove its multi-
variate counterpart. What I ultimately proved was
more than that. I introduced the concept of log-
arithmically concave (logconcave) measure (if A,B
are convex subsets of Rn and 0 < λ < 1, then
P (λA + (1 − λ)B) ≥ P λ(A)P 1−λ(B) and proved
that if a probability measure P is generated by a
logconcave density then P is logconcave [15]). I also
proved that if a function of two sets of variables is
logconcave, and is integrated with respect to one of
the variable set, then the resulting function is log-
concave in the other variable set [17]. These results
were proved in the stochastic programming frame-
work but are also celebrated in statistics, physics,
convex geometry, economics, military science, soci-
ology, etc. My first more detailed publication on
probabilistic constraints are [14, 16, 30]. In [16] I in-
troduced constraints of conditional expectation type,
as well.

Abe Charnes was impressed by my works and
nominated me foreign corresponding member of the
National Academy of Engineering of Mexico. When
he informed me about his action he wrote in his let-
ter:“To set the nomination into perspective I am also
nominating Leonid Kantorovich a foreign member”.
I received the honor in 1977. Kantorovich was not
granted exit visa, could not come to the ceremony in
Mexico. Two years later I became a corresponding
member and in 1985 a full member of the Hungarian
Academy of Sciences.

Subsequently, I formulated and solved, together
with my students, several real life practical prob-
lems, where programming under probabilistic con-
straint was applied: five-year plan of the Hungarian
power industry; flood control reservoir system de-
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sign; inventory control; optimal water level regula-
tion of Lake Balaton, etc [26, 27, 29, 30]. We have
used multivariate normal, gamma and Dirichlet dis-
tributions.

Programming under probabilistic constraint with
multivariate continuous distributions, however, has
not become as popular as it deserves. In 1990 I
started to use multivariate discrete distributions,
introduced the concept of p-Level Efficient Point
(pLEP), or p-efficient point [22], and the proba-
bilistic constrained literature suddenly multiplied.
My further papers in this respect were: Prékopa,
Vizvári, Badics [33], where algorithmic generation of
the p-efficient points and solutions of the probabilis-
tic constrained problems with discrete random vari-
ables are given; Dentcheva, Prékopa, Ruszczyński
(DPR) [8], where we present another solution to the
problem in such a way that the p-efficient points
are simultaneously generated with the algorithm. In
the paper [25] I combine the supporting hyperplane
method of Veinott and Szántai [34] with the DPR
algorithm and solve efficiently the continuous vari-
able problem. To find a new p-efficient point DPR
propose the use of the knapsack problem. In a re-
cent paper Prékopa, Unuvar [32] solve a probabilistic
constrained network design problem, where the DPR
algorithm is applied but the knapsack problem is
solved in a special way for a random demand vector
with independent components with discrete, logcon-
cave marginal distributions. The above-mentioned
algorithms work efficiently.

Probabilistic constraints can play an important
role in dynamic problems too, one early network
planning model of mine [18] shows the way. The
difficulty is not that much in the numerical solution
(even though it needs special effort) but in the sta-
tistical side of the application: we need satisfactory
approximations to the conditional joint probability
distributions of the future random variables, given
past, present and future values of others.

4. Approximation of probabilities
by linear programming

One of the important problems in programming un-
der probabilistic constraint is the calculation of the
values of multivariate c.d.f.’s and their gradients.

Fortunately, the gradients of quite a few c.d.f.’s can
be obtained by the same method (subroutine) that
calculates the distribution function values. So, I had
in mind to use methods that provide us with sharp
lower and upper bounds, close to each other, that
serve as approximations to probabilities of Boolean
function of events.

The probability to approximate was intersection
of events, which can be calculated by the use of
the probability of the union of the complementary
events. I knew the results by Dawson and Sankoff
[7] and others for bounding the probability of the
union, using some of the Si, i = 1, . . . , n from the
inclusion-exclusion formula. The latter cannot be
used if n is large because only a few low subscripted
Si can be calculated. The existing formulas did
not provide me with close bounds, so I turned to
a classical formula that established a linear relation-
ship between the Si, i = 1, . . . , n and the proba-
bilities of occurrences of the n events. Taking the
first few equations with S1, . . . , Sm(m � n) on the
right hand side and using the probability that at
least one event occurs, as objective function, to be
both minimized and maximized, I succeeded to ob-
tain a method based on linear programming to do
the job. I proved that the problem is totally pos-
itive meaning that the determinants of all m × m
submatrices of the matrix of equality constraints are
positive and so are all (m + 1)× (m + 1) submatri-
ces of the former one, supplemented by the coeffi-
cients of the objective function on top of it. This
allowed me to present an elegant characterization
of the dual feasible bases and to use it in a spe-
cialization of Lemke’s dual algorithm, to solve the
problem. In my algorithm, however, numerical work
is required only to find the outgoing vector but the
pricing in step is simple, we only have to restore the
dual feasible structure of the basis for which there
is always only one possibility. In addition to the al-
gorithmic solution to the LP, closed form formulas
are easy to obtain, using only S1, S2, S3, S4. With
these I discovered that the sharp (sometimes called
Bonferroni-type) inequalities are optimum values of
discrete moment problems [21]. Earlier inequalities
of this type are either special cases of the new ones
or are not sharp.

The method of linear programming has already
been used by Kwerel [11] but only to obtain bounds
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for the union using S1, S2, S3.

Later I extended my research to obtain bounds for
expectations and probabilities of other Boolean func-
tions of events [21], introduced multivariate discrete
moment problems and obtained bounds for probabil-
ities and expectations. Another way to look at prob-
ability bounding is the use of the Boolean scheme [9],
where the joint probabilities of the events are used
individually, not only in sums of them as it is the
case in Si, i = 1, . . . , n. The Boolean scheme is a
disaggregated problem, as compared to the binomial
moment problem, so the bounds with it are better.
However, only partial results are known regarding
the characterization of the dual feasible bases while
full description exists in the other one. Some of my
results concern the Boolean scheme (see, e.g., [3]).

It is interesting to remark that probability bounds
can be used to solve deterministic problems. Boros
and Prékopa [2] presented efficient solution for the
satisfiability problem by randomizing the Boolean
variables and using binomial moment upper bounds
to obtain the result.

Discrete moment problems have become impor-
tant tools in telecommunication, transportation and
other network reliability calculation, and are also
used in PERT, insurance, finance, numerical analy-
sis, and other problems. Some of my current projects
include joint works with my students: Jinwook Lee,
Mariya Naumova, Anh Ninh and Kunikazu Yoda.

5. Applications

I carried out many applications of various types.
They belong to one of the following groups: In-
ventory control, production, manufacturing; water
resources; power systems; telecommunication and
transportation; economics and finance; natural sci-
ences, medicine and nutrition. Below I briefly de-
scribe some of my applied works, not mentioned in
former parts of the paper.

