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e IOS membership has doubled to 1627 members
in the last 5 years.

e INFORMS OS Today (this newsletter) is dou-
bling from one to two issues per year.

The INFORMS Journal on Optimization — yes,
that’s its name after a spirited discussion in our
community — has been approved by the INFORMS
Board with Dimitris Bertsimas as the inaugural
Editor-in-Chief. His vision for the journal is included
in this newsletter, and look for additional informa-
tion in forthcoming issues.

Optimizers across the planet owe a large-scale
thank you to Suvrajeet Sen. During his tenure as
the previous Chair of 1I0S, Suvrajeet worked with
unwavering energy to take the INFORMS Journal
on Optimization from being a notion discussed fleet-
ingly at IOS Business Meetings, and elsewhere, to a
reality. Thank you, Suvrajeet!

We all know that semidefinite programs (SDPs)
play a prominent role, both in generalizing impor-
tant classes of convex optimization problems and in
providing relaxations of hard optimization problems.
The analogous role that relative entropy programs
(REPs) can play is much less known. Venkat Chan-
drasekaran and Parikshit Shah received the 2016 IOS
Young Researchers Prize for “Relative Entropy Re-
laxations for Signomial Programming.” Their arti-
cle in this issue summarizes that paper’s results, in-
cluding how REP provides an attractive hierarchy of
convex relaxations for signomial programs, and fur-
ther contrasting their hierarchy with that provided
by sum-of-squares techniques.

Gonzalo Munoz garnered the 2016 I0S Student
Paper Prize for his paper, with Dan Bienstock, “LP
Formulations for Mixed-Integer Polynomial Opti-
mization Problems.” In this issue, they describe a
family of LP approximations that exploits sparsity in
polynomial optimization problems, where sparsity is
measured by the width of a tree-decomposition of the
constraints’ intersection graph. Their LP approx-
imations yield near-optimal and near-feasible solu-
tions of the polynomial optimization problem for any
specified tolerance. A dense constraint causes diffi-
culties for their first approach, and so in the context
of polynomial optimization problems defined on net-
works, Bienstock and Mufioz discuss an equivalent
reformulation that allows for small tree width.
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Look for articles from Aharon Ben-Tal (Khachiyan
Prize) and Sven Leyffer (Farkas Prize) in the second
issue of our 2017 newsletter. These four prizes are
highly competitive, and truly earn their characteri-
zation as “esteemed recognition.” The deadline for
submitting nominations for all four 2017 prizes is
nearly upon us: June 15th. Please see the call for
prize nominations in this newsletter.

Thank you to our IOS Officers — Necdet Ser-
hat Aybat, Amitabh Basu, Gilizin Bayraksan, Dan
Bienstock, Pietro Belotti, Hande Benson, Austin
Buchanan, Marina Epelman, Burcu Keskin, Sigian
Shen, and Sauleh Siddiqui — who have growing re-
sponsibilities with our growing membership, han-
dling more IOS sessions at our conferences, more
newsletters, and more Web site updates, all enabling
greater IOS contributions and visibility. Please see
the call for nominations for I0S officers in this
newsletter.

Finally, we organize an INFORMS Optimization
Society Conference every other year, and when I
say “we,” for our 2018 conference, I mean: Steve
Billups (University of Colorado Denver), Manuel La-
guna (University of Colorado Boulder), and Alexan-
dra Newman (Colorado School of Mines). The con-
ference will take place March 23-25, 2018 at the
University of Colorado’s downtown Denver location,
and “we” have an exciting line-up of plenary speak-
ers, as detailed in this newsletter. When registration
becomes available on-line, register quickly, before it
sells out!

Denver, CO — location of the 2018 IOS Conference (image
used with permission of the University of Colorado)



Volume 7 Number 1 May 2017

_LP formulations for _
mixed-integer polynomial
optimization problems

Daniel Bienstock and Gonzalo Munoz
Columbia University
USA

dano@columbia.edu| and jgonzalo@ieor.columbia.edu

This article presents a summarized version of [3],
where we develop a class of linear programming
approximations for polynomial optimization prob-
lems that take advantage of structured sparsity of
the constraints. This structured sparsity will be
given by tree-width, a graph theoretical parameter
that roughly measures how tree-like a given graph is.

