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Optimization is now becoming a household
word in communities across engineering, man-
agement, health and other areas of scientific re-
search. I recall an advice from my department
chairman when I came up for tenure over twenty
years ago: ‘You need to explain in layman terms
the nature of optimization research, and demon-
strate its use in practice. The promotion and
tenure committee is full of bench scientists, and
they don’t understand what we do’. Hard work
and persistence from our community members
have lead in establishing optimization as a “core
technology.” The goal in front of us is to es-
tablish our leadership as drivers of research that
changes the life of the common man. This is
hard, since it requires simultaneous thinking in
deep mathematical terms, as we all like to do,
and in broad applied terms. However, I hope
that the time to come will bring optimizers and
optimization technology to new heights. Let us
all work together to make it happen.

The present issue of the INFORMS Opti-
mization Society newsletter, “INFORMS OS To-
day,” features articles by the 2013 OS prize win-
ners: Donald Goldfarb and Alexander Shapiro
(Khachiyan Prize for Lifetime Accomplishments
in Optimization), Pablo Parrilo (Farkas Prize for
Mid-career Researchers), James Luedtke (Prize
for Young Researchers), and Afonso Bandeira
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(Student Paper Prize). These articles summa-
rize their motivation of working on optimization
problems, and the prize winning works. The arti-
cles by Don Goldfarb and Alex Shapiro describe
their very interesting life journeys that brought
them to optimization research that is beautifully
intertwined with events in their personal lives. In
a similar spirit Pablo’s article “Adding squares:
from control theory to optimization” takes us
through the motivation of his work in polynomial
optimization. Jim Luedtke summarizes his very
interesting work in the paper “A branch-and-
cut decomposition algorithm for solving chance-
constrained mathematical programs with finite
support” for which he won the Young Researcher
award. Afonso Bandeira summarizes his work
on “Sparse recovery in derivative-free optimiza-
tion” that he completed with Katya Scheinberg
and Luis N. Vicente with motivation from com-
pressed sensing.

In this issue we also have announcements of
key OS activities: Calls for nominations for the
2014 OS prizes, a call for nominations of can-
didates for OS officers, and a call for the OS
2016 Conference. The previous five conferences
have had a diverse set of themes: “Optimization
and HealthCare” (San Antonio, 2006); “Theory,
Computation and Emerging Applications” (At-
lanta, 2008); “Energy, Sustainability and Cli-
mate Change” (Gainesville, 2012); “Optimiza-
tion and Analytics” (Coral Gables, 2012); and
“Optimization and Big Data” (Houston, 2014).
The 2014 edition of the INFORMS Optimization
Society Conference was held March 6-8 in Hous-
ton, Texas, hosted by the Department of Compu-
tational and Applied Mathematics at Rice Uni-
versity. Many thanks go to Ilya Hicks who served
as the general conference chair, and to the other
members of the organizing committee: Matthias
Heinkenschloss and Wotao Yin. The conference
was attended by more than 125 participants from
eight countries. It featured 104 talks in 29 ses-
sions, 4 outstanding plenary talks, amazing food,
and — in keeping with OS Conference tradition
— at least one confirmed human pyramid. Please
consider being active in the nomination process,
as well as hosting the 2016 OS conference.

Optimization Society has traditionally had a
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From root to leaves: Ilya Hicks, James Luedtke, Dan
Steffy, Gustavo Angulo, Jeff Linderoth, Akshay Gupte

very strong presence at the annual INFORMS
meetings, the next one being in San Francisco,
California on November 9-12 at the Hilton and
Union Square and Parc 55 Wyndham. Our par-
ticipation is organized via the OS sponsored clus-
ters, which are organized by our Vice Chairs:

e Imre Polik, Computational Optimization
and Software (imre@polik.net)

e Leo  Liberti, Global
(leoliberti@gmail.com)

Optimization

e Juan Pablo Vielma, Integer and Discrete
Optimization (jvielma@mit.edu)

e John Mitchell, Linear and Conic Optimiza-
tion (mitchj@rpi.edu)

e Vladimir Boginski, Network Optimization
(boginski@reef .uf.edu)

e Andreas Wichter, Nonlinear Optimization
(andreas.waechter@northwestern.edu)

e Andrew Schaefer, Optimization under Un-
certainty (schaefer@engr.pitt.edu)

You will note that the area names of several of
the vice-chairs have changed. Nearly 225 mem-
bership votes were received for the name change
ballot that was sent out earlier this year. Inte-
ger Programming is now called Integer and Dis-
crete Optimization (92% in favor of change); Lin-
ear Programming and Complementarity is now
called Linear and Conic Optimization (81% in fa-
vor of change); Networks is now called Network
Optimization (90% in favor of change); Nonlin-
ear Programming is now called Nonlinear Opti-
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mization (85% in favor of change); and Stochas-
tic Programming is now called Optimization un-
der Uncertainty (71% in favor of change).

Our impressive presence within INFORMS
is due to the hard work of our vice-chairs,
and it reflects the very large membership of
the OS. Please contact appropriate Vice Chairs
to get involved. I want to remind you that
Pietro Belotti continues to be the OS webmas-
ter, and he is always pleased to get your feedback
on our website: www.informs.org/Community/
Optimization-Society.

I look forward to seeing you at the INFORMS
national meeting in November, in particular, at
the OS Prize session, and the OS Business Meet-
ing. The latter is always one of the highlights
of an INFORMS meeting to have some refresh-
ments, meet with old friends and make new ones.

My Nonlinear

(Non-Straight)
Optimization Path
Donald Goldfarb

Department of Industrial Engineering and Operations
Research, Columbia University, New York, NY 10027

goldfarb@columbia.edu

It is truly a great honor to have been selected
as a recipient of the 2013 INFORMS Khachiyan
Prize for Lifetime Achievements in Optimiza-
tion. I would like to take this opportunity to
relate how I arrived at this point in my career.
It was certainly not a direct path that I followed,
but one that has brought me great satisfaction
and deep and lasting friendships with other op-
timizers. However, first I wish to humbly thank
the members of the prize committee who selected
me, Jorge Nocedal (chair), Michael Todd, Jean-
Philippe Vial, and Lawrence Wolsey and to my
friends and colleagues, Sanjay Mehrotra, Michael
Overton and Katya Scheinberg who nominated
me.

I did not start out as a mathematician; in fact
all my degrees are in chemical engineering. But

from an early age I was fascinated by mathemat-
ics. I was admitted to the elite math-oriented
Stuyvesant High School in New York City. How-
ever, due to my family’s move to the outer
reaches of Queens which made the daily com-
mute to Stuyvesant prohibitively long, I went to
an ordinary high school with little exposure to
interesting mathematics. While in high school, 1
could not imagine how becoming a mathemati-
cian could lead to a career. I naively thought
that to be a mathematician one had to be like
FEuclid and invent geometry. So when I applied
to college, I chose chemical engineering as it in-
volved science and mathematics, my strongest
academic subjects. During my first week as a
student at Cornell, I discovered that there was
a program in Engineering Physics that required
ten semesters of mathematics (engineering was a
five-year program in those days). This appealed
to me, but when I asked the Dean of Engineer-
ing to switch to it from the Chemical Engineer-
ing program that I had selected before arriving
on campus, he counseled me to not change my
selection as there was a common core program
during the first two years in engineering, and I
could transfer later if I did well. I did well, espe-
cially in math, but I had many Chem. E. friends
and stayed on as a Chem. E., principally out
of inertia. When I applied to graduate school, 1
again considered going on in math, but since I
seemed to be good at chemical engineering and
believed that doctoral studies in chemical engi-
neering would be more challenging than my un-
dergraduate studies, again inertia won out.

I arrived at Princeton in the fall of 1963
and chose to work on stochastic optimal con-
trol problems in chemical engineering. My ini-
tial approach was based on Pontryagin’s maxi-
mum principle. This involved solving two-point
boundary value problems, which required guess-
ing the values of the adjoint (dual) variables
at the initial time and then minimizing their
deviation from their known values at the final
time. Unfortunately, this process was extremely
unstable and unless one’s guess was very close
to the correct initial values, the adjoint system
of differential equations blew up. Fortuitously,
around this time (fall 1965) I learned about
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gradient and second-order methods that had
been recently proposed by Arthur Bryson and
others to solve optimal control problems, and
about the Davidon-Fletcher-Powell (DFP) quasi-
Newton (aka variable metric) method for uncon-
strained nonlinear optimization. This method,
originally proposed by William Davidon, was
shown by Roger Fletcher and Michael Powell to
minimize a strictly convex quadratic function of
n variables in n steps. I was totally enthralled
by this method - it managed to behave like a
second-order method without having to compute
second derivatives - and I wanted to apply it to
my control problem. However, the latter, when
discretized, gave a nonlinear program with linear
equality (the ordinary differential equations in
my models were linear) and inequality (the con-
trol variables had lower and upper bounds) con-
straints. Parenthetically, I do not believe that
I was yet aware of the term nonlinear program-
ming (NLP), and I know that I had no knowledge
of the simplex method.