Solution of a problem in connection with fiber
glass manufacturing. The problem was to set up
the manufacturing goals for the production, where
the yields and the demands are random. Published
with my former student M. Murr [12].

Reliability calculation of interconnected co-
operating power systems. A general methodol-
ogy, based on network analysis and bounding by the

use of the binomial moment problem, was worked
out by A. Prékopa and E. Boros. It was used with
real life data for the calculation of the reliability of
a Northern Ohio-Pennsylvania interconnected power
system. The work was done by S.L. Fanelli under my
leadership (Master Thesis, S. L. Fanelly, RUTCOR,
2012).

Optimal short term scheduling of the power
generation with thermal power plants. The
work was done in Hungary between 1975-1985 for
the Hungarian power system but the model is for-
mulated in general terms and applicable elsewhere,
too. The main novelties of the model are: 1. It
is not simplified, the physics of the AC system is
fully used. 2. The unit commitment and the power
transportation problems are put together in a large
scale optimization problem, with complex, continu-
ous and partly 0 − 1 variables. 3. The problem is
of Benders decomposition type and was solved by
Benders decomposition and heuristics. Nonconvex,
nonconcave, nonlinear constraints are also present in
the problem. The developed code solved the nation-
wide problem in two minutes, allowing for efficient
dispatch in case of the occurrence of an unforseen
event. The 150 page report is available in English
and soon will be submitted for publication in book
form [28].

Five-year plan of the Hungarian power indus-
try. The extensive industrial development in the
country around 1970, called for a planning model
in the power industry: how much to invest into the
different types of power plants, how much change
in the use of different fuel types is needed, taking
into account the import, export possibilities and re-
quirements in the course of a period of five years,
to be able to supply the demands at minimum cost
and large reliability. The import-export variables
were assumed to be random with joint normal dis-
tribution. It has four components and its param-
eters were estimated from past history. A proba-
bilistic constrained model, termed STABIL, was for-
mulated with more than one hundred deterministic
constraints and about fifty variables. At the be-
ginning of the 1970s it was a computationally com-
plex problem especially because of the presence of a
probabilistic constraint involving multivariate nor-
mal distribution. We were the first to numerically
solve problems of this kind. The results were very



Volume 3 Number 1 March 2013 7

interesting. When we solved the problem, where we
replaced the random variables with their expecta-
tions and then plugged in the optimal solution into
the constraining function, the joint probability of the
four stochastic constraints, turned out to be 0.1. On
the other hand, the optimal objective function value
was not much larger when we imposed a probabilis-
tic constraint with lower bound p = 0.9. Thus, for a
relatively small additional cost high reliability could
be ensured. However, the optimal solution was dif-
ferent, significant changes could be observed in the
various types of power plants [26].

Exact analytic solution for the dynamic pro-
gramming model of the value of the Bermu-
dan and American options. I derived compli-
cated analytic formulas and my former student and
colleague, T. Szántai supplied the calculation of the
multivariate c.d.f. values along with the other nu-
merical works. We carried out extensive calculation,
presented a large number of numerical examples and
concluded that the binomial tree and some similar
methods, widely used in practice, overestimate the
value of the American options. We received imme-
diate reaction from specialists of the field but then
explained that the binomial (or even the multino-
mial) tree method essentially uses the upper bound,
at each step, in Jensen’s inequality [31].

A model in behavioral science. Together with
my former Ph.D. student, Mária Kopp (later profes-
sor and director of the Institute of Behavioral Sci-
ence of the Semmelweis University of Medicine in
Budapest), I created a game theoretical model for
human behavior. Kopp wanted to learn statistics
and game theory, that was her motivation to be-
come my student. We came up with a novel princi-
ple: human beings want to minimize the loss of com-
petence under changing circumstances surrounding
them. The principle was also supported by Bayesian
type statistical decision theoretical model but per-
haps not enough convincing because the English ver-
sion of the paper was not accepted for publication.
Ten years later, however, the famous American psy-
chologist Albert Bandura presented about the same
principle under the name: self-efficacy, in an interna-
tional journal. Our paper appeared in a Hungarian
medical journal [10].

6. History of optimization

One of my discoveries in the history of mathematics
concerns the history of optimization theory. Kuhn,
Tucker (1951) proved a fundamental theorem in non-
linear programming in which there is a necessary
condition for optimality of a multivariate function
subject to inequality constraints. In addition to
the assumptions on differentiability of the objective
and constraining functions, they needed a regular-
ity condition, called constraint qualification, for the
proof. Later on it turned out that in a master thesis
Karush, in 1939 at the University of Chicago, ob-
tained essentially the same result. Today the theo-
rem is called Karush, Kuhn, Tucker (KKT) theorem.

Farkas was Hungarian, professor of theoretical
physics at the University of Kolozsvár (now Cluj-
Napoca) in Transylvania (part of Hungary at that
time) and a member of the H.A.S. I discovered that
Farkas needed his inequality theorem for the same
purpose as Kuhn and Tucker did. Farkas was work-
ing on the problem of mechanical equilibrium but
unlike Lagrange (who had equality constraints) he
had inequality constraints on the system. In case of a
system of conservative forces potential exists and if it
takes its minimum, then the system is in equilibrium.
The nonlinear programming problem was a special
case of Farkas’ problem and here is why Farkas cre-
ated the theory of linear inequalities: to prove the
necessary conditions for equilibrium. Farkas’ work
was done in the framework of analytical mechan-
ics, and, failed to include constraint qualification, his
proof is incomplete from the mathematical point of
view (so is, however, Lagrange’s proof for the case of
equality constraints). My paper on the development
of optimization theory appeared in English [19].
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[31] A. Prékopa, T. Szántai. On the analytical–numerical
valuation of the Bermudan and American options.
Quantitative Finance, 10:59–74, 2010.
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My Path through
Combinatorial Optimization

Michel X. Goemans
Massachusetts Institute of Technology

(goemans@math.mit.edu)

It is a great honor to be the recipient of the 2012
Farkas prize for mid-career researchers in optimiza-
tion. I am very thankful to whoever nominated
me for this prize, and I am especially grateful to
the committee who selected me. The committee
was chaired by David Shmoys and included Monique
Laurent, Laurence Wolsey and Yinyu Ye. Thank
you, Monique, David, Laurence and Yinyu. I should
emphasize that the great body of work by the mem-
bers of this committee has shaped my view of opti-
mization and has had a big influence on my own
research. With another composition of the prize
committee, I would never have received this prize!
In this article, I decided to make a few (boring, I
am afraid) remarks regarding how I started working
on the traveling salesman problem and semidefinite
programming. For those who nevertheless decide to
continue reading, take a glass of wine (or a Belgian
beer) and relax.