Hamza Fawzi (recipient of Honorable Mention for Student
Paper) and Jim Luedtke

In this summary we will show how the tree-width
parameter can be included in a polynomial optimiza-
tion context, and how it can be exploited so as to ob-
tain tractable approximations. More specifically, we
will show two ways of introducing structured spar-
sity in optimization problems: the first uses the in-
tersection graph, a graph defined for any instance of
a polynomial optimization problem, and the second
relies on the concept of Network Polynomial Opti-
mization problems (NPO), a family of optimization
problems with an underlying network given on its
definition. We argue how different these two setting
can be, and give small LP approximations for both
cases.

1 Polynomial Optimization under
structured sparsity

We consider general polynomial optimization prob-

lems

T

(PO): min c' z
st.: filz) >0 1<i<m la)
x € 0,17, (1b)

where the f;’s are polynomials. We focus on integer
programming techniques to obtain linear program-
ming approximations to that attain any desired
tolerance (both feasibility and optimality). More-
over, when problem is appropriately sparse, our
linear programs are of polynomial size.

To model sparsity we rely on two standard con-
cepts: the intersection graph, and tree-width.

Definition 1. The intersection graph [10] for the
system of constraints is the undirected graph
which has a vertex for each variable and an edge for
each pair of variables that appear in any common
constraint.

Example 2. Consider the following system of con-
straints on variables x1, ..., xg:

372 —29 >0, —2x3+a3> 1, x9+26 =1,
3 — 23 <2, x1+ x4 <0, x9+x5>0,
zg— 23 <0, x2-—23=0.

The intersection graph is as follows:
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The intersection graph depicts the complexity of
relationships among variables. If the intersection
graph is dense then, potentially, problem could
prove difficult. In fact, we will need a specific param-
eterization of sparsity in order to obtain a tractable
formulation. In what follows, given a graph H, we
will use V(H) and E(H) to denote the vertex-set
and edge-set of H, respectively; and dp(u) will be
the set of edges incident with vertex wu.

Definition 3. Let G be an undirected graph. A tree-
decomposition [79, (18] of G is a pair (T,Q) where
T is a tree and Q = {Q¢ : t € V(T)} is a family of
subsets of V(G) (the vertices of G) such that

(i) For allv € V(Q), the set {t € V(T) : v € Q}

forms a subtree T,, of T', and

(ii) For each {u,v} € E(Q) thereis at € V(T) such
that {u,v} C Qy, i.e. t € T, NT,.

The width of the decomposition is defined as
max {|Q¢| : t € V(T)} — 1. The tree-width of G is

the minimum width over all tree-decompositions of

G.

In the case of Example [2| a tree-decomposition is:

The tree T is a star with four leaves, and the sets
Q; are indicated inside each vertex of T. The width
of this tree-decomposition is 2.

Tree-width, roughly speaking, indicates how
“tree-like” a graph is. Trees are the graphs with
tree-width 1, and a clique on n vertices has tree-
width n — 1. It can be shown that a graph with
tree-width w and n vertices has O(w?n) edges, and
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so graphs of small tree-width are sparse, however not
all sparse graphs have small tree-width. We refer
the reader to [4] 6], [, 9] for additional background.

The following notation will be used in our results.
Given o € Z'} we write

n
a - aj
= T2
Jj=1

For the " constraint, f;(z) > 0, we are given a
(finite) set I(i) C Z7 and we represent fi(x) as a
sum of weighted monomials:

filw) = Y fiaz®

acl(i)

where each f; . is rational. We write

£l = Y |fial

acl(i)

The degree of fi(x) is defined as max,¢j(;) Zj Q.
Finally, given a set of polynomial constraints
filz) >0i=1,...,m, and € > 0, we say a vector &
is e-scaled feasible if fi(2) > —€||fili Vi=1,...,m.

Our first result is as follows:

Theorem 4. Consider an instance of problem
and any ¢ € (0,1). Let p the mazimum de-
gree of any of the polynomials f;. Given a tree-
decomposition of the intersection graph of the con-
straints of width w, there is an LP formulation with
O ((2p/e)“ ™ nlog(p/e)) wvariables and constraints,
such that any optimal solution & for the LP satis-

fies:
1. T is e-scaled feasible for ,
2. ' < P*+|c|1e, where P* is the value of (1.

The statement is indicative of the fact that as e —
0, we converge to an optimal solution. We sketch the
proof in Section (3] for a full proof see [3].