At this time, I was living in Manhattan having
found the monastic life in Princeton not to my
liking and having finished all of my course re-
quirements. I had obtained permission from Pe-
ter Lax to use the Math Library at the Courant
Institute and given access to their CDC 6600
computer. I naively asked Princeton, who re-
ceived double tuition for me from my NSF doc-
toral fellowship, to pay for me to take courses at
Courant, but was turned down; I did not know
that universities do not like to give money to
other universities. However, to satisfy my inter-
est in mathematics, I attended lectures on linear
programming given by Ralph Gomory who was
visiting Courant (an amazing first exposure to
the subject) and I traveled to Princeton one day
a week to attend a course on Lyapunov stability
theory given by one of the great mathematicians
of the twentieth century, Solomon Lefschetz, who
at that time was a professor emeritus. It was
while I was taking the bus from NYC to Prince-
ton to attend Lefschetz’s class that I discovered
how to extend the DFP method to my linearly
constrained optimization problem. I vividly re-
call staying up most of the night working out
my extension. Once I realized that the finite ter-
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mination properties of the DFP method worked
for my projected version of the DFP method,
I knew that I had the basis for a thesis. My
approach involved rank reducing the DFP in-
verse Hessian approximation when a bounding
constraint became active and rank increasing it
when it became necessary to leave a boundary
constraint due to Lagrange multipliers having
the wrong sign. I immediately dropped my stud-
ies on stochastic optimal control and focused
only on my new NLP algorithm [1]. In May 1966
I gave my first conference talk on my method at
the STAM National Meeting in Iowa City, lowa,
where I met Michael Powell and John Dennis,
beginning a long and gratifying friendship with
both.

Early in 1966 I also started to look for a job. I
consulted Professor Lefschetz, and he suggested
that due to my interests that I apply for a post-
doc in applied mathematics. This had never oc-
curred to me, and I am forever grateful to him
for his confidence in me and his advice. More-
over, he indicated that he could secure a postdoc-
toral position for me in the Lefschetz Center for
Dynamical Systems in the Applied Mathematics
Department at Brown. I did not take him up
on that offer, but did ask him to write me a let-
ter of recommendation for a postdoc at Harvard
(where Bryson led a small applied mathemat-
ics group) and at Courant, since at that time
I had met my future wife who was applying to
graduate schools in Boston and New York City.
I believe that Lefschetz’s letter was crucial to
my being offered positions at both Harvard and
Courant, since I had no background in applied
mathematics. When my future wife decided that
she would continue her studies in New York, I
accepted the Courant offer.

My two years at Courant were transformative.
Although, there was no one else there at the time
interested in optimization, my perspective was
expanded by my interaction with some of the
world’s greatest applied mathematicians. Dur-
ing my first summer at Courant, I was asked to
teach a masters level numerical analysis course.
This gave me a strong foundation in numerical
linear algebra that has served me well. Dur-
ing my second year at Courant, I was offered an
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assistant professorship in the Computer Science
Department that was being created at the City
College of New York (CCNY) and in September
1968, I and a graph theorist, Michael Plummer,
became the founding faculty members of this De-
partment. In 1968 there were only a smattering
of CS departments in the U.S., or in fact, in the
world, and very few people trained in this new
discipline. After I moved to CCNY, I maintained
contact with Courant, usually spending at least
one day there each week. This was necessary for
me to get any research done as the teaching load
at CCNY was four courses per semester. Since
my research was funded by grants, my teach-
ing load was reduced to ONLY three courses per
semester.

During the fourteen years that I was on the
faculty at CCNY, I wrote twenty-three papers,
only eight of which were co-authored, since there
were few students in my Department and no
other faculty at CCNY interested in optimiza-
tion. My research initially focused on nonlinear
optimization algorithms for both unconstrained
and linearly constrained problems and the nu-
merical linear algebra (matrix factorizations) [2]
involved in implementing these algorithms. The
first paper that I wrote after joining CCNY and
after completing two papers on my PhD thesis
research was the short paper [3], in which I devel-
oped the so-called Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method. My work was based on
a variational approach for deriving quasi-Newton
updating formulas that John Greenstadt at IBM
had proposed. I should digress that I have spent
several summers and sabbatical leaves at the
IBM Watson Research Center and one summer
(1970) at an offshoot, the IBM New York Scien-
tific Center. These visits played a very impor-
tant role in my career and I am grateful for the
interactions and collaborations that these visits
made possible. In particular, I would like to
single out Philip Wolfe, Andrew Conn, Michael
Grigoriadis, John Forrest and my former student
Katya Scheinberg, the latter three with whom I
have written major papers.

I spent the 1974-75 academic year on sabbati-
cal leave at the Atomic Energy Research Estab-
lishment in Harwell, England. Although I was

invited to Harwell by Michael Powell, I spent a
good deal of my time collaborating with John
Reid. John was working on a code for the sim-
plex method and asked me one day at lunch if
I knew anything about a version of it, proposed
by Paula Harris, called DEVEX. I did not, but
when he described how DEVEX selected pivots,
I remarked that it seemed like it was taking ap-
proximate steepest-edge steps. John then stated
“doesn’t the simplex method with the most neg-
ative cost pivot rule take steepest edge steps,”
pointing to the chapter “The Simplex Method
Viewed as the Steepest Descent Along Edges” in
George Dantzig’s classic book Linear Program-
ming and Extensions. I replied that it does, but
only if one restricts the space of variables to only
those that are nonbasic, and that such steps were
not truly steepest because that depended how
the active constraints intersected with one an-
other. John did not fully understand my geo-
metric explanation, so I went back to my office
and wrote down some algebra to explain what I
had told him. In doing so I wrote down recur-
sions for implementing a steepest-edge simplex
method and showed them to John. I also real-
ized that I had discovered a way to implement
such an algorithm efficiently. Philip Wolfe and
L. Cutler had shown a dozen years earlier that
the steepest edge rule resulted in far fewer piv-
ots than other pivot rules, but concluded that
it was not practicable due to the heavy com-
putational cost it entailed at each iteration. I
worked with John on implementing the steepest-
edge simplex method resulting in the paper [4].
I also wrote some follow-up papers and later
analyzed the method’s worst-case behavior in
[5]. Sixteen years later, while on another sab-
batical leave which I spent at the IBM Watson
Research Center, I was again asked about the
DEVEX and steepest-edge methods, this time
by John Forrest. He was working on improving
IBM’s OSL simplex code and how one could de-
vise a dual steepest-edge implementation, since
on many real-world problems the dual version
of the simplex method out-performed the pri-
mal version. I provided the recurrence formu-
las that John needed and he implemented them
in his 25,000 line code in less than an hour and



ran the new dual simplex variant on a difficult
fleet scheduling problem that the standard pri-
mal and dual pivot rules took 3% and 54 hours,
respectively, to solve. A short time later, John
appeared at my office door and announced that
my dual pivot rule worked. In fact it solved his
problem in roughly a half hour. On a larger and
more difficult fleet scheduling problem the dual
steepest-edge rule took just 52 minutes to ob-
tain an optimal solution while the standard dual
pivot rule required 123 hours to do so. Needless
to say, primal and dual steepest-edge pivot rules
were quickly incorporated into the OSL code and
other codes such as CPLEX . Our paper [6] on
steepest-edge rules was awarded the INFORMS
1995 Prize for Excellence in the Interface be-
tween Operations Research and Computer Sci-
ence.

I'spent the 1979-80 academic year, as a visiting
professor in both the Department of Computer
Science and the School of Operations Research
and Industrial Engineering (SORIE) at Cornell.
This was an exciting time for the field of op-
Soon after I arrived in Ithaca the
news that Leonid Khachiyan had proved that
linear programming problems could be solved
in polynomial time using the ellipsoid method
had reached Europe and the U.S. A major arti-
cle about this appeared on November 11, 1979
in the New York Times. Interest at SORIE
in the ellipsoid method was intense. A special
weekly seminar on this topic was scheduled and
Michael Todd and I began to work on trying to
develop a practical version of the method. Un-
fortunately, the speed of the method in prac-
tice closely adhered to its theoretical speed even
if deep and surrogate cuts were employed and
hence it proved not to be a practical algorithm
for linear programming [7]. Also during this
time Michael Todd and Robert Bland and I were
asked by Thomas Magnanti, the editor-in-Chief
of Operations Research, to write a featured ar-
ticle for the journal presenting a survey on the
ellipsoid method [8].

After returning to CCNY, I worked with
Ashok Idnani, my first and next-to-last doc-
toral student at CCNY on dual and primal-
dual methods for quadratic programming . Our

timization.
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dual method is heavily used and has been imple-
mented in numerous codes [9]. At this time, I
started to receive several inquiries about moving
to another university. When I was contacted by
the Industrial Engineering and Operations Re-
search Department (IEOR) at Columbia, my in-
terest was aroused, since joining Columbia would
not require leaving New York City. So in July
1982, I joined the Columbia IEOR Department
as a full professor. Shortly thereafter, it was
again another very exciting time for the field
of optimization. On November 19, 1984 an ar-
ticle with the heading “Breakthrough in Prob-
lem Solving” appeared on the front page of the
New York Times announcing the development
by Narendra Karmarkar of AT&T Bell Labo-
ratories of an interior-point method for solving
large-scale linear programs. Even before this, 1
had received a call from Karmarkar, telling me
about his method, and a draft of his forthcoming
paper. At the time I hosted a seminar series at
Columbia called Friends of Optimization (FO)
that had been started by Philip Wolfe.
quite excited about Karmarkar’s algorithm; al-
though it had roughly the same complexity as
the ellipsoid method, it appeared to be a very
new approach to solving linear programs. Conse-
quently, I invited Karmarkar to present his work
to a specially called FO meeting. This was the
very first talk that Karmarkar gave on his new
method; it even preceded his first talk at Bell
Labs on it. Subsequently, Karmarkar called me
and asked me to work with him on developing a
code for his method. Having valiantly tried with
Michael Todd to make the ellipsoid method into
a practical method, I turned down Karmarkar’s
request, believing that his algorithm, like the el-
lipsoid method, would prove to be good in theory
but not in practice. Was I WRONG! However,
once I realized the power of interior-point meth-
ods, I began working with my students on them.
From the mid-1980’s to the mid-1990’s, working
with my students Sanjay Mehrotra, Shucheng
Liu, Siyun Wang, In-Chan Choi and Dong Xiao
we developed relaxed and self-correcting variants
of Karmarkar’s method, and interior-point meth-
ods for convex quadratic programming (QP),
quadratically constrained convex QP, multicom-

I was
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modity and other specially structured problems,
and projective variants; e.g., see [10, 11]. Also
during this period Michael Todd and I wrote
a chapter on Linear Programming for the Op-
timization Volume of the Handbook in Oper-
ations Research and Management Science [12]
based on the PhD-level course that I teach, and
I worked with Michael Grigoriadis and Jim Or-
lin, my students Jianxiu Hao, Sheng-Roan Kai,
Wei Chen and Yiqing Lin, and a postdoc Zhiying
Jin on simplex and combinatorial algorithms for
pure (e.g., [13, 14, 15]) and generalized network
flow (e.g., [16]) problems that have respectively,
strongly polynomial and polynomial complexity
bounds .