First, how did I get interested in optimization, and
especially combinatorial optimization? Well, since
an early age, I have always enjoyed mathematics,

its rigor and its beauty. It was rather obvious this
was my main (and only?) strength. After finish-
ing high school, I started an engineering degree at
UCL (in Louvain-La-Neuve, Belgium) as this was
the typical path for mathematically inclined youth in
Belgium; for example, my Belgian teammates at the
Intermational Math Olympiads all went to Engineer-
ing school. As an undergrad, I majored in applied
mathematics and I got hooked on combinatorial op-
timization thanks to one person, Laurence Wolsey,
with whom I took two classes. I hope he won’t read
this article, as he is so modest and does not like to be
placed in the spotlight, but let me nevertheless take
this opportunity to celebrate (take a sip!) his very
well-deserved 2012 Dantzig prize (awarded for “orig-
inal research, which by its originality, breadth, and
scope is having a major impact on the field of mathe-
matical optimization”) and 2012 John von Neumann
Theory Prize (awarded for “fundamental, sustained
contributions to theory in operations research and
management sciences”). Laurence also was the one
who suggested I do my Ph.D. in the US.

What I find particularly appealing to combinato-
rial optimization is that it is a discipline with numer-
ous, important, industrial applications, but also with
two faces: A beautiful, reasonably well-understood
mathematical foundation of ‘easy’, tractable prob-
lems, and a vast array of open mathematical ques-
tions and computational challenges for the hard, in-
tractable problems.

I can still visualize the lecture in which Laurence
described Christofides’ algorithm for the symmetric
traveling salesman problem (STSP). He mentioned
that a major open problem was to find an algo-
rithm for STSP that improves upon Christofides’ al-
gorithm in the worst-case. I stopped listening, and
for the rest of the lecture, tried a few, naive ideas.
And, now, more than 25 years later, I am still try-
ing to obtain such an improved approximation algo-
rithm for the STSP but, hopefully, with a (slightly)
deeper understanding of the problem... My inter-
est in the approximability of the TSP also got re-
inforced by David Shmoys, who was on the faculty
at MIT during my graduate studies there. Unfortu-
nately, I was too shy and not confident enough in my
abilities to work under his supervision. But David
also mentioned to me the conjectured worst-case be-
havior of the Held-Karp lower bound for STSP ob-
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tained by optimizing over the subtour polytope. In
a 1980 paper, Wolsey [17] had proved that the cost
of the optimum tour (or even Christofides’ tour) is
never greater than 3/2 times the Held-Karp lower
bound, but it is widely believed that the worst-case
gap should give a factor of 4/3 (although the 3/2
bound is tight for Christofides’ algorithm). Over the
last 25 years, this open question has somehow mo-
tivated several results of mine, including (i) work
on the probabilistic analysis [9] of the Held-Karp
lower bound (when points are independently and
uniformly generated in the unit square), (ii) a frame-
work for assessing the strength of cutting planes for
combinatorial optimization problems [12] and illus-
trated on the STSP, (iii) an approximate algorithm
for the minimum spanning tree problem under de-
gree restrictions [8], (iv) a construction for instances
of the Asymmetric TSP (ATSP) achieving an inte-
grality gap arbitrarily close to 2 for the asymmetric
version of the Held-Karp lower bound [4], and (v)
a better than logarithmic approximation algorithm
for ATSP [3].

Let me briefly discuss two of these TSP-related
results. In [12], I have shown that the addition to
the subtour polytope of essentially all well-known
classes of valid inequalities for the TSP (including
clique tree and path configuration inequalities) will
not increase its optimum value by more than a fac-
tor of 4/3. This provides some support to the con-
jectured integrality gap of 4/3 for the subtour relax-
ation. The proof idea is elementary, but does not ap-
ply immediately to implicitly defined families of valid
inequalities, such as the widely successful local cuts

Michel X. Goemans and Jon Lee

of Applegate et al. [2]. Among these TSP-related re-
sults, my favorite one is about minimum cost span-
ning trees under degree restrictions [8]. Held and
Karp, in their landmark paper [13] on the traveling
salesman problem, have shown that any solution to
the subtour polytope can be viewed as a convex com-
bination of 1-trees, i.e. a spanning tree on V \{1} to-
gether with two edges incident to vertex 1. In 1991,
while studying the worst-case integrality gap of the
subtour relaxation, I conjectured that one could re-
strict to 1-trees having maximum degree 3 in the
convex combination. This naturally lead to investi-
gating minimum cost spanning trees under the ad-
ditional constraints that every vertex has degree at
most k. Note that even deciding if a spanning tree of
maximum degree at most k exists in a given graph is
NP-hard. At the time, I was able to solve an approx-
imate version without costs, and derive an algorithm
that either constructs a spanning tree of maximum
degree at most k + 1 or obtain a certificate that no
spanning tree of maximum degree k exists. The al-
gorithm was reminiscent of Edmonds’ algorithm for
matroid intersection, but I did not publish it then as
I was convinced that a similar result was possible for
the problem with costs. As it happens, Fürer and
Raghavachari [7] independently found a different al-
gorithm for the version without costs. But, 15 years
later, I was quite happy to be able to tackle the cost
version and give an algorithm that produces a span-
ning tree of maximum degree at most k + 2 whose
cost is at most the cost of the minimum cost span-
ning tree of degree at most k [8]; this is equivalent
to showing that every solution to the spanning tree
polytope with fractional degrees at most k can be
viewed as a convex combination of spanning trees of
maximum degree at most k+2. This is done by prov-
ing properties of extreme points of the corresponding
LP relaxation by algebraic means, by defining a re-
lated matroid intersection problem whose common
bases are (some, not all) spanning trees of degree at
most k + 2, and using the knowledge of the matroid
intersection polytope. This result was improved by
Singh and Lau [16] by completely different means
using iterative rounding; they were able to relax the
maximum degree bound to k + 1 rather than k + 2.
Going back to 1-trees, this shows that any solution
to the subtour polytope can be viewed as a convex
combination of 1-trees of maximum degree 3, but it
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is still unclear whether this is of any use for chara-
terizing the worst-case integrality gap.