2 Network Polynomial Optimiza-
tion

Our second point of focus concerns polynomial opti-
mization problems where there is network struc-
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ture as an explicit element of the problem descrip-
tion. In these problems we are given a networkE g,
where for each node u in G there is a set X, of vari-
ables associated with u and a set IC,, of constraints
associated with u. The optimization problem is of
the following form:

min ¢’z

(NPO):

560 D Py (@) 20,k € Kyyue V(G) (2a)

{u0}
€dg(u)

xe[0,1]". (2b)

Here each pgﬁ)v) is of the form

Py (@) = Pl (Xu U Xo).

The notation stresses the ordered pair (u,v) and in-
dicates that the polynomial only involves variables
in A, U XU The p®) will be termed the arc poly-
nomials of the problem. We do not assume that the
sets X, are pairwise disjoint. Rather (for a tech-
nical reason) we allow intersections but we assume
that for any variable x;, the set of u € V(G) with
z; € &, induces a connected subgraph of G.

There are many practical examples of problem ,
where the sets X, are small and the IC,, are small: the
AC-OPF (Optimal Power Flow) problem in electri-
cal transmission networks [I7, [7], capacitated fixed-
charge network flow models [14], and some optimiza-
tion problems on gas networks [15].

In devising an algorithm for problem , a direct
reliance on Theorem [{4] runs into a difficulty as de-
tailed next.

Example 5. Consider an NPO where

(i) The graph G is a star on n+1 vertices 0,1,...,n
and edge set {0,j5} for1 <j <mn:

1We use the term ‘network’ to contrast with ‘graph’ which
we reserve for intersection graphs. Likewise, we will typically
use ‘node’ to refer to a vertex of a network.

?Using this notation we allow cases where only variables in
X, or in X, are actually involved.

(ii) Xo =0 and X; = {x;} for1 < j<n.

(iii) There is a single constraint (2a) and it is asso-
ciated with node 0. In this constraint we have
1 . .
pgo?j)()(o Ud&j) = ]J}? —1/n for1 <j<n.

Thus the (single) constraint for this example
18: Z?:l jx? > 1. This is a dense constraint, even
though the input network G is a tree. In fact, the
intersection graph of this constraint is a clique on
n vertices (with tree-width n — 1), and, as a conse-
quence, if we directly apply Theorem[f] we will obtain
a formulation of size exponential in n.

In summary: even if an NPO problem arises from
a network with small tree-width, the problem, if
viewed directly as an instance of PO, may yield a
very dense formulation. However, we argue that
one can always reformulate any instance of NPO
over a small tree-width graph G so as to obtain an
equivalent instance which, when viewed as a general
problem gives rise to an intersection graph with
(still) small tree-width.

In the following result, we abbreviate constraint

as p®)(z) > 0.

Theorem 6. Consider an instance of NPO and
any 0 < e < 1. Let D, A and p be such that:

o The network G has at most D edges incident
with any node,

e The number of variables plus the number of con-
straints associated with any node of G is at most
A,

e FEvery polynomial p*) has mazimum degree < p.

Then there is a linear program of size
O((Dp/e)° ™) n log(p/e)), such that any opti-
mal solution T for the LP satisfies:

1. T 1is e-scaled feasible for ,
2. cT'# < P*+||c|l1e, where P* is the value of (2).

In Example 5, w = 1, D =n, p = 3 and A =
1. Thus Thorem [6] yields an LP formulation of size
O((n/e)°M log(1/e)).



3 Proof sketch for Theorem [4]

In this section we show a proof sketch for Theorem [4]
Toward this goal, we will provide an approximation
technique that replaces a polynomial optimization
problem with one over binary variables. See [11, 2,
8, [13] for related material. In Section we will
reformulate this problem as a linear program, and
in Section we complete the proof.

Let r be a real with 0 < r < 1. Then, given
0 < 7 < 1, we can approximate r as a sum of inverse
powers of 2, within additive error ~y. Let

L, = ﬂOgQ ’Y_W .

Then there exist 0/1-values z,, 1 < h < L., so that

L L
ZZ_hzh <r < Z 2_hzh + 27
h=1 h=1
L’Y
< > 2yt <L
h=1

To apply this idea to problem , let 0 <e<1,and
as before let p denote the maximum degree of any
polynomial in . Choose v so that

1—(1—9)".