In the early 1990’s, interest in conic program-
ming, and in particular interior-point methods
for semidefinite (SDP) and second-order cone
programming (SOCP) burgeoned after the pub-
lication of the seminal papers on this subject by
Farid Alizadeh and Yuri Nesterov and Arkadii
Nemirovskii. It was very natural to move from
working on interior-point algorithms for linear
and quadratic programming to the study of such
methods for SOCP and SDP and related top-
ics. Fortunately for me, Katya Scheinberg who
had already worked with Nemrovskii in Russia
was admitted to our doctoral program in 1992
and chose to work with me on SDP [17]. Af-
ter she graduated, we continued to work in that
area combining it with my long-held interest in
factorization methods (see [18]). Also, Alizadeh
spent the 2000 calendar year as a Visiting As-
sociate Professor in our Department, which re-
sulted in our collaborating on our highly cited
SOCP survey paper [19]. Around this time (1998
to be exact), two other events occurred which
led me into a new, but related, area of research:
Garud Iyengar joined our Department as Assis-
tant Professor and Aharon Ben-Tal and Arkadii
Nemirovskii introduced the paradigm of robust
optimization. Seeking robust solutions to vari-
ants of the well-studied Markowitz portfolio op-
timization problem seemed like a natural topic to
pursue, and Garud and I developed an approach
that combined SDP, SOCP, statistics and some
nice linear algebra [20]. We followed this with
other papers on robust quadratically constrained

quadratic programming and robust active port-
folio management.

In May of 2003, during a trip to Los Angeles
to visit my daughter, I was invited by Stanley
Osher (a friend from my days at Courant) to
give a talk in the Mathematics Department at
UCLA. As T had a strong interest at the time in
SOCP, I spoke on that topic. Stanley, is one of
the leading applied mathematicians in the world,
and was widely known at that time for his work
on partial differential equations, level-set meth-
ods and imaging. Clearly, he and I worked in
very different domains. However, after my talk,
Stanley told me that the imaging problems on
which he worked involved minimizing the total
variation (TV) of an image, but that he knew
very little about optimization. I realized imme-
diately that his problems could be formulated as
SOCPs and as soon as I returned to New York,
I started to work on them with Stanley, Martin
Burger, who was visiting Stanley, and my stu-
dent, Wotao Yin. This led to our Bregman iter-
ative approach (which is equivalent to the aug-
mented Lagrangian method) for solving image
denoising and deblurring problems and to my
currently second most cited paper [21] as well as
many others on related topics (e.g., see [22, 23].

In 2005, in compressed
sensing (CS) and the possibility of obtaining
solutions to hard combinatorial optimization
problems by solving tight convex relaxations of
them was generated by the work of Emmanuel
Candes, Terence Tao and David Donoho and
their co-workers. This work showed that one
could find the sparse solution to a linear system
of equations by solving an [; minimization
problem, and it ushered in an exciting new focus
on optimization methods for problems whose
solutions were sparse or had some other special
structure. Since !; and TV minimization are
very closely related, I was quickly drawn into
developing algorithms for solving CS problems
and their matrix analogs, rank minimization
problems, like those that arise in the famous
NETFLIX problem. My research on /1 mini-
mization was done in collaboration with Wotao
Yin and several of my other TV-minimization
collaborators, Yin Zhang and a new student

intense interest



Zaiwen Wen [24, 25|, while my research on rank
minimization was done with two other new
students Shigian Ma and Lifeng Chen [26, 27].
Lifeng’s main interest, however, was primarily
in interior-point penalty function algorithms
[28], which brought me back to topics that I had
considered earlier in my career. Since, many of
the extremely large-scale problems in machine
learning (ML) are sparse or rank minimization
problems, my work on algorithms for their con-
vex relations, [y and nuclear norm minimization,
led me quite naturally to the study of optimiza-
tion methods for ML. These problems are so
huge, having millions to hundreds of millions of
variables, that first-order, FISTA, conditional
gradient, alternating direction and linearization
type methods become appropriate. So during
approximately the last five years this has been
the principal focus of my research which has
involved my former students Katya Scheinberg,
Wotao Yin, Shigian Ma, Zaiwen Wen and Bo
Huang (see [29]-[34]). Currently, I am working
with my former and current students Bo Huang
and Cun Mu, Zhiwei Qin, and a new colleague
John Wright in the EE Department at Columbia
on even larger tensor completion and robust and
stable PCA problems. From my point of view,
the field of continuous optimization has never
been more exciting.

Some Final Remarks.

From the above description of the path that my
research has taken, it may appear that I switched
from one topic to another based on what was hot
at the moment. This was not the case. I cer-
tainly prefer to work on optimization problems
that are important and these tend to be in ar-
eas that receive a lot of attention, but in every
case, my current or past research positioned me
to venture into a new domain. I have often at-
tributed this to luck, but I have come to realize
that when one works on important topics, even
if those topics become less relevant, research on
them often leads in a logical way to new impor-
tant topics. I would also like to stress how im-
portant it has been to me to have had fantastic
doctoral students with whom to work. My stu-
dents have often motivated me to get involved
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in new areas and I believe that I have learned
more from them than they may have learned
from me. They deserve much of the credit for
the contributions to the field of continuous opti-
mization for which I am being honored. While
I am extremely proud of these contributions, I
am also very proud for my service to the field as
editor-in-chief, senior editor and associate edi-
tor of Mathematical Programming, editor of the
SIAM Journal on Optimization and the STAM
Journal on Numerical Analysis, and associate ed-
itor of Operations Research and Mathematics of
Computation. Finally, I also take pride in hav-
ing served as Chairman of my Department for
eighteen years and as Interim Dean of Engineer-
ing on two different occasions at Columbia. I
have had and continue to have an exceptionally
rewarding career in academia and am extremely
grateful to those who helped make it so.
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Looking Back at My life

Alexander Shapiro
School of Industrial and Systems Engineering
Georgia Institute of Technology, Atlanta, Georgia
30332-0205, USA.

ashapiro@isye.gatech.edu

1. Early years

This prize came as a big surprise for me. Since
the prize is given for life-time accomplishments,
I suppose I should write about my life. This is a
daunting task. Anyway I will try.

I was born in Moscow the capital of Soviet
Union (USSR) - the country that does not exist
anymore. I started my school years at age 7 as
did millions of other children in Soviet Union.
My first years in school were unremarkable. I
certainly was not the best pupil in my class. At
that time the educational system in Soviet Union
was very uniform, and looking back I realize how
unique it was.

In sixth grade we started to learn algebra and
plane (Euclidean) geometry. Every pupil in class

OS Chair Sanjay Mehrotra, with Khachiyan Prize
winners Alexander Shapiro and Don Goldfarb

INFORMS Optimization Society Newsletter

had to learn how to derive and prove some sim-
ple geometrical constructions from basic axioms
in a reasonably rigourous way. This is when I
became somewhat different from the other chil-
dren in my class. The study pace was very slow
and I often was bored, so I was reading the text-
book ahead of what we were supposed to know.
At the same time I started to read books trying
to solve mathematical puzzles.

In seventh grade I discovered the existence
of mathematical workshops for children. These
workshops were supervised by students from
Moscow University, and were taught on a vol-
untary basis. Just coming to the old university
building in the center of Moscow, to listen to
and discuss new ideas was electrifying. Some of
the children there were considerably more ad-
vanced and in the beginning I was quite intimi-
dated. That summer I read parts of the excellent
book by Rademacher and Toeplitz [5] (in Rus-
sian Translation). The idea that there are many
different levels of infinity was amazing. Cantor’s
famous proof that the set of real numbers is un-
countable is rather elementary and could be un-
derstood with a high school mathematical back-
ground.

In eighth grade I started to attend an
evening school organized by Evgeny Borisovich
Dynkin. Apart from being a great mathemati-
cian, Evgeny Borisovich was also an outstanding
teacher and a most efficient organizer. We were
listening to lectures given by first class mathe-
maticians and took part in competitions for solv-
ing mathematical problems. One evening A.N.
Kolmogorov gave a talk, I was 14 and didn’t un-
derstand a thing he was talking about.

Next year, when I was supposed to start grade
9, Evgeny Borisovich started what became the
famous School Number 2 for gifted children.
About a hundred students were admitted and
organized into 3 groups. The two years in
this school were the most formative in my life.
Evgeny Borisovich brought his students to teach
us. Some of them became famous in their own
right. I was taught how to think by great people.
Our group was supervised by A.D. Wentzell. He
had a somewhat unusual sense of humor. One
day two students approached him arguing about
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the grades they received. Even though both of
them solved the first 3 out of 4 questions the
same way, one got a B and another C. His reply
to the C student was: “But in the fourth ques-
tion you showed negative knowledge”. I wish I
could say this to some of my students.

After graduating from high school T was ad-
mitted to the Mathematical Department of the
Moscow University, the famous Mech-Mat. 1
was lucky, just a few years later Jews would not
be accepted to Moscow University and this an-
tisemitic policy continued until the late eight-
ies. Mech-Mat was a unique place. Famous pro-
fessors were giving classes, Kolmogorov was not
teaching regular classes at that time, but I could
see him sometimes walking along the corridors.