My receiving the Farkas prize is probably mostly
due to my most celebrated and cited result, an ap-
proximation algorithm for the maximum cut prob-
lem (MAXCUT) [11] based on semidefinite program-
ming, and this was obtained jointly with my first
Ph.D. student, David Williamson. This is the right
time to mention that, over the years, I have been
extremely fortunate to interact with a great number
of talented Ph.D. students including David, and this
has been hugely stimulating for me in my ways, and
I sincerely hope for them too. I would like to explain
how the MAXCUT result came to exist. I could start
by quoting Don Knuth in a delightful article about
mathematical license plates [14]:

Sometimes people obtain mathematically
significant license plates purely by accident,
without making a personal selection. A
striking example of this phenomenon is the
case of Michel Goemans, who received the
following innocuous-looking plate from the
Massachusetts Registry of Motor Vehicles
when he and his wife purchased a Subaru
at the beginning of September 1993:

Sometimes people obtain mathematically significant
license plates purely by accident, without making a per-
sonal selection. A striking example of this phenomenon is
the case of Michel Goemans, who received the following
innocuous-looking plate from the Massachusetts Registry of
Motor Vehicles when he and his wife purchased a Subaru at
the beginning of September 1993:

Two weeks later, Michel got together with his former stu-
dent David Williamson, and they suddenly realized how to
solve a problem that they had been working on for some
years: to get good approximations for maximum cut and
satisfiability problems by exploiting semidefinite program-
ming. Lo and behold, their new method—which led to a
famous, award-winning paper [15]—yielded the approxi-
mation factor .878! There it was, right on the license, with
C, S, and W standing respectively for cut, satisfiability, and
Williamson.

Large Numbers
Let’s return now to the scenario we began with, a license
plate that bore the desirable number 65536. Mathematicians
have traditionally befriended numbers that are much
smaller than this, because smaller numbers tend to have
more interesting properties. (Or perhaps because smaller
numbers have properties that are easier to discover without
computer assistance.) Le Lionnais considered this situation
in his postlude to [28], saying ‘‘Tous les nombres sont re-
marquables, mais peu ont été remarqués.’’ His book
discusses 219 integers between 20 and 220, having a total of
574 ‘‘properties,’’ with the distribution of k-bit numbers that
is shown in Figure 4 for 1 B k B 20. In this illustration the
black bars stand for numbers and the gray bars stand for
properties; for example, when k = 1 the sole number is 1
and he mentions 14 of its properties.

The sole number listed for k = 20 is 604800, the number
of elements in the Hall–Janko group (the fifth sporadic
group); this number also has the property that some of its
divisors yield an interesting ‘‘congruence cover.’’ A con-
gruence cover is a set of integer pairs (a1, d1), . . ., (as, ds)
with d1 \ . . . \ ds such that every integer is congruent to ak

(modulo dk) for some k. For example, the simplest con-
gruence cover [14] is

fð0; 2Þ; ð0; 3Þ; ð1; 4Þ; ð1; 6Þ; ð11; 12Þg:

Robert Churchhouse [10] found a congruence cover for
which d1 = 9, ds = d124 = 2700, and lcm(d1, . . ., ds) =

604800; when Le Lionnais wrote [28], Churchhouse’s
example had the largest known value of d1. (Erdös had
conjectured that d1 could be arbitrarily large. His conjecture
remains open, and carries a $1000 reward for the solver. A
cover with d1 = 40 and s&1050 has recently been found
[33].)

What other properties does 604800 have, besides the
two that were featured by Le Lionnais? For this question
mathematicians can now turn to Neil Sloane’s wonderful
On-Line Encyclopedia of Integer Sequences [38], which
tells us for example (in sequence A053401) that there are
604800 seconds in a week. Sequence A001715 of the OEIS
reminds us that 604800 = 10!/3!; from this fact we can
conclude, with a hint from A091478, that exactly 604800
simple graphs on 5 labeled vertices have 7 labeled edges.
Furthermore we learn from sequences A055981, A058295,
A060593, and A080497 that 604800 is the number of ways
to write an 11-cycle as the product of two 11-cycles on the
same elements [6], and that 604800 can not only be
expressed as 5! 7! and as 12!/d(12!) but also as

ð1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11Þ
=ð1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10þ 11Þ

and—via prime numbers—as

ð17� 2Þð17� 3Þð17� 5Þð17� 7Þð17� 11Þð17� 13Þ:

Altogether the number 604800 appears explicitly in 78
sequences of the current OEIS list, so it possesses 78 ‘‘OEIS
properties.’’ I can well imagine that Marshall Hall, who was
my Ph.D. advisor long ago, would have been delighted to
drive an automobile whose license plates bore the number
604800.

These considerations beg us to ask, ‘‘What numbers
greater than, say, 10000, have the most OEIS properties?’’ I
posed this question to Sloane in 2001, and he told me how
to answer it by downloading a stripped version of the
database. The current champion numbers, by this criterion,
are shown in Table 1.

Several conclusions can readily be drawn from this
table. First, we notice that the magic number 65536 of my
Madison experience is right up there, nearly tied for the
lead. Second, almost all of these property-rich numbers are
round in G. H. Hardy’s sense: They are ‘‘the product of a
considerable number of comparatively small factors’’ [20,
page 48]. The only exceptions are 10001 and 11111, which
are oriented to radix-10 notation. Indeed, all of the cham-
pions other than 10001 and 11111 are powers of 2, 3, 5, 6,
7, 10, or 11, except for 8!, 9!, and 10080 (which is twice 7!).

Table 1 ranks a number n by counting only the
sequences in which the OEIS database lists n explicitly; it
doesn’t count all the sequences to which n actually belongs.
For example, A005843 is the sequence of even numbers,
which explicitly lists only 0, 2, 4, 6, . . ., 120; a number like

Figure 4. Remarkable numbers (black) and remarkable

properties (gray) in [28].
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Two weeks later, Michel got together with
his former student David Williamson, and
they suddenly realized how to solve a prob-
lem that they had been working on for some
years: to get good approximations for max-
imum cut and satisfiability problems by
exploiting semidefinite programming. Lo
and behold, their new method — which
led to a famous, award-winning paper [11]
— yielded the approximation factor .878!
There it was, right on the license, with C, S,
and W, standing respectively for cut, sat-
isfiability, and Williamson.

Although completely true (with some interpretation
for CSW, of course), this does not tell the story that