Then for each j we approximately represent x; as

€E =

Zill 27"z, where each z; 5, is a (new) binary vari-
able. We consider the following replacement for :

n L,
GB(7y) : min Z c; Z 272
=1 h=1

i
n Ly J

s.t. : Z f@aH

a€l(i) J=1
zip € {0,1}, 1<j<n, 1<h <L,

2" zin | = —elfilh
1

h=

The following results describe the quality of the
approximation to problem provided by GB(y).

Lemma 7.

(a) Suppose T is feasible for .
feasible solution for GB(v) with objective value
at most % +  ¢l|c|1.

Then there is a
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(b) Sui?pose Z 1is feasible for GB(v). Define &; =
S 272, for 1 < j <n. Then & is e-scaled

feasible for .

Corollary 8. Let P* be the optimal value of problem
[). and let 2 be optimal for GB(y). Write &(7); =
Zill 2772, for 1 < j <mn. Then cT&(y) < P* +
ellc|l1 and Z(7) is e-scaled feasible for (Lal).

Remark. As per the corollary, #(y) achieves feasi-
bility and optimality tolerance proportional to e for
problem . But as we mentioned above, Z(y) may
actually be super-optimal for . Nevertheless for
any sequence v — 07, the vectors Z(7x) will have
an accumulation point x*, and this point necessarily
must be feasible and thus optimal for ({1)).

3.1 From IPs to LPs

We have established that the pure binary problems
GB(7y) provide an approximation to within guar-
anteed tolerance. This result holds for all problems
(1) regardless of sparsity. In this section we will now
consider sparse cases and analyze the complexity of
the pure binary problems.

To this effect, suppose that (7,Q) is a tree-
decomposition for the intersection graph of an in-
stance of problem . We will now construct a tree-
decomposition for the intersection graph for the cor-
responding instance of problem GB(y). This tree-
decomposition will be of the form (T,Q’) (note:
same tree T') where for any vertex t of T we set

Qi = {zjn

Lemma 9. (a) (T,Q’) is a tree-decomposition of the
intersection graph for problem GB(v). (b) Further,
if (T, Q) has width w then (T, Q") has width at most
Ly(w+1)—-1.

rx;j€Qrand 1 <h <Ly}

Remark. As a consequence of this result, not only
does problem GB(7) provide a close approximation
to problem , but when is structurally sparse
(small tree-width of the intersection graph) then so is
GB(v), modulo the O(L.) multiplicative increase in
tree-width. We now pause, and state an important
result:

Theorem 10. Consider a polynomial optimization
problem on binary variables
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min &y (4a)
st.: fily) >0 1<i<m  (4b)
y € {0,137, (4c)

where each f; is a polynomial. Suppose we have a
tree-decomposition of the intersection graph of the
constraints (4b|) of width ¢, say. Then there is
an equivalent reformulation for as a linear pro-
gram with O(2°N) wariables and constraints, with
{0,1, —1}-valued constraint coefficients.

This theorem is implied by the results in Section 8
of [16], although it is not explicitly stated there. An
independent proof and generalizations can be found
in [3]. Related results can be found in [5] 20].

3.2 Putting it all together

Here we use the above results to prove Theorem
Consider an instance of on n variables. As
before let p represent the maximum degree of any
of the polynomials f;. Suppose we have a tree-
decomposition of width w of the intersection graph
of the constraints. Given 0 < € < 1 we proceed as
follows:

1. We choose v = 1 — (1 — €)'/, so that e = 1 —
(1 —~)P. Without loss of generality e is small
enough so that v > ﬁ.

2. We apply Theorem to construct the lin-
ear programming reformulation of the all-binary

problem GB(7). Let us call this linear program
LP().

3. As per Corollary [8f GB(y) and thus, LP(vy),
yield a vector () that is e-scaled feasible for
[ and () < P* + ellel.

Next we analyze the size of LP (7).

1. By Lemma [J] there is a tree-decomposition of
the intersection graph for GB(y) of width at
most L,(w+ 1) — 1, where

Ly = [logyy ™' < logy(2p/e) + 1

for € small enough.

2. Further, GB(y) has N = nL, = O(nlogy(p/€))
variables.

3. Thus, writing ¢ = Ly(w + 1) — 1, by Theorem
the number of variables and constraints in
LP(y) is

O(2°N) = O((2p/e)**'nlogy(p/e)).

The proof of Theorem [] is now complete.