2. In Israel

By the end of my studies at Moscow Univer-
sity I already knew that I wanted to immigrate
to Israel. In 1972 my wife and I left the “par-
adise” of the Soviet Union on our way to Israel.
We were young, idealistic, naive and unprepared
for the harsh reality. I started to study towards
a Ph.D. at Hebrew University in Jerusalem. It
didn’t go well. To support my family I worked
as a substitute teacher in high school. Then I
got a tenured position in the Israeli Ministry of
Communication. The decision to leave a secure
government job, after about one year, to start a
Ph.D. at Ben-Gurion University of the Negev in
Beer Sheva was not an easy decision.

My new advisor was Giacomo Della Riccia.
For my Ph.D. I was supposed to work on an
applied project which involved minimization of
the trace of a covariance matrix subject to keep-
ing the reduced matrix positive semidefinite, the
so-called Minimum Trace Factor Analysis.
today’s terminology this can be classified as a
semidefinite programming problem. Eventually
this required development of an optimization al-
gorithm and a related statistical inference. At
that time I knew very little about Mathematical
Programming and Statistics.

This optimization problem can be reformu-
lated as a problem of minimization of the largest
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eigenvalue of a symmetric matrix. Since the
corresponding objective function is convex and
hence differentiable almost everywhere, I naively
thought that I could apply a steepest decent type
optimization algorithm. To my surprise it be-
came clear that the algorithm didn’t converge to
the optimum, no matter how many iterations I
used. This motivated me to start a systematic
study of optimization techniques and convex and
nonsmooth analysis.

Another question which I faced was to develop
statistical inference of the optimal value and op-
timal solutions of that problem. For this I had
to understand how small (random) perturbations
of the sample covariance matrix effect changes of
the corresponding optimal value and optimal so-
lutions. This was the beginning of my interest
in sensitivity analysis of optimization problems.
Eventually, after many years and several coun-
tries, these studies were summarized in our book
[2].

I defended my Ph.D. thesis in 1980. Sev-
eral publications resulted from my thesis, from
which I would like to point to [9]. It was shown
there that for almost every covariance matrix its
rank cannot be reduced below a certain bound
by changing its diagonal elements. At that time
the motivation was to show that for the sample
covariance matrix, with probability one its rank
cannot be significantly reduced by changing its
diagonal elements.

At Ben-Gurion University I met Yosef
Yomdin. He was a fresh Ph.D. immigrant from
the USSR. We worked together on the theory
of what is now known as the Difference Convex
(DC) optimization. Unfortunately a couple of re-
ports which we wrote were not published. One of
interesting questions of that theory is to give an
intrinsic characterization of functions f : R" —
R representable as a difference f = g1 — g2 of
two convex functions gi,g2 : R = R. Forn =1
there is a simple answer for this question. Con-
vex functions g1, g2 : R — R are differentiable al-
most everywhere and their derivatives are mono-
tonically nondecreasing. Therefore f : R — R is
representable as a difference of two convex func-
tions iff it is differentiable almost everywhere and
its derivative has bounded variation. As far as
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I know such an intrinsic characterization is not
known for n > 1.

3. In South Africa

After receiving my Ph.D. diploma in 1980 I
started to look for a (postdoc) position. At that
time the USA was in a recession, I was unknown
and did not have any connections. After one year
and hundreds of applications I received a positive
answer only from South Africa. I signed a con-
tract for two years with the University of South
Africa (UNISA) and eventually stayed in Preto-
ria for ten years (with the exception of one year,
1988-1989, which I spent on sabbatical in Tech-
nion - Israel Institute of Technology in Haifa).

At UNISA I started my lifelong friendship with
an outstanding statistician, M.W. Browne. We
worked together on statistical inference of co-
variance structures. From a technical point of
view this can be considered as a branch of multi-
variate statistical analysis. On a practical side
covariance structural models are very popular
in Psychometric and Econometric applications.
From that period I would single out three pa-
pers [3],[10] and [11].

In [3] we showed that large samples statis-
tical inference, of a certain class of covariance
structural models, based on the assumption of
multivariate normal distribution of the popula-
tion, holds for a much larger class of distribu-
tions. The result was surprising and unexpected.
This started a new direction of research known
as asymptotic robustness. In [11] we were first
to suggest a nonparametric approach to estima-
tion of variograms. Eventually it became known
as Shapiro - Botha nonparametric variogram fit-
ting method.

While at the Technion, Israel, I became ac-
quainted with the late Reuven Rubinstein who
introduced me to the art and science of Monte
Carlo simulation. Our cooperation resulted in
my first book [6].

During those years I also worked on nons-
mooth and sensitivity analysis of optimization
problems. UNISA had a very good library, but
otherwise I worked quite in isolation. This was
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before the electronic age. I remember every
morning checking my mail box hoping to receive
news about submitted papers.

4. At Georgia Tech

In 1991 we immigrated to the United States
where I got a position at Georgia Institute of
Technology. The transition was not easy. I had
to adjust to the American system of teaching,
writing proposals and self promotion. Even to-
day after 22 years I am not sure I adjusted well.

The agreement with Georgia Tech was that
I would teach Statistics classes. And indeed I
taught almost every graduate and undergraduate
Statistics class. On the research side, I mainly
worked on optimization theory and applications.
I wrote a book with Frederic Bonnans on pertur-
bation analysis of optimization problems [2]. It
took about 4 years to write this book which was
published in 2000. The book was translated into
Chinese. It contains some original ideas on sec-
ond order analysis of possibly nonsmooth (non-
differentiable) optimization problems. In partic-
ular, this theory could be applied to semi-definite
and semi-infinite programming.

I also continued to work on stochastic pro-
gramming. The idea of using Monte Carlo sam-
pling techniques to approximate stochastic pro-
gramming problems is not new of course. A sta-
tistical inference of what is now known as the
Sample Average Approximation (SAA) method
was already outlined in our book [6]. By the way
the term Sample Average Approzimation (SAA)
was coined in our paper [4] in order to distin-
guish it from the Stochastic Approzimation (SA)
method. A natural question is how large should
be the sample size in order to solve the “true”
stochastic program with a given precision € > 0
(cf., [4]). This can be viewed as a question
of complexity of solving stochastic programs by
randomization techniques. It turns out that from
this point of view there is a principle difference
between two and multi-stage stochastic program-
ming problems. While a large class of two stage
stochastic programs could be solved to a reason-
able accuracy, generic multi-stage stochastic pro-
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grams seem to be computationally intractable.
This is discussed in details in publications [13]
and [14]. This does not mean, of course, that
some specific classes of multi-stage stochastic
programs cannot be solved, say by approximate
dynamic programming methods.

Together with Andrzej Ruszczynski I worked
on theory and applications of risk measures.
This topic of research started with the seminal
paper [1]. The main findings of our contribu-
tion were published in [7] and [8], and later sum-
marized in our monograph [15]. Eventually this
theory was applied in a project for developing
risk averse methodology for Brazilian operation
planning of hydro plants (cf., [16]).

Slightly paraphrasing Thomas Edison: “Re-
search is one percent inspiration, ninety-nine
percent perspiration”. But this “one percent”
is important. In that area of research to formu-
late a problem which on one hand is interesting
and important and on the other hand is doable,
often is far more important than its technical so-
lution. To find such a problem is not easy and
it does not happen too often. After many years
of constantly looking for new ideas I am still not
sure that I was fortunate enough to initiate such
a problem.
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Adding Squares: From
Control Theory to
Optimization
Pablo A. Parrilo
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First of all, I thank the Farkas Prize com-
Dimitris Bertsimas (chair), George
Nembhauser, Yurii Nesterov, and Yinyu Ye, for
this deeply appreciated and unexpected recog-
nition. It is a great honor, particularly given
the broad influence of their work across the op-
timization field and in my own research.

It is a pleasure to be able to describe my work
in optimization over the last few years. At the
same time, it is a good opportunity to outline
my somewhat indirect (or “non-central”) path
towards optimization, and to explain why alge-
braic considerations became of increasing impor-
tance in my work.

mittee:

Beginnings in control My undergraduate
education was in Electrical Engineering, in my
native Buenos Aires, Argentina. Shortly after-
wards, I began my PhD in Control and Dynam-
ical Systems at the California Institute of Tech-
nology (Caltech), working on systems and con-
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trol theory. Control theory is a very interdis-
ciplinary area, where several branches of math-
ematics (e.g., dynamical systems, linear alge-
bra, functional analysis, optimization, stochas-
tics, etc.) provide distinct but complementary
viewpoints. In the early 90’s a strong unifying
trend towards convex optimization (and partic-
ularly, the nascent area of semidefinite program-
ming) became dominant, a viewpoint nicely crys-
tallized in the book [6].

During my PhD I was generally interested in
robustness analysis, and in particular, in extend-
ing well-understood techniques used in the lin-
ear case (the “structured singular value” [27])
to general nonlinear systems. The main math-
ematical challenge in this area is to understand
how the solution set of a system of equations can
change as a function of some unknown parame-
ters. It quickly became clear that the case of
uncertain polynomial equations required a solid
understanding of the language and tools of real
algebraic geometry, and I slowly began learning
about this area.

Pieces of the puzzle, and further connections
with optimization, were provided by the works
of Shor and Reznick (particularly, [34] and the
beautiful survey [31]). The unifying notion was
sum of squares decompositions, which require a
multivariate polynomial p to admit a represen-
tation

p@) = e,

where the ¢; are also polynomials. This condi-
tion was shown to be tractable via semidefinite
programming [34, 21, 23, 24]. The unifying role
of sum of squares decompositions of polynomials
as witnesses of nonnegativity and set emptiness,
and their effective computation via semidefinite
programming, proved to be incredible fertile no-
tions; several of the key ideas are explained be-
low.