led to the discovery. More than four years earlier, in
the summer of 1989, I did an internship in the group
of David Johnson at Bell Labs in Murray Hill, NJ,
and I participated in a DIMACS workshop on Poly-
hedral Combinatorics organized by Bill Cook and
Paul Seymour. This was an incredibly valuable ex-
perience. Laci Lovász and Lex Schrijver each gave
a series of lectures, and this is where I heard about
their so-called matrix cuts [15]. For a graduate stu-
dent who had read several of their books and articles,
this was a real treat. They defined two operators N
and N+ which automatically provide a strengthen-
ing of any convex set towards its 0 − 1 integer hull,
and by applying them repeatedly one obtains a hi-
erarchy of relaxations converging to the integer hull
in at most n iterations, where n is the dimension.
And the stronger of the two operators, N+, involves
imposing semidefinite constraints. That was my first
exposure to semidefinite programming. This was fas-
cinating, and I spent the rest of the summer trying
to solve the many open questions they raised, with
little success. But I was completely convinced of the
power of semidefinite programming, especially after
devouring Lovász’s 1979 paper on the Shannon ca-
pacity and results on perfect graphs, and I wanted to
find other applications of it. I learned much about
semidefinite programming from an early draft (first
submited in 1991) of a paper by Farid Alizadeh [1]
in which he laid much of the foundation of semidefi-
nite programming (in terms of conic programming
and duality) and he extended Yinyu Ye’s projec-
tive method for linear programming to semidefi-
nite programming. My goal was to find a prob-
lem for which a natural semidefinite programming
relaxation is provably stronger than any natural lin-
ear programming relaxation, and I quickly focused
on the obvious candidate, the maximum cut (MAX-
CUT) problem (i.e., unconstrained quadratic 0 − 1
programming with special costs), as the semidefinite
programming relaxation seemed particularly easy to
describe and handle. However, proving a worst-case
bound for the relaxation appeared quite challeng-
ing and, over the years, I tried first alone and then
with David Williamson many different approaches,
often involving the dual semidefinite program (which
can be nicely expressed as a vector subset sum prob-
lem). This was also the time that David and I were
working on our primal-dual linear programming ap-
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proaches [10] to design approximation algorithms for
a class of network design problems. We realized that
our semidefinite programming bound was equivalent
to an eigenvalue bound which had just been con-
sidered by Delorme and Poljak [5], and which they
conjectured to be within 0.88445 of the optimum;
this value corresponds to the gap for the 5-cycle.
But after putting the maximum cut problem aside
many times and always being drawn again to it a
few months later, we finally managed to find the sim-
plest possible and most natural approach to get a cut
provably within a factor of minx

2 arccos(x)
π(1−x) ∼ 0.878

of the value of the optimum cut. How we could
we have missed this before? The ingredients of our
approach are elementary and it appears that some
had been considered before. The random hyperplane
technique and its analysis are indeed tighly related
to `1-embeddability of the spherical distance space
as discussed in Section 6.4 of the encyclopedic book
[6] on cuts and metrics by Michel Deza and Monique
Laurent. What I find most amazing about our MAX-
CUT result is that it appears in many ways to stand
right on the ridge between the two (easy and hard)
faces of combinatorial optimization.

After reminiscing about some of my research, I
would like to quote one concluding sentence from
the embarassingly laudatory citation for this Farkas
prize:

Goemans’s contributions are marked by his
innate ability to give the elegant solution;
in fact, his knack of finding the beautiful
proof (“from the book”) has led to a much
deeper understanding of the work of many
others as well.

This is definitely exagerated, although I am indeed
typically obsessed with finding the right, naturally
simple and elegant proof, and I am never satisfied
(as my students can unfortunately attest) with the
first approach or solution that comes up. And I
hope to continue exploring the beautiful scenery in
and around combinatorial optimization for the sec-
ond half of my career.
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Using the Pythagorean
Theorem in a Polynomial

Algorithm for Linear
Programming

Sergei Chubanov
University of Siegen, Germany

(sergei.chubanov@uni-siegen.de )

The Pythagorean theorem is a fundamental prop-
erty of Euclidean spaces. One of its numerous and
well-known consequences is the following equation
that expresses the relationship between the length h
of the altitude of a right triangle in Rn (the altitude
to its hypotenuse) and the lengths a and b of its legs:

1

h2
=

1

a2
+

1

b2
.

The purpose of this short article is to outline a poly-
nomial algorithm for linear programming based on
exactly this formula. The algorithm has some dis-
tinctive features that we discuss at the end of the
article. The full version of the algorithm is given in
the manuscript [3]. The new algorithm improves the
previous algorithm presented in [2].

In a certain sense, our algorithm has connections
with the relaxation method for systems of linear in-
equalities of Agmon [1] and Motzkin and Schoenberg
[4]. The relaxation method constructs a sequence of
points x(s) that follows a simple recursive rule. In
each iteration, among the constraints of a system
Cx ≥ d (C is a matrix and d is a column vector) the
relaxation method determines a constraint cTx ≥ δ
that is violated by the current point x(s). The next
point has the form

x(s+1) = x(s) + λc.

An appropriate choice of the parameter λ ensures
that the sequence of points converges to a solution
of the system. In particular, λ can be chosen so
that x(s+1) is the orthogonal projection of x(s) onto
the half-space {x|cTx ≥ δ}. In fact, the relaxation
method belongs to the class of alternating projection
methods such as for instance von Neumann’s and
Dijkstra’s projection algorithms.

Every linear program can be reduced in polyno-
mial time to the problem of finding a solution of a
system Ax = 0, x > 0. (We will not explain the
notation because it is conventional and intuitively
clear. All the coefficients are assumed to be ratio-
nal.) That is, we are looking for a solution with
positive components. It should be noted that our
method would remain almost unchanged if we only
required that some components are positive and the
other are nonnegative.

It is convenient to consider the associated sys-
tem Cx > 0 where C is the matrix of the orthog-
onal projection onto the linear subspace generated
by the equations Ax = 0 (that is, onto the sub-
space {x|Ax = 0}). If x∗ is a solution of Cx > 0,
then Cx∗ is a solution of the original system because
ACx∗ = 0 due to the fact that Cx∗ is the projection
of x∗ onto the subspace.

Now we apply a procedure that we call the ba-
sic procedure. As well as the relaxation method,
it constructs a sequence of points following a sim-
ple recursive rule. Let cTx > 0 be a constraint, of
the system Cx > 0, violated by the current point
x(s). (If no one of the constraints is violated, then
Cx(s) is a feasible solution.) An iteration of the ba-
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sic procedure consists in taking a step towards the
point c. More precisely, the basic procedure chooses
a point x(s+1) on the segment [x(s), c] with the min-
imum norm among the points of the segment. This
means that, for some coefficient α in [0, 1],

x(s+1) = αx(s) + (1− α)c.

This obviously resembles the formula used by the
relaxation method. However, what we obtain, and
what cannot be obtained by the relaxation method,
is the performance guarantee in terms of the recip-
rocals of the norms of the constructed points:

1

‖x(s+1)‖2
≥ 1

‖x(s)‖2
+ 1.

To obtain this inequality, we need to note that, be-
cause cTx > 0 is violated by x(s), the triangle formed
by the points x(s), 0, and c contains a right triangle
with the right angle at 0. The altitude of the right
triangle is the segment [0, x(s+1)]. Using the formula
for the altitude of a right triangle and remembering
that ‖c‖ ≤ 1 because C is the projection matrix, we
derive the above inequality.

We choose the initial point x(0) as a convex com-
bination of the columns of C. Then the obtained
points x(s) are convex combinations of the columns
of C. These convex combinations are explicitly con-
structed in the course of the procedure and play a
key role in its analysis. The above inequality guar-
antees that we need at most O(n3) iterations until
the fulfillment of the condition

‖x(s)‖ ≤ 1

2n
√
n
.