4 Proof sketch for Theorem

Now we return to the network polynomial optimiza-
tion problems, or NPOs. In order to illustrate some
of the ideas used in the proof of Theorem[6] we revisit
Example ol Here, the network G was a “star” with
node set 0,1,...,n and center node 0. The NPO
had a single constraint (2al), associated with node
0, with arc polynomials p((l)?j)(Xg Udj) = jx? — %
for 1 < 57 < n. The corresponding constraint
reads: 2721 jmg-’ > 1. This is a dense constraint
and a direct application of Theorem [4] will produce
a formulation of size exponential in n.

This example illustrates the point that if, in
an NPO, a node has high degree, the intersection
graph of the NPO will likely have high tree-width.
This observation suggests that we should try to
reformulate an NPO into an equivalent NPO on a
network where every node has small degree.

Consider an NPO, P, on a network G all of whose
nodes have degree at most three, and with associated
sets of variables X,. Let (T, Q) be a tree decompo-
sition of G. Form the pair (T, Q’), where for each
t € V(T) we define

Q% = U{)EU NS Qt or Ju € Qt {U,’U} € E(g)}
We have that:

Theorem 11. (T, Q') is a tree-decomposition for the
intersection graph of NPO P. If the width of (T, Q)
is w, then the width of (T, Q') is at most 3(w+1)k—
1, where k = max,cy (g) | Xul-

The result suggests a way to obtain Theorem [G]
Namely, given P an NPO on a general network of



“small” tree-width, we reformulate it as an equiv-
alent NPO, P, on a network G with nodes of de-
gree at most three and such that G also has “small”
tree-width. If, in addition, the parameter k in the
statement of Theorem [I1] is also “small” then our
reformulation will be an NPO which, as a general
polynomial optimization problem, has an intersec-
tion graph with small tree-width and can be handled
using Theorem [4

In the next section we follow this approach in order
to find a good refomulation of the NPO in Example
For the general case we refer the reader to the
full-length paper.

4.1 Reformulating the NPO in Example

In this section we will argue that the problem in
Example 5| can be reformulated as an equivalent
NPO on network of maximum degree three (and with
small tree-width). And then, using the strategy in
Theorem [I1] we will argue that the intersection graph
of such reformulation NPO has small tree-width.

Let us consider the case n = 4. We will first pro-
duce the equivalent NPO by first constructing an
extended formulation equivalent to Z?:1 j:z? > 1.
Later we will show that this extended formulation
amounts to a new NPO.

The extended formulation has additional variables
yj (1 < j < 7), and the following system of con-
straints whose sum yields Z?Zl jx? > 1.

1
yj <drj- 0 1<5<4, (52)
Ys S 1 t+Y2, Yo < Ystuys, Y1 < Ys + Yes
(5b)
yr =2 0. (5¢)

This system splits Z?Zl jx;’ into partial sums with
two terms each; ys5 and yg are stand-ins for these
partial sums and y7 represents the complete sumE|
System is equivalent to Z?:l ja::;» > 1 in the
sense that the projection to x-space of the set of so-
. 4 .
lutions to. equa.xls {z e R* 3‘21':1"75”? > 1} .Let
us put aside the issue that this equivalence might
require some of the y; to take values outside of the

3This “splitting” technique is reminiscent of methods used
in sparsification techniques for linear systems [12].
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range [0, 1], which is not allowed in our formal def-
inition for an NPO. Modulo this point, we can
argue that is the system of constraints for an
NPO. To construct this NPO we use a binary tree
with vertices 1,...,7 shown below. The variables

Figure 1: Binary tree replacement for star with
leaves 1,...,4.

for this NPO will be all the z; and y;. We asso-
ciate with node 5 a family of arc polynomials that
will yield for 7 = 1,2 and the first inequality
in (bb). Namely, we associate with node 5 the set
of variables {x1, ..., 24} U{y1,y2,ys5}, define the arc

polynomials
an 3 1 1 _
Py = “ntai— g Py =0
@ 3 1 @ _
Py = ~92 122 =1 Py = 0
3 1 3 1
pg5?1) = _§y5 + Y1, pEE,?Q) = —53/5 + Y2,

and impose the NPO constraints (associated with
node 5):

(k) (k)

Psp) t P 20 k=123 (7)
Likewise, we associate with node 6 the set
{Z1,.. ., 24} U{y3, 94,96}, define
(1) . 3 1 (1) .
p(673) = 8 +3$3 - Z> p(6’4) = 0,
@ = 1@ _
3 1 3 1
pEG?S) = *51/6 + Y3, PEG?4) = fgyﬁ + Y4,
and impose
(k) (k) B
Py tPeay =00 k=123, (9)

which yields for 7 = 3,4 and the second in-
equality in . Finally we associate with node 7
the variables {z1,...,z4} U {yr}, define