Farkas, Positivstellensatz, and hierarchies
of SDP relaxations The enormous power of
this algebraic machinery quickly became evident,
along with the realization that many earlier re-
sults of the field (e.g., the S-lemma) could be
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understood as particular cases of Positivstellen-
satz constructions.

To explain this, a good starting point is (quite
appropriately!) the celebrated “lemma of the al-
ternative” of Farkas. For linear inequalities, LP
duality provides the following well-known char-
acterization:

Theorem 1 (Farkas lemma)
{z € R": Az > b} is empty

0

x>0 :AT =0, v'A=1.

Equivalently, the emptiness of a set defined by
linear inequalities can be certified by any feasible
solution of an auxiliary (dual) LP. A key insight
is to realize that the second expression can be
simply interpreted as a polynomial identity of the
form

M (Az —b) = —1.

This viewpoint is the one that generalizes (re-
gardless of convexity!), to yield infeasibility cer-
tificates for arbitrary systems of polynomial
equations and inequalities over the reals. The
corresponding result, known as the Positivstel-
lensatz, is a centerpiece of real algebraic geome-

try (e.g., [5]):

Theorem 2 (Positivstellensatz)

{R

3 F(z),G(x) s.t.

fi(z) =0,
gl(x) 2 07

i=1,....m

. }isempty
1=1,...,p

F(z)+ G(x) = -1
F(z) € ideal(f1, ..., fm)
G(z) € preorder(g1,...,gp)-

Here ideal(f1, ..., fm) denotes the set of polyno-
mials of the form > /", g; f;, where ¢; € R[z], and
preorder(g,...,gp) is the preorder generated
by the inequalities g;, i.e., the set of polynomials
of the form ) sqaha, where the s, € Rz] are
sum of squares and the h, are squarefree prod-
ucts of the g;.

15

The Positivstellensatz states that for every in-
feasible system of polynomial equations and in-
equalities, there is a simple algebraic identity
that directly certifies the nonexistence of real so-
lutions. Indeed, by construction, the evaluation
of the polynomial F(z) + G(z) at any feasible
point yields a nonnegative number.
since this expression is identically equal to the
polynomial —1, we arrive at a contradiction. Re-
markably, the Positivstellensatz holds under no
assumptions whatsoever on the polynomials.

However,

This characterization is extremely useful from
the optimization viewpoint. Since it only in-
volves linear equations and sum of squares con-
straints, it can easily be checked with semidefi-
nite programming. This allows the formulation
of natural hierarchies of semidefinite relaxations
(for either feasibility or optimization) by con-
straining the degree of the possible certificates
[24, 25, 30]. These hierarchies provide, in a fully
algorithmic way, a general mechanism to approx-
imate arbitrary semialgebraic problems.

Sums of squares and Lyapunov functions
One of the central problems in control theory
is asymptotic stability of a dynamical system.
Given a system of ordinary differential equa-
tions dx(t)/dt = f(xz(t)), we are interested on
whether the solutions z(t) are “long-term sta-
ble”, i.e., they satisfy lim;_,o z(t) = 0, for all
initial conditions z(0). The classical “second
method” of Lyapunov provides a nice character-
ization in terms of Lyapunov functions, a gener-
alization of the notion of “energy” or “potential
function.” These are functions V : R®™ — R that
satisfy

T

V() >0, Lv(at) = (‘Z) f() <0
for all x € R™/{0}; intuitively, “energy” is non-
negative, and always decreases as the system
evolves. Although this characterization is very
appealing, it can be difficult to use since finding
a suitable function V is often non-obvious.

From the optimization viewpoint, after
parametrizing a given class of candidate func-
tions V' (say, polynomials) this looks like a simple
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feasibility problem for the unknown V. The ex-
pressions are clearly linear in the unknown func-
tion V. However, how should one deal with the
positivity constraints? The solution, of course,
was to impose a sum of squares condition, re-
quiring both the function V' and its derivative
—%V to have SOS decompositions. This proce-
dure, and other suitable modifications, enabled
a significant extension of many results in control
theory from the linear to the nonlinear case.

The techniques for parsing/solving these op-
timization problems, which we called sum of
squares programs, where later implemented in
the software package SOSTOOLS, written in col-
laboration with Antonis Papachristodoulou and
Stephen Prajna [29].

Quantum interlude Long casual conversa-
tions at the Red Door (Caltech’s coffeehouse and
the source of many scientific breakthroughs over
the years) with my “quantum” friends Andrew
Doherty and Fecho Spedalieri quickly led us to
the realization that sum of squares techniques
could be extremely useful in the characterization
of quantum entanglement.

Indeed, there is a very natural and fruitful iso-
morphism between three natural objects:

e “Entanglement witnesses:” observables that
certify that a given quantum state (de-
scribed by a density matrix p) cannot be
explained purely in terms of classical prob-
ability,

e Matrix positive maps: linear maps A : S™ —
8™, for which X > 0 implies A(X) > 0,

e Nonnegative  biquadratic = polynomials
p(x,y): these are quadratic in x for any
fixed y, and vice versa.

In particular, the isomorphism between the
last two is given by the relation p(x,y) =
xTA(yyT)x. Since the last condition involved
nonnegative polynomials, we started thinking
that perhaps SOS methods could say something
interesting about this...

Luckily for us, this was the case, and the out-
come was the series of papers [12, 13, 14] where a
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complete hierarchy of quantum separability tests
was developed. This work quickly resonated
with the quantum information community. In
a breakthrough paper in 2010, Brandao, Chris-
tandl and Yard [3] have shown that this hierar-
chy in fact provides a quasi-polynomial time al-
gorithm for separability detection, and sparked
very interesting developments.

Berkeley and Zurich After finishing my
PhD, I went to Berkeley for a few months, hosted
by Bernd Sturmfels and Laurent El Ghaoui, be-
fore starting a tenure-track position at ETH
Zurich. That relatively short time proved to be
incredibly exciting, and quite influential in my
future research.

With Karin Gatermann, who was also visit-
ing Berkeley at the time (and who sadly, would
pass away a few years later at a young age) we
began developing nice connections between SOS
decompositions of group-invariant polynomials
and representation theory. The key idea was to
realize that the joint presence of symmetry and
convexity allowed us to impose certain strong
conditions on a sum of squares decomposition;
without loss of generality, one could choose a rep-
resenting Gram matrix from the fized point sub-
space. This, in combination with Schur’s lemma,
made possible an equivalent reformulation, us-
ing smaller SDPs that were much easier to solve.
These results would eventually become [15], and
a number of applications of these methods, such
as [28] followed.

While at Zurich, I became interested in “hy-
perbolic programming,” an elegant formalization
and abstraction of semidefinite programming de-
veloped by Giiler, Tungel and Renegar, among
others. In joint work with Motakuri Ramana
and Adrian Lewis [20], we realized the intimate
connections between some recent work of Helton
and Vinnikov on semidefinite representability of
planar convex sets [19] and a classical conjecture
of Peter Lax on determinantal representations of
hyperbolic polynomials. Indeed, these two ques-
tions were essentially the same, modulo homoge-
nization, and the Helton/Vinnikov theorem was
used to settle this conjecture.
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Despite working extremely well in practice (for
those problems where we could solve them nu-
merically!), there were relatively few theoreti-
cal results to assess the quality of SOS relax-
ations. Around 2003, in joint work with Eti-
enne de Klerk and Monique Laurent [10], we
showed that for the case of polynomial optimiza-
tion over the simplex, SOS relaxations provided
a fully polynomial-time approximation scheme
(PTAS). In fact, we showed that the same result
could be achieved by simpler algorithms such as
a straightforward discretization scheme, and ex-
tended this to more general feasible sets such as
polytopes with polynomially many vertices.

Incidentally, over the last few years there has
been a surge of interest in the theoretical com-
puter science community on the power and lim-
itations of sum of squares hierarchies. In partic-
ular, recent works such as [4, 22] have provided
novel insights and rounding algorithms, and in
fact, suggest the possibility that the SOS ap-
proach may perhaps be used to settle Khot'’s
“unique games” conjecture.

Playing games at MIT I moved to MIT in
the Fall of 2004, and this proved to be (and still
is!) an extremely stimulating intellectual experi-
ence. In both the Laboratory for Information
and Decision Systems (LIDS) and the Opera-
tions Research Center (ORC) I have found amaz-
ing colleagues and students, and the source of
many collaborations.

One of my first papers after arriving to MIT
was a short note on polynomial games, a nice
class of two-person zero-sum games originally
studied by Dresher, Karlin and Shapley [11]. As
it turned out, sum of squares and SDP methods
were the perfect tool for the computation of min-
imax equilibria for these games. In particular,
this gave a completely satisfactory generalization
of the classical LP solution of bimatrix games,
to the case where the players must choose ac-
tions on a continuous interval and the payoff is a
polynomial function of the players’ decisions [26].
In subsequent works with Noah Stein and Asu
Ozdaglar we significantly extended these find-
ings, by developing structural results and com-
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putational methods for other infinite games and
related notions of equilibria, e.g., [35, 36].

Rank, sparsity, and beyond In 2006-07, the
Institute for Mathematics and its Applications
(IMA) hosted a year-long program on Applica-
tions of Algebraic Geometry. One frigid evening
in January 2007, Ben Recht and I went out for
dinner at a Chinese restaurant (that no longer
exists) near the IMA, and started discussing
some of the recent developments in “compressed
sensing,” a fairly new area at the time. It quickly
become clear to us that it should be possible
to extend many of the results about recovery of
sparse vectors from linear measurements using
/1 minimization, to the matrix situation where
one minimizes the sum of singular values (i.e.,
the “nuclear norm” heuristic, that Maryam Fazel
had developed for her PhD thesis). Maryam
(who was also visiting the IMA) immediately
joined us in the project, that quickly led to [32].
This starting point provided the spark for much
follow-up work in the area.