(The n denotes the number of variables.) Now we
can use the fact that, as a convex combination of
the columns of C, the current point x(s) has the form
x(s) = CyT where y is a nonnegative row vector with∑

i yi = 1. As C is symmetric, x(s) = (yC)T . Let x∗

be a solution of Ax = 0 in the unit cube [0, 1]n.
(It follows that ‖x∗‖ ≤

√
n.) Since Ax∗ = 0, we

have Cx∗ = x∗. (That is, the projection of x∗ onto
the linear subspace is the same vector x∗ because
x∗ lies in this subspace.) Using the Cauchy-Schwarz
inequality, we write

yx∗ = yCx∗ = (x(s))Tx∗ ≤ ‖x(s)‖‖x∗‖.

This immediately implies that

yx∗ ≤ 1

2n
.

Now we consider a component yk with yk = max y
and note that yk ≥ 1

n . The above upper bound on
yx∗ implies that

x∗k ≤
1

2
.

This holds for every solution x∗ of Ax = 0 in the
unit cube. Now we transform A by dividing the kth
column of A by 2, which can be viewed as scaling
along the axis xk by the scale factor of 2. If the sys-
tem Ax = 0, x > 0, is feasible, then it has a solution
x∗ in [0, 1]n. Let φ be a mapping that maps x∗ to
the point obtained from x∗ by multiplying x∗k by 2.
The point φ(x∗) belongs to the unit cube because of
the upper bound on x∗k. Moreover, φ(x∗) is a feasible
solution of the transformed system. That is, one can
say that all feasible solutions in the unit cube remain
in the unit cube under the transformation of A. We
construct the projection matrix C with respect to
the transformed matrix A and apply the basic pro-
cedure to the system Cx > 0. Note that if there is
a solution of the original system then there is one
whose binary sizes of components are bounded by a
value L that is polynomially bounded in the size of
the system. Such a bound L can easily be found. Let
us repeat the calls to the basic procedure followed by
the respective transformations of the matrix A. Note
that if the original system is feasible then the basic
procedure must find a feasible solution to some of
the transformed systems in at most nL calls. (The
obtained solution is then translated back to a feasi-
ble solution of the original system.) If this is not the
case, we conclude that the original system is infea-
sible. Since the basic procedure runs in polynomial
time, we have a polynomial algorithm (we need of
course an additional technique to control the sizes of
the numbers).

Whenever we prove that x∗k ≤
1
2 for every solution

x∗ of Ax = 0 in the unit cube, we can conclude that
x∗k is zero in all 0-1 solutions of this system. In place
of dividing by 2, we now delete the respective column
of A and call the basic procedure again. This leads
to

Theorem 1 Consider a system

Ax = b,0 ≤ x ≤ 1, (1)
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where A is a rational matrix and b is a rational col-
umn vector. There is a strongly polynomial algo-
rithm, with the running time O(n4), that either finds
a solution of this system or proves that the system
has no integral solutions.

Proof. Observe that one can construct a system
A′x′ = 0, x′ ≥ 0, with 2n+1 variables, having a non-
trivial 0-1 solution if and only if the system (1) has a
0-1 solution. To either find a solution or prove that
no nontrivial 0-1 solution exists, we need at most
O(n) calls to the basic procedure. The running time
O(n4) is obtained by a further analysis and modi-
fication of the algorithm (see [3]), which allows to
control the initial data for the basic procedure so
that to prevent unnecessary steps.

So one of the following two results can be achieved
in strongly polynomial time: Either a feasible solu-
tion of (1) (with maybe fractional components) or
a proof that no 0-1 solution exists. In the latter
case we solve the respective instance of the NP-hard
problem of finding a solution of Ax = b, x ∈ {0, 1}n.
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1. Introduction

Duality is crucial in understanding theoretical prop-
erties of optimization problems and often plays a key
role in the development of algorithms to find the cor-
responding optimal solutions.

For a minimization problem (P), a (weak) dual
is a maximization problem (D) such that the ob-
jective function value of any of its feasible solutions
gives a lower bound on the objective function value
of any feasible solution of (P). Upper bounds on
the objective function value of the primal (P) are
provided by primal feasible solutions. We say that
a minimization problem is finite if its feasible region
is nonempty and the objective function is bounded
from below. A strong dual (D) for (P) is a (weak)
dual satisfying the following additional two proper-
ties:

1. (P) is finite if and only if (D) is finite.

2. If (P) is finite, then the optimal objective func-
tion values of (P) and (D) are the same.

In the case of linear programming and, more
generally, conic programming, duality is well un-
derstood (see, for instance, [1]). The subadditive
dual for mixed-integer linear programs has also been
widely studied ([3, 4, 5, 6, 7, 8, 11]). However, such a
result for their mixed-integer conic counterpart was
not known in the literature. In our paper [10], we
take a step further in the understanding of duality
for problems with particular structure by extending
the subadditive dual for mixed-integer linear pro-
grams to the case of mixed-integer conic programs.

mailto:dmoran@gatech.edu
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2. A Little Bit of Notation

Let K ⊆ Rm be a full-dimensional, closed and
pointed cone. For a, b ∈ Rm, we denote a �K b if
and only if a− b ∈ K. In addition, we write a �K b
whenever a− b ∈ int(K).

A mixed-integer conic programming problem (the
primal optimization problem) is an optimization
problem of the following form:

(P)


inf ctx

s.t. Ax �K b

xi ∈ Z, ∀i ∈ I,

where I = {1, . . . , n1} ⊆ {1, . . . , n} is the set of in-
dices of integer variables.

Notice that mixed-integer linear programming
problems are a special case of problems of the form
of (P), by setting K = Rm+ . Hence, a natural way
of defining a dual optimization problem for mixed-
integer conic programming is to generalize the well-
known subadditive dual for mixed-integer linear pro-
gramming (see, for example, [3] and [12]).

Let S ⊆ Rm. A function g : S 7→ R ∪ {−∞} is
said to be subadditive if for all u, v ∈ S such that
u + v ∈ S, the inequality g(u + v) ≤ g(u) + g(v)
holds. The function g is said to be nondecreasing
w.r.t. K if for all u, v ∈ S such that u �K v, the
inequality g(u) ≥ g(v) is satisfied.

We define the subadditive dual problem for (P) as

Simge Küçükyavuz, Diego A. Morán R. and Jon Lee

follows:

(D)



sup g(b)

s.t. g
(
Ai
)

= −g
(
−Ai

)
= ci, ∀i ∈ I

ḡ
(
Ai
)

= −ḡ
(
−Ai

)
= ci, ∀i /∈ I

g(0) = 0

g : Rm → R is subadditive and

nondecreasing w.r.t. to K,

where Ai denotes the ith column of A and for a
vector d ∈ Rm we denote g(d) := lim supδ→0+

g(δd)
δ .