) 1

v pg;ﬁ) = Ys — 53/77

1
p(775) = Y5 — §y7a
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and set the constraint

(1)
P(75)

(11)

This yields the third inequality in . The bound
y7 > 0 is implicit in the definition of an NPO. Thus,
system arises as the constraint set for an NPO.
Next we claim that as a general polynomial opti-
mization problem, the problem with constraints @7
has an intersection graph of tree-width 2. The

1)
+ p(7,6) 2 0

X Y (X2 %) (%Y%) (Xa Y,
Y Y, Y 3 % %
Y5 v, Y

Figure 2: (a) Intersection graph for reformulation of
Example |5, (b) A tree-decomposition.

intersection graph is shown in Figure [2fa) and a tree
decomposition, of width 2, is given in Figure b).
Note that the tree in Figure [2[(b) is isomorphic to
that in Figure [[] — this is not an accidental event
and, rather, reflects the structure of constraints @—
. It is clear that the above process can be applied
to the general case of 2?21 jZL‘? > 1 so as to always
yield a reformulation as an NPO on a binary tree
with n leaves, a y; variable for each internal node
(and so less than n y; variables), and such that the
intersection graph has tree-width 2.

Regarding the aforementioned issue that the
equivalence between system and Z?Zl j$§? >1
might require that some y; falls outside [0,1], we
handle this through a further reformulation, using
the familiar trick of representing a real variable as
the difference between two nonnegative variables and
scaling. For these details we refer the reader to the
full paper [3].

In summary, we have verified that the NPO in
Example [5| can be reformulated as an equivalent
NPO whose intersection graph has small tree-width.
This makes it suitable for Theorem [ which pro-
vides a polynomial-size linear programs that can
approximate it.

In general, this reformulation requires a more del-
icate strategy for the vertex splitting procedure. As

pointed out in [3], splitting a vertex can potentially
increase the tree-width of the resulting graph drasti-
cally. In the proof of Theorem [0] for the general case
we show that the “right” vertex splitting always ex-
ists, and it is guided by the tree-decomposition of

g.
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1 Relative Entropy from a Com-
putational Perspective

The relative entropy function
dv,\) = Zl/i log(vi/Ai), v,Ae R}
i=1

plays a significant role in information theory and in
statistics — most prominently via error exponents
— in the characterization of the performance of a
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variety of inferential procedures as well as in proofs
of a number of fundamental inequalities [IT]. This
function also has a notable computational attribute
in that it is convex jointly in both of its arguments.
Further, convex programs with relative entropy in-
equalities can be solved efficiently to a desired ac-
curacy via interior-point methods due to the exis-
tence of computationally tractable self-concordant
barrier functions for the convex function vlog(v/\)
for v,A > 0 [22]. Building on these observations,
we initiated a project a few years ago to develop
a deeper understanding of the computational prop-
erties of relative entropy by investigating the ex-
pressive power of relative entropy programs (REPs),
which are convex programs consisting of relative en-
tropy inequalities. REPs offer a common general-
ization of a number of prominent families of convex
optimization problems such as geometric program-
ming (GP) in convex form [I3], [6], second-order cone
programming (SOCP) [4, [19] (and consequently, lin-
ear programming), and entropy maximization. The
relation between semidefinite programs (SDPs) and
REPs is less clear. It is still an open question
whether REPs contain SDPs as a special case. In
the other direction, SDPs do not contain REPs as a
special case; this follows from the observation that
the boundary of the constraint set of an REP is not
algebraic in general, whereas constraint sets of SDPs
have algebraic boundaries.

In recent papers [7, [§], we discuss the utility of
REPs for solving a range of problems to which these
other classes of convex programs are not directly ap-
plicable:

1. Permanent maximization The objective in
this problem is to find a matrix with the
largest permanent from a given collection. This
problem is believed to be computationally in-
tractable in general (indeed, even computing
the permanent of a matrix is believed to in-
tractable). We describe an approximation algo-
rithm for the permanent maximization problem
based on an REP relaxation [§]. We bound the
quality of the approximation provided by our
method via Van Der Waerden’s inequality. As
a parallel, recall that SDPs are useful for max-
imizing the determinant over an affine section
of the cone of symmetric positive semidefinite
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matrices [31].