The interaction between convex-algebraic
ideas and probabilistic models proved to be
very fruitful. In joint work with Venkat Chan-
drasekaran, Sujay Sanghavi, James Saunder-
son and Alan Willsky we introduced novel
convex relaxations for several kinds of matrix
decompositions (e.g., low-rank/sparse, or low-
rank/diagonal), and the associated probabilistic
descriptions such as Gaussian graphical models
or correlation matrices [9, 33]. The geometry
of the regularizing norms, given by convex hulls
of certain algebraic varieties, played a crucial
role. In particular, this led to the “atomic norm”
framework [8] (with Venkat Chandrasekaran,
Ben Recht, and Alan Willsky), where a very
appealing geometric description of many “sens-
ing” results was developed. This made possible
a much simpler derivation of many of the known
results, including a quantification of sample com-
plexity in terms of natural geometric and proba-
bilistic invariants such as the Gaussian width, as
well as many extensions.
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SOS convexity and SDP representability
Despite the large body of theory, and the enor-
mous number of successful applications, semidef-
inite programming still remains somewhat mys-
terious (at least, to me!). In particular, the ques-
tion “which sets are SDP-representable?” still
lacks a fully satisfactory answer, although great
advances have been made in recent years.

A good contrast is the case of linear program-
ming (LP). Consider for simplicity the case of
convex sets that are full-dimensional and com-
pact (i.e., convex bodies). In this case, the
Minkowski-Weyl theorem exactly characterizes
the feasible sets of LPs (polyhedra) as those sets
with finitely many extreme points. A similarly
complete characterization for SDP representabil-
ity is not (yet?) available.

The notion of sum of squares convexity (or
SOS-convexity for short), originally introduced
by Helton and Nie [18], provides a nice algebraic
analogue of classical “geometric” convexity for
polynomial functions. Indeed, instead of mere
positive definiteness, SOS-convexity requires the
Hessian of a polynomial to factor in terms of
polynomial matrices. In joint work with Amir
Ali Ahmadi [1, 2] we provided a complete char-
acterization and established when it is equivalent
to “standard” convexity.

In recent work with Joao Gouveia and Rekha
Thomas [17, 16] we began developing a system-
atic approach to SDP representability. In par-
ticular, this led to a very appealing character-
ization in terms of a quantity we call positive
semidefinite rank (psd-rank). For simplicity, we
describe only the case of polytopes; see [17] for
general convex bodies. Given a nonnegative ma-
trix M € R™, its psd-rank is the smallest inte-
ger k for which there exist positive semidefinite
matrices A1,...,A, and By, ..., By, of size k x k
such that

Mij = <AZ, Bj).

It turns out that the psd-rank determines the size
of the smallest SDP representation of a polytope
with slack matrix M. This generalizes earlier
work of Yannakakis [37] on the complexity of ex-
tended LP formulations of polytopes.
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Convex algebraic geometry Asis clear from
the previous paragraphs, much of my work so far
has been an attempt to understand the beau-
tiful interactions between optimization, convex
geometry, and algebraic geometry. The recent
SIAM book [7] presents many of the develop-
ments in this evolving subject (known as “con-
vex algebraic geometry”), and is the result of an
NSF Focused Research Group (FRG) established
a few years ago along with several of my col-
leagues (Helton, Nie, Sturmfels, Thomas). This
is a truly exciting area, that has already shown
to have a large number of potential applications,
rich connections across the mathematical sci-
ences, and provided novel tools for applied math-
ematics and engineering. Certainly much more
work is needed in this area, which hopefully will
keep me (and many others!) busy for the next
few years...

Finally... I am enormously grateful to my stu-
dents, friends, and colleagues for the many things
they have taught me. John Doyle, Stephen
Boyd, Bernd Sturmfels, Bill Helton, Dimitris
Bertsimas and Rekha Thomas (in strict chrono-
logical order!) have been particularly influential
figures throughout my career, as it is surely obvi-
ous from a careful analysis of the records. I want
to use this opportunity to publicly thank them
for their continuing support, and always helpful
advice.
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This article summarizes the paper [4], which
is concerned with solving a chance-constrained
mathematical program (CCMP) of the form:

min{ f(z) : P{z € P(w)} >1—¢, z € X}, (1)

where x € R” is the vector of decision variables
to be chosen to minimize f : R" — R, w is a
random vector assumed to have finite support,
P(w) € R™ is a polyhedron for each w, and X C
R™ represents a set of deterministic constraints
on z. € € (0,1) is a tolerance typically chosen
close to zero, representing the desire to have the
constraint € P(w) hold with high probabil-
ity. We let w®, k € N := {1,..., N} be the sce-
narios defining the support of w, and assume
for simplicity of exposition that P(w*) = 1/N
for k € N. For CCMPs in which w does not
have finite support, sample average approxima-
tion [5, 7] can be used to obtain approximations
having finite support that can be used to con-
struct feasible solutions and statistical estimates
of solution quality of the original CCMP.

A generic example is when P(w) is the set of
points for which there exists a recourse decision

y that satisfies a set of random linear constraints,
ie.:

P(w*) = {z € R} : Iy € RY with TFz+Why > bF} .

2)
In this case the CCMP (1) can be formulated as
a mixed-integer program (MIP) by introducing
binary decision variables z,k € N, such that
2z = 0 implies 2 € P(w*), and copies of the
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recourse variables y*, k € N to represent the
recourse actions taken in each scenario,

min f(z)

st. TRz + WhyF 4 2. M, > 08, ke N (3a)
N
sz < p, (3b)
k=1

keN
(3¢c)

where p = |eN|. Here M}, € R, k € N are suf-
ficiently large to ensure that when z; = 1, con-
straints (3a) are not active. On the other hand,
when zj, = 0, constraints (3a) enforce x € P(w").
This MIP formulation has two drawbacks: (i) it
is large when the sample size N is large, due
to having N copies of the recourse variables y*
and constraints (3a), and (ii) the “big-M” con-
straints (3a) are likely to lead to weak linear pro-
gramming relaxations. The algorithm proposed
in [4] uses decomposition and strong valid in-
equalities to overcome these drawbacks.

reX, 2€{0,1}", yF eRY,

Algorithm

The decomposition approach is similar to that
first proposed by Shen, Smith, and Ahmed [9)].
A branch-and-cut algorithm is used to solve a
master problem of the form

N
min f(z) s.t. sz <np, (4a)
k=1

2 =0 =z € PW"),
reX, ze{0,1}"V,

(4b)
(4¢)

Initially, the constraints (4b) and the integrality
constraints are relaxed and a branch-and-bound
search tree is constructed, where branching is
done to enforce the integrality restrictions on z
and any integer-constrained x variables.

When a solution (&, 2) that satisfies the in-
tegrality constraints is obtained at a node re-
laxation solution (or via a heuristic), the logical
conditions (4b) must be checked to determine if
the solution is really feasible to (4). Thus, for
each k € N with 2, = 0, a separation problem is
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solved which determines if # € P(w*) and if not,
returns an inequality of the form

ar > f (5)
valid for P(w¥) and for which ai < 3. It is as-
sumed that the separation problem returns an in-
equality from a finite set. For example, if P(w")
is described as in (2), then the separation prob-
lem could be implemented with'

max 7! (b — T*%)
s
st. mIWF<0,7le<1,7 e R

If the optimal value of this linear program is posi-
tive with optimal solution 7, then o = #7T* and
B = #Tb* yields the required inequality (5). If
# € P(w*) for all k with 2, = 0, then the solu-
tion is feasible and so the incumbent solution is
updated. Otherwise, an inequality (a lazy con-
straint) must be added to the formulation to cut
off solution (z, 2). In particular, a basic decom-
position algorithm can be obtained by adding an
inequality of the form

ar + M(a)z, > B,

where M («) is large enough so that the inequal-
ity ar > 8 — M («) is satisfied by any solution
feasible to (4). Such an algorithm accomplishes
the goal of decomposition — separation problems
are solved a single scenario at a time — but still
suffers from the use of potentially weak big-M
coefficients.

To obtain a set of stronger valid inequalities,
when an inequality of the form (5) is obtained,
the algorithm solves a set of single-scenario op-
timization problems:

hi(@) ;== min{az : x € PW*)n X} (6)
where X D X contains a subset (possibly all)
of the constraints on the x variables. Choosing
X=X may yield the strongest valid inequal-
ities, but at the expense of potentially making
the subproblems (6) more difficult. At the other
extreme, one could choose X =R".

'Tn [4], this problem has a regrettable typo: the con-
straint 77e < 1 is incorrectly stated as 77e = 1 in [4].
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Having obtained the values hy(«) for k € N,
they are then sorted to obtain a permutation o
of NV such that:

hUl (O‘) > hU2(a) > 2 hO'N(a) :
These values can then be used to derive a set of
inequalities valid for (4):

ax + (hy, (o) — hopis (@))zg, 2 ho, (),

In particular, when z,, = 0, the constraint (7)
enforces ar > hy, (o) which is valid by definition
of hy, (o). When z,, = 1, the constraint reduces
to ax > hy,,, () which is valid due to (3b). One
can interpret the coefficient (hy,(a) — ho,,,(@))
as a strengthened big-M coefficient.