3. Main Result

In the theory of subadditive duality for mixed-
integer linear programming (K = Rm+ ), a sufficient
condition to have strong duality is the rationality
of the data defining the problem, that is, A ∈ Qm×n

and b ∈ Qm. The main result of this paper is to show
that strong duality for mixed-integer conic program-
ming holds under the following technical condition:

There exists x̂ ∈ Zn1×Rn2 such that Ax̂ �K b (∗),

where n2 = n− n1.

Theorem 1 (Strong duality) If there exists x̂ ∈
Zn1 × Rn2 such that Ax̂ �K b, then

1. (P) is finite if and only if (D) is finite.

2. If (P) is finite, then there exists a func-
tion g∗ feasible for (D) such that g∗(b) =
inf{cTx |Ax �K b, x ∈ (Zn1 × Rn2)}.

4. Sketch of the Proof

Our proof of strong duality for mixed-integer conic
programs is an adaptation of the ideas used to
prove strong duality for mixed-integer linear pro-
grams (see [3, 12]).

4.1 Basic Ingredients

We give a short description of the crucial results that
we use in the proof of Theorem 1.
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1. Properties of �K . The vector inequality �K
defines a partial order relationship that satisfies:
(1) The homogeneity property: for all λ ≥ 0 if
u �K v, then λu �K λv and (2) The additivity
property: if u �K v and u′ �K v′, then u+u′ �K
v + v′ (see [1]). These properties of �K give a
very nice structure to the feasible region of the
primal problem.

2. Strong Duality for Conic Programming.
The continuous relaxation of (P), denoted by
(PR), is the problem obtained when in a prob-
lem of the form (P) we set I = ∅. It is well-
known that if there exists x̂ ∈ Rn such that
Ax̂ �K b, then (PR) has a strong dual, denoted
by (DR), whose feasible points are linear func-
tions that satisfy all the constraints in (D).

3. Weak Duality for (P) and (D). It is easy to
see from the definitions that (D) is a weak dual
for (P), that is, for all x ∈ Rn feasible for (P)
and for all g : Rm 7→ R feasible for (D), we have
g(b) ≤ cTx.

4. Finiteness Property for Convex Mixed-
integer Programs. Let B ⊆ Rn be a closed
convex set such that B ∩ (Zn1 × Rn2) 6= ∅.
Consider the convex mixed-integer optimiza-
tion problem (Q) := inf{cTx |x ∈ B ∩ (Zn1 ×
Rn2)} and its continuous relaxation (QR) :=
inf{cTx |x ∈ B}. We say that (Q) and (QR)
satisfy the finiteness property if (Q) is finite if
and only if (QR) is finite.

Notice that in the case of mixed-integer linear
programming (the set B is a polyhedron defined
by rational data) it is well-known that (Q) and
(QR) satisfy the finiteness property. However,
in the case of mixed-integer conic programming
(the set B is the feasible region of a problem
of the form (PR) and B is defined by rational
data), then there are some examples that show
that the finiteness property is not necessarily
satisfied. In the following lemma, we present a
sufficient condition for the finiteness property to
hold in the case of general mixed-integer convex
optimization problems.

Lemma 1 ([10]) If int(B) ∩ (Zn1 × Rn2) 6= ∅,
then (Q) and (QR) satisfy the finiteness prop-

erty (where int(B) denotes the interior of the
set B).

We use Lemma 1 to show that if there exists
x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b, then (P) is
finite if and only if (PR) is finite.

5. Properties of the value function of (P).
The value function of (P), f : Ω 7→ R ∪ {−∞},
is defined as

f(u) = inf{cTx : Ax �K u, xi ∈ Z, ∀ i ∈ I}.

The domain of f , denoted by Ω, is defined as all
vectors u ∈ Rm such that the problem (P) with
r.h.s b := u is feasible.

We use an important property of the value func-
tion: it can be proven that, in general, f satisfies
all the constraints of the dual (D), except that
Ω is not necessarily equal to Rm.

4.2 Some cooking steps

We now give a brief outline of the proof.
Proving (1.) in Theorem 1:
We show each direction of the equivalence.

(⇒) If (P) is feasible and bounded, then by the
Finiteness Property we obtain that (PR) is also
feasible and bounded. Thus, by Strong dual-
ity for Conic Programs, we obtain that (DR) is
feasible. Since the feasible solutions of (DR) sat-
isfy all constraints of (D), we obtain that (D) is
feasible. Finally, since (P) is feasible, by Weak
Duality we conclude that (D) is also bounded.

(⇐) We prove that if (P) is infeasible, then (D) can-
not be finite. The proof idea of this statement
is as follows: The fact that (P) is infeasible can
be used to construct an ‘recession direction’ for
the feasible region of (D) with positive objective
function value (see, for instance, [3]). Therefore,
in the case (D) is feasible, we conclude that it
is unbounded.

Proving (2.) in Theorem 1:
We want to show that if (P) is feasible and

bounded, then there exists a function g∗ feasible
for (D) such that g∗(b) = f(b). If Ω = Rm, then,
since in this case f is feasible for (D), we can take
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g∗ = f . Otherwise, if Ω 6= Rm, we extend f to
a function g∗ such that g∗ is feasible for the dual
(D) and g∗(b) = f(b). This extension is very tech-
nical and explicitly uses the fact that there exists
x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b.

5. Applications

A valid inequality (a.k.a. cutting plane) for (P) is
a linear inequality that is satisfied by all feasible so-
lutions of (P). As a consequence of strong duality,
we obtain that all valid inequalities can be written
as or dominated by a linear inequality of the form∑

i∈I
g(Ai)xi +

∑
i/∈I

g(Ai)xi ≥ g(b),

where g is a feasible dual function.
From the practical point of view, cuttings planes

are one of the central tools used by modern mixed-
integer programming solvers (see, for example, [2,
9]). In the case of general mixed-integer linear pro-
grams (MILP’s), one of the most successful class of
cutting planes in practice are the Gomory mixed-
integer cuts (GMI). It turns out that (GMI) cuts are
given by a well-known family of dual feasible func-
tions corresponding to 1-row (MILP’s). Therefore,
we can use certain families of dual feasible functions
to generate very powerful cutting planes for solv-
ing (MILP’s). We expect dual feasible solutions of
mixed-integer conic programs to be used in similar
applications.