The inequalities (7) can then be “mixed” using
results of [1] or [2] to obtain an exponential class
of additional strong valid inequalities:

¢
oz + Z(hti(oz) — hyyyy (@) 2ze, > by () (8)
i=1

for any T' = {t1,t2,...,t¢} € {o1,...,0p} with
hi,(a) > hy, (a) for i@ = 1,...,¢, and with
hi, (@) := ho,,, (). A most violated inequality
in this class can be found efficiently using results
from [1] or [2]. The use of mixing sets for solv-
ing CCMPs was first proposed in [6] for the case
of single-stage problems having only right-hand
side uncertainty, and was further studied in [3].

To summarize, when an integer feasible solu-
tion (z,2) is found in the branch-and-cut algo-
rithm, a single-scenario separation problem is
solved for each scenario with Z; = 0 to deter-
mine if # € P(w"). If a scenario with & ¢ P(w)
is found, then a separating inequality (5) is found
and the coefficient « is used as the objective
in the single-scenario optimization problems (6).
The optimal values of these problems are then
used to construct the base valid inequalities (7)
(with strengthened big-M coefficients), and fi-
nally a separation algorithm is used to search for
one or more violated mixing inequalities of the
form (8) which are then added to the formula-
tion. Correctness of this algorithm is assured by
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demonstrating that this procedure is guaranteed
to cut off any points (&, 2) that do not satisfy
the logical constraints (4b).

The computational performance of the algo-
rithm can be improved in several ways, described
in detail in [4]. First, to improve the LP re-
laxation bounds, the cut generation procedure
described above can be called also at solutions
(z, 2) that are not integer feasible. Second, in-
formation about the success of past calls to the
separation problems for all the scenarios is used
to choose the sequence in which to solve the sepa-
ration problems, with the hope of quickly finding
a scenario k with & ¢ P(w") if any such scenario
exists. Finally, any time the problems (6) are
solved, the values {hi(a) : k € N} are saved
and when the cut generation routine is called, it
first checks for a violated mixing inequality (8)
using any of these stored sets of values, and if
a violated inequality is found it is immediately
added and the LP relaxation is re-solved. This
is advantageous because the separation of the in-
equalities (8) is very efficient compared to solving
the all the single-scenario separation and opti-
mization problems.

Summary of Computational Re-
sults

The algorithm was tested on a two-stage resource
planning problem. In this problem, the amounts
of a set of resources to have available must be
decided before observing the random amounts of
customer demands, and after the demands are
known the resources are allocated to meet the
customer demands. The goal is to minimize the
cost of the resources while ensuring that, with
high probability, all customer demands can be
satisfied by some allocation of the resources. In
the first version of the test problem, the set
P(w*) has the form (2), but with the special
structure that the coefficients in the constraints
are all deterministic; only the right-hand side
(the customer demands) is random. The algo-
rithm was also tested on instances with random
resource yields (some proportion of the planned
resources are not available), and in which the
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Table 1: Results for instances with random de-
mands only.

Basic Dec. Strong Dec.

(n,m) e Gap (%) Time (sec)
(20,30) 0.05 6.8% 16
0.1 23.0% 22

(40,50) 0.05 16.6% 25
0.1 25.4% 26

customer service rates are random, leading to in-
stances with random constraint coefficients.

The algorithm is compared to solving the large
formulation (3) directly, and to a decomposition
algorithm that does not use the mixing inequali-
ties to obtain stronger valid inequalities. For the
instance sizes tested, formulation (3) left very
large optimality gaps after the one hour time
limit, so in this summary we present only the
comparison between the two decomposition al-
gorithms. Table 1 shows a sample of the re-
sults for a set of instances with only random
demands, having N = 3000 scenarios and hav-
ing varying size in terms of number of resource
types n and customer types m. Table 2 shows a
sample of the results for a set of instances with
random demands, yields, and service rates, hav-
ing N = 1500 scenarios and varying sizes. The
entries in both of these tables are averages over
five instances.

The results indicate that the proposed algo-
rithm can solve large instances of this problem,
especially when only the demands (right-hand
side of the constraints) are random, whereas a
simple decomposition algorithm fails. The in-
stances with random constraint coefficients are
more difficult, and so the algorithms are tested
on smaller instances. Even on these smaller in-
stances the proposed algorithm is no longer able
to solve all the instances in the time limit. How-
ever, the ending optimality gaps are very small,
and much smaller than what is obtained using
the basic decomposition algorithm.

We close this section by commenting on some
experience with this algorithm that has been re-
ported in more recent work on CCMPs having a
different structure: no recourse variables and a
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Table 2: Results for instances with random de-
mands, yields, and service rates.

Basic Dec. Strong Dec.

(n,m) e  Gap (%) Gap (%)
(10,20) 0.05 9.0% 0.3%
0.1 15.7% 0.7%

(20,30) 0.05 14.5% 1.4%
0.1 20.9% 1.9%

small number of constraints, all having random
coefficients. These problems have little benefit
from a decomposition algorithm because there
are no recourse variables and the number of cuts
that would be added might easily exceed the size
of the original formulation. Thus, the applica-
tion of the proposed algorithm to these prob-
lems amounts to using the mixing inequalities
to obtain stronger relaxations. Qiu et al. [8] and
[10] have found that while using the proposed al-
gorithm significantly outperforms the use of the
standard MIP formulation with naively chosen
big-M coefficients, just performing big-M coef-
ficient strengthening, e.g., using the logic that
leads to the constraints (7), already leads to a
substantial improvement in the ability to solve
the MIP formulation. For such instances it ap-
pears the incremental benefit in improving the
bound using the mixing inequalities does not
outweigh the computational burden of adding
these additional cuts to the formulation.

Solving for the Efficient Frontier

A common question when solving a CCMP is
how to choose the risk tolerance €. The answer
is to consider risk and cost as two competing
objectives, and construct an (approximate) effi-
cient frontier that shows for varying levels of risk
level € what the corresponding minimum cost is.
A simple way to approximate this efficient fron-
tier is to solve the CCMP for a variety of risk
levels €, and plot the resulting pairs of risk-cost
values. In [4] we show how the proposed algo-
rithm can be adapted to re-use information from
solving a CCMP at one risk level when solving
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the next. In particular, by solving in increas-
ing order or risk level, feasible solutions at one
risk level remain feasible at the next risk level,
and so can be used as initial incumbent solu-
tions. More significantly, the information used to
generate the valid inequalities in the algorithm,
the coefficient vectors o and the corresponding
values hi(a),k € N can be saved and used to
generate cuts when solving for different risk lev-
els. This can save a significant amount of time,
as finding these values represents the most time-
consuming component of the cut-generating pro-
cedure. Computational results indicate that us-
ing these warm-start ideas to construct an ap-
proximate efficient frontier by solving at 16 dif-
ferent risk levels can lead to a 50-75% reduction
in computational time compared to solving the
problems independently.
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First of all, it is an honor to receive the IN-
FORMS Optimization Society best student pa-
per award. Before going into the content of
the paper, I want to give a bit of context in
which I did this research. This paper was essen-
tially my master thesis work in the University
of Coimbra, in Portugal, back in 2009-2010 (In
fact, my master thesis has the same title [1]).
Katya Scheinbery and Luis Nunes Vicente pro-
posed me to work on the connection between
the, then recent, developments in sparse recov-
ery and Compressed Sensing (subject I was, and
still am, quite interested in) and Derivative-Free
Optimization, a subject I was not familiar with
at the time but which I very quickly learned to
enjoy. During this period I was extremely fortu-
nate to have had the opportunity to work with
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both Luis and Katya and, together, we wrote
the awarded paper, “Computation of sparse low
degree interpolating polynomials and their appli-
cation to derivative-free optimization” [5]. This
work has spurred both parallel [4] and future re-
search [6] that I will also briefly describe below.

The framework is unconstrained optimization:
one wants to minimize a (sufficiently smooth)
function f: R” — R over R”. In many appli-
cations function evaluations are particularly ex-
pensive and one has no access to function deriva-
tives (an important example is when the goal is
to do parameter optimization and each evalua-
tion requires an expensive simulation). These
applications motivate the interest in optimizing
f without using its derivatives and using as few
function evaluations as possible, this is known as
Derivative-Free Optimization. An excellent in-
troduction to the topic is given in the book [10].

One type of algorithms used in DFO are the,
so called, model-based trust-region methods. Es-
sentially, they operate by iteratively picking a
small region, known as the trust-region, B C R"
(say a ball) and build (via approximation on
samples of f) a model m: B — R of f in B.
The idea is for m(z) to be easier to optimize
in B while being a reliable model of f, and for
minimizer of m(z) to be an estimate for the min-
imizer of f in B. Depending on the location of
the minimizer and its value on f the trust-region
is updated and the procedure repeated.

Sanjay Mehrotra, Afonso Bandeira and Simge
Kiiclikyavuz
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A very popular class of models used is the
quadratic polynomials, as these are reasonably
simple while being able capturing curvature of
the function (unlike linear models). For the
sake of simplicity, let us suppose for the mo-
ment that f is itself a quadratic and we want
to find the model m = f. Constructing m(x)
from p function evaluations of f corresponds to
solving a linear system. Let ¢1,...,¢x5 be a
basis for the quadratic polynomials of n vari-
ables (meaning N = M) We can write
m(x) = Zf\;l a;¢;(x) and focus on estimating
the {a;}¥,. In fact, a function evaluation of f
at y; gives a linear constraint on «,

N
> aidily) = f(yj)-
=1

A sample set Y of p points corresponds to p lin-
ear constraints on a which we represent by an
interpolation matrix M (¢,Y)

M(¢,Y)a = f(Y). (1)
In order for (1) to be a determined system one
needs p > N = % function evaluations in
each iterations, which is very often too expen-
sive.

Indeed, without any extra information on the
structure of f, this is the best one can do. For-
tunately, most functions that arise from appli-
cations have special structures. For example, in
the parameter estimation problem, it is rather
unlikely that every pair of parameters is inter-
acting (in a relevant way). Pairs of parameters
not interacting should correspond to zero joint
derivatives which suggests sparsity of the func-
tion’s Hessian. This motivated us to pursue tech-
niques that exploited the Hessian sparsity in or-
der to construct reliable models with far fewer
samples, which is precisely the subject of the pa-
per [5].

Provided we choose a basis {¢}Y | such that
Hessian sparsity translates into sparsity in «,
the Hessian sparsity of f corresponds to spar-
sity of the solution of the linear system (1).
Around a decade ago, the seminal work of Can-
des, Donoho, and others [8, 9, 11, 12, 13], spurred
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a vast body of exciting research in the area of
sparse recovery (also known as Compressed Sens-
ing) which provides very good understanding of
when one is able to recover a sparse vector a from
a underdetermined linear system. The main con-
tribution of this paper is leveraging, and adapt-
ing, these results to estimate a (which gives
a model m(x)), via (1), using significantly less
than N = O(n?) function evaluations.

In a nutshell, the theory of Compressed Sens-
ing tells us that, if M(¢,Y) satisfies a cer-
tain property (known as the Restricted Isome-
try Property (RIP) [7]), the sparse vector « can
be recovered by ¢; minimization (essentially, it
is the vector with minimum ¢; norm which still
satisfies the linear constraints). Matrices satis-
fying the Restricted Isometry Property are no-
tably difficult to build and computationally hard
to certify [2] (I have spent some time thinking
about this myself [3]) but random constructions
are known to yield RIP matrices for a number
of rows (corresponding to samples) p on the or-
der of p = O(klog N), where k is the sparsity of
the vector, and N the ambient dimension (in our
case N = O(n?)). This means that, as long as
M(#,Y) is RIP, the number of samples needed
is no longer on the order of vector dimension but
instead, on the order of the sparsity of a (with a
small logarithmic loss). Moreover, ¢; minimiza-
tion can be formulated as a linear program thus
enjoying many efficient algorithms.

Classically, the results in Compressed Sensing
guaranteeing the RIP property for random ma-
trices mostly concern matrices with independent
entries. In our setting, however, we are con-
strained to a very structured interpolation ma-
trix M(¢,Y). Knowing how difficult construct-
ing good deterministic RIP matrices seems to be,
we opted to “inject randomness” in the matrix
by taking the sample set Y to be random (while
the basis {¢}¥, is fixed and deterministic). In
fact, provided that the basis {¢}Y, satisfies cer-
tain properties, a sufficiently large random sam-
ple set Y gives an interpolation matrix M (¢,Y)
which is known [17] to be RIP with high proba-
bility. In our paper [5], we are able to build a ba-
sis {¢}¥, both inheriting sparsity from Hessian
sparsity and satisfying the properties needed to
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yield RIP interpolation matrices. This, together
with a particular choice of trust-region and sam-
pling measure for Y allowed us to show that,
with high probability, /1 minimization succeeds
in recovering « from the linear measurements (1)
with as few as

p = O(nlog(n))

samples, provided that the Hessian of f has O(n)
non-zero entries. Note that this number of sam-
ples (corresponding to function evaluations) is
considerably less than the O(n?) samples that
would be needed in the classical case.

In general, f is not a quadratic polynomial.
However, as long as f is sufficiently smooth,
one can show that the procedure sketched above
gives, with the same number of samples, a model
m that approximates f in B essentially as well as
its second-order Taylor approximation (these are
known as fully-quadratic models). The idea is to
replace f with its second-order Taylor approxi-
mation in the arguments above. In that case,
each sample of f can be regarded as a noisy sam-
ple of the quadratic approximation. Fortunately,
the guarantees given in the theory of sparse re-
covery often come with robustness to noise and,
in this case, we can leverage such results to en-
sure the recovery of a fully-quadratic model of f,
with high probability.

The sparsity assumption used is on the Hes-
sian of the function, however the coefficients «
also describe the gradient and constant term
which may not be sparse. This means that there
are some entries of the vector a that are not be-
lieved to be sparse. Motivated by this fact, we
investigated the problem of sparse recovery for
partially sparse vectors [4]. We showed that, not
very surprisingly, one should do ¢; minimization
only on the entries that are believed to be sparse.

Using the machinery described above, we
developed a model-based trust-region method
based on minimum #¢; model construction. In
our experiments, this method was able to com-
pete with state of the art Derivative-Free meth-
ods, such as NEWUOA [16, 15] on the standard
problem data base CUTEr [14].

A natural question raised by this work regard
the convergence of methods based on this type of
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random models. Recall that recovery is only en-
sured with high probability at each iteration and
so it will likely fail on some iterations. This ques-
tion was the target of further research [6] where
we showed that, under somewhat general con-
ditions, the convergence guarantees for model-
based trust-region methods can be adapted to
handle this uncertainty in the model construc-
tion step. Essentially, we showed that, as long
as the probability of constructing a good model
on each iteration is over one half, these methods
still converge.
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Nominations for Society
Prizes Sought

The Society awards four prizes annually at
the INFORMS annual meeting. We seek nom-
inations (including self-nominations) for each
of them, due by July 15, 2014. Details for
each of the prizes, including eligibility rules
and past winners, can be found by follow-
ing the links from http://www.informs.org/
Community/Optimization-Society/Prizes.

Each of the four awards includes a cash
amount of US$1,000 and a citation plaque. The
award winners will be invited to give a presen-
tation in a special session sponsored by the Op-
timization Society during the INFORMS annual
meeting in San Franciso, CA in November 2014
(the winners will be responsible for their own
travel expenses to the meeting). Award winners
are also asked to contribute an article about their
award-winning work to the annual Optimization
Society newsletter.

Nominations, applications, and inquiries for
each of the prizes should be made via email to
the corresponding prize committee chair.

The Khachiyan Prize is awarded for out-
standing lifetime contributions to the field of op-
timization by an individual or team. The topic
of the contribution must belong to the field of
optimization in its broadest sense. Recipients of
the INFORMS John von Neumann Theory Prize
or the MPS/STAM Dantzig Prize in prior years
are not eligible for the Khachiyan Prize. This
year’s Khachiyan Prize committee is:

e Tamads Terlaky (Chair)
tat2080@lehigh.edu

e Daniel Bienstock

e Immanuel Bomze

e John Birge

The Farkas Prize is awarded for outstand-
ing contributions by a mid-career researcher to
the field of optimization, over the course of their
career. Such contributions could include papers
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(published or submitted and accepted), books,
monographs, and software. The awardee will be
within 25 years of their terminal degree as of Jan-
uary 1 of the year of the award. The prize may
be awarded at most once in their lifetime to any
person. This year’s Farkas Prize committee is:

e Yinyu Ye (Chair)
yyye@stanford.edu

e Garud N. Iyengar

e Jean B. Lasserre

e Zhi-Quan (Tom) Lou

The Prize for Young Researchers is
awarded to one or more young researcher(s) for
an outstanding paper in optimization. The pa-
per must be published in, or submitted to and ac-
cepted by, a refereed professional journal within
the four calendar years preceding the year of
the award. All authors must have been awarded
their terminal degree within eight calendar years
preceding the year of award. The prize commit-
tee for this year’s Prize for Young Researchers is
as follows:

e Andrzej Ruszczynski (Chair)
rusz@rutcor.rutgers.edu

e Katya Scheinberg

e Javier Pena

e Jean-Philippe Richard

The Student Paper Prize is awarded to one
or more student(s) for an outstanding paper in
optimization that is submitted to and received
or published in a refereed professional journal
within three calendar years preceding the year
of the award. Every nominee/applicant must be
a student on the first of January of the year of
the award. All coauthor(s) not nominated for
the award must send a letter indicating that the
majority of the nominated work was performed
by the nominee(s). The prize committee for this
year’s Student Paper Prize is as follows:

e Santanu Dey (Chair)
santanu.deyQisye.gatech.edu

e Serhat Aybat

e Guzin Bayraksan

e Francois Margot
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Nominations of Candidates
for Society Officers Sought

We would like to thank three Society Vice-
Chairs who will be completing their two-year
terms at the conclusion of the INFORMS meet-
ing: Leo Liberti, Andreas Wéchter, and Andrew
Schaefer. We are currently seeking nominations
of candidates for the following positions:

e Vice-Chair for Global Optimization

e Vice-Chair for Nonlinear Optimization

e Vice-Chair for Optimization Under Uncer-
tainty

Self nominations for all of these positions are en-
couraged.

According to Society Bylaws, “The main re-
sponsibility of the Vice Chairs will be to help
INFORMS Local Organizing committees iden-
tify cluster chairs and/or session chairs for the
annual meetings. In general, the Vice Chairs
shall serve as the point of contact with their
sub-disciplines.” Vice Chairs shall serve two-year
terms.

Please send your nominations or
self-nominations  to  Jim  Luedtke  (jr-
luedt1@wisc.edu), including contact information
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for the nominee, by Saturday, June 30, 2014.
Online elections will begin in mid- August,
with new officers taking up their duties at
the conclusion of the 2014 INFORMS annual
meeting.

Seeking a Host for the

2016 INFORMS
Optimization Society

Conference

The INFORMS Optimization Society Confer-
ence is held in the early part of the even years,
typically in a warm location. The most re-
cent OS conference, held in 2014 at Rice Uni-
versity, was a great success, offering an op-
portunity for researchers studying optimization-
related topics to share their work in a focused
The Optimization Society is currently
seeking candidate locations to host the 2016 con-
ference. If you are interested in helping to host
the conference, please contact the current Opti-
mization Society chair, Sanjay Mehrotra (mehro-
tra@northwestern.edu), or the chair-elect Suvra-
jeet Sen (sen@datadrivendecisions.org).

venue.
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