6. Final Remarks

Notice that assumption (∗) plays a similar role as the
assumption of rational data in the case of mixed-
integer linear programs in the proof of the strong
duality result. More precisely, both assumptions are
a sufficient condition for the finiteness property to
hold, and they are also crucial in the construction
of the extension of the value function of (P) (in the
case Ω 6= Rm).
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Nominations for Society
Prizes Sought

The Society awards four prizes, now annually, at
the INFORMS annual meeting. We seek nomina-
tions and applications for each of them, due by June
30, 2013. Details for each of the prizes, including
eligibility rules and past winners, can be found by
following the links from http://www.informs.org/

Community/Optimization-Society/Prizes.
Each of the four awards includes a cash amount

of US$ 1,000 and a citation certificate. The award

http://www.informs.org/Community/Optimization-Society/Prizes
http://www.informs.org/Community/Optimization-Society/Prizes
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winners will be invited to give a presentation in
a special session sponsored by the Optimization
Society during the INFORMS annual meeting in
Minneapolis, MN in October 2013 (the winners will
be responsible for their own travel expenses to the
meeting).

The Khachiyan Prize is awarded for outstand-
ing life-time contributions to the field of optimiza-
tion by an individual or team. The topic of the
contribution must belong to the field of optimiza-
tion in its broadest sense. Recipients of the IN-
FORMS John von Neumann Theory Prize or the
MPS/SIAM Dantzig Prize in prior years are not eli-
gible for the Khachiyan Prize. The prize committee
for the Khachiyan Prize is as follows:

• Jorge Nocedal (Chair)
nocedal@eecs.northwestern.edu

• Michael Todd

• Jean-Philippe Vial

• Laurence Wolsey

Nominations and applications for the Khachiyan
Prize should be made via email to the prize-
committee chair. Please direct any inquiries to the
prize-committee chair.

The Farkas Prize is awarded for outstanding con-
tributions by a mid-career researcher to the field of
optimization, over the course of their career. Such
contributions could include papers (published or
submitted and accepted), books, monographs, and
software. The awardee will be within 25 years of
their terminal degree as of January 1 of the year of
the award. The prize may be awarded at most once
in their lifetime to any person. The prize committee
for the Farkas Prize is as follows:

• Dimitris Bertsimas (Chair)
dbertsim@mit.edu

• George Nemhauser

• Yurii Nesterov

• Yinyu Ye

Nominations and applications for the Farkas Prize
should be made via email to the prize-committee
chair. Please direct any inquiries to the prize-
committee chair.

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization that is submitted to and
accepted, or published in a refereed professional jour-
nal. The paper must be published in, or submitted
to and accepted by, a refereed professional journal
within the four calendar years preceding the year
of the award. All authors must have been awarded
their terminal degree within eight calendar years pre-
ceding the year of award. The prize committee for
the Prize for Young Researchers is as follows:

• Alper Atamtürk (Chair)
atamturk@berkeley.edu

• Samuel Burer

• Andrzej Ruszczynśki

• Nikolaos Sahinidis

Nominations and applications for the Prize for
Young Researchers should be made via email to the
prize-committee chair. Please direct any inquiries
to the prize-committee chair.

The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received or pub-
lished in a refereed professional journal within three
calendar years preceding the year of the award. Ev-
ery nominee/applicant must be a student on the
first of January of the year of the award. Any co-
author(s) not nominated for the award should send a
letter indicating that the majority of the nominated
work was performed by the nominee(s). The prize
committee for the Student Paper Prize is as follows:

• Simge Küçükyavuz (Chair)
kucukyavuz.2@osu.edu

• Santanu S. Dey

• Guanghui Lan

Nominations and applications for the Student Pa-
per Prize should be made via email to the prize-
committee chair. Please direct any inquiries to the
prize-committee chair.
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Nominations of Candidates
for Society Officers Sought

Jon Lee will complete his term as Most-Recent
Past-Chair of the Society at the conclusion of the
2013 INFORMS annual meeting. Sanjay Mehrotra
is continuing as Chair through 2014. Jim Luedtke
will also complete his term as Secretary/Treasurer
at the conclusion of the INFORMS meeting. The
Society is indebted to Jon and Jim for their work.

We would also like to thank four Society Vice-
Chairs who will be completing their two-year terms
at the conclusion of the INFORMS meeting: Brian
Borchers, Santanu Dey, Mohammad Oskoorouchi,
and Baski Balasundaram.

We are currently seeking nominations of candi-
dates for the following positions:

• Chair-Elect

• Secretary/Treasurer

• Vice-Chair for Computational Optimization

• Vice-Chair for Integer Programming

• Vice-Chair for Linear Programming and Com-
plementarity

• Vice-Chair for Networks

Self nominations for all of these positions are encour-
aged.

To ensure a smooth transition of the chairmanship
of the Society, the Chair-Elect serves a one-year term
before assuming a two-year position as Chair; thus
this is a three-year commitment. As stated in the
Society Bylaws, “The Chair shall be the chief admin-
istrative officer of the OS and shall be responsible for
the development and execution of the Society’s pro-
gram. He/she shall (a) call and organize meetings of
the OS, (b) appoint ad hoc committees as required,
(c) appoint chairs and members of standing com-
mittees, (d) manage the affairs of the OS between
meetings, and (e) preside at OS Council meetings
and Society membership meetings.”

The Secretary/Treasurer serves a two-year
term. According to Society Bylaws, “The Secre-
tary/Treasurer shall conduct the correspondence
of the OS, keep the minutes and records of the

Society, maintain contact with INFORMS, receive
reports of activities from those Society Committees
that may be established, conduct the election
of officers and Members of Council for the OS,
make arrangements for the regular meetings of the
Council and the membership meetings of the OS.
As treasurer, he/she shall also be responsible for
disbursement of the Society funds as directed by
the OS Council, prepare and distribute reports
of the financial condition of the OS, help prepare
the annual budget of the Society for submission
to INFORMS. It will be the responsibility of the
outgoing Secretary/Treasurer to make arrangements
for the orderly transfer of all the Society’s records
to the person succeeding him/her.”

Vice-Chairs also serve a two-year term. Accord-
ing to Society Bylaws, “The main responsibility of
the Vice Chairs will be to help INFORMS Local Or-
ganizing committees identify cluster chairs and/or
session chairs for the annual meetings. In general,
the Vice Chairs shall serve as the point of contact
with their sub-disciplines.”

Please send your nominations or self-nominations
to Jim Luedtke (jrluedt1@wisc.edu), including con-
tact information for the nominee, by Saturday, June
1, 2013. Online elections will begin in mid- August,
with new officers taking up their duties at the con-
clusion of the 2013 INFORMS annual meeting.

Host for the 2014 INFORMS
Optimization Society
Conference Sought

The fifth INFORMS Optimization Society Con-
ference will be held in early 2014. The most recent
OS conference, held in 2012 at the University of Mi-
ami, was a great success, offering an opportunity for
researchers studying optimization-related topics to
share their work in a focused venue. The Optimiza-
tion Society is currently seeking candidate locations
to host the 2014 conference. If you are interested
in helping to host the conference, please contact
the Optimization Society chair, Sanjay Mehrotra
(mehrotra@northwestern.edu), by April 15, 2013.

mailto:jrluedt1@wisc.edu
mailto:mehrotra@northwestern.edu
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