2. Robust GPs In a range of applications, one
desires a solution of a GP that is robust with
respect to uncertainty in the underlying prob-
lem parameters; such a program is commonly
referred to as a robust GP [3]. We describe
the first REP-based method for robust GPs [§],
which stands in contrast to previous GP-based
reformulations. As a result, our technique en-
ables exact and tractable solutions of robust
GPs for a significantly broader class of uncer-
tainty models than those considered in prior
work [3, I5]. In recent work Han et al. [I4]
have employed our REP-based reformulations
of robust GPs to optimally allocate resources
to control the worst-case spread of epidemics in
a network; here the exact network is unknown
and it belongs to an uncertainty set.

3. Hitting-times in dynamical systems In this
problem, we are given a linear dynamical sys-
tem consisting of a region of feasible starting
points and a target set, and the objective is to
compute the smallest time required to hit the
target set from an arbitrary feasible starting
point. Hitting-times are of interest in system
analysis and verification [26]. As an example, if
a system has the property that the worst-case
hitting-time to the target set from an arbitrary
point in the initial feasible set is infinite, we have
a certificate that the target region is not reach-
able from certain initial states. On the other
hand, if the hitting-time is zero, then we have
a proof that the initial set is contained inside
the target set. We describe an REP-based ap-
proach for computing such hitting-times exactly
for certain families of linear dynamical systems

[8].

4. Bounds on Signomial Programs Signomial
programs (SPs) are a class of non-convex (and
NP-hard) problems that arise in a range of
applications. In [7] we describe a family of
tractable REP-based convex relaxations for ob-
taining bounds on SPs.

Software for solving REPs is available (and is con-
stantly updated) at an online repository [I]. In this
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article, we survey the results in [7] on REP relax-
ations for SPs.

2 Relaxations for Signomial Opti-
mization

A signomial is a weighted sum of exponentials com-
posed with linear functionals of a variable x € R"™:

f(x) = Zgjcj exp{a(j)lx} (1)
j=1

Here c; € R and al) e R” are fixed parameters
An SP is an optimization problem in which a sig-
nomial is minimized subject to constraints on sig-
nomials, all in a decision variable x [12 [13]. SPs
are non-convex in general, and they include NP-
hard problems as special cases [9]. Consequently, we
do not expect to obtain globally optimal solutions
of general SPs in a computationally tractable man-
ner. GPs constitute a prominent subclass of SPs in
which a posynomial — a signomial with positive co-
efficients, i.e., the c;’s are all positive — is minimized
subject to upper-bound constraints on posynomials
[0, 13]. GPs are convex optimization problems that
can be solved efficiently, and they have been suc-
cessfully employed in a wide range of applications
such as power control in communication systems [9],
circuit design [5], approximations to the matrix per-
manent [I8§], and the computation of capacities of
point-to-point communication channels [I0]. How-
ever, the additional flexibility provided by SPs via
constraints on arbitrary signomials rather than just
posynomials is useful in a range of problems to which
GPs are not directly applicable. Examples include
resource allocation in networks [9], control problems
involving chemical processes (see the extensive ref-
erence list in [20]), spatial frame design [32], and
certain nonlinear flow problems in graphs [25].

In  the literature [I3], signomials are typically
parametrized somewhat differently as weighted sums of
generalized “monomials.” A monomial consists of a product
of variables, each raised to an arbitrary real power, and the
variables only take on positive values. It is straightforward to
transform such functions to sums of exponentials of the type
discussed in this paper; see [6} [13].
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A Stylized Application As a further illustration
of the ubiquity of SPs in applications, we discuss the
discrete choice model which is commonly employed
in operations research [2]. The model of interest here
is a mixture model of multinomial logits:

pa(k; w) £ Probluser with attributes w chooses
1 exp {B“’Ww}
Cosm exp {B(i,k)/w} :

¢
k’th alternative] = Z
i=1

Learning the parameters 8 of this mixture model
from data D entails the solution of a maximum-
likelihood optimization problem:

[T ps(k;w).

(k,w)eD

sup

One can suitably transform this optimization prob-
lem to a constrained SP.

Several researchers have developed strategies for
optimizing SPs based on variants of branch-and-
bound methods [20] as well as heuristic techniques
based on successive approximations that can be
solved via LP or GP [6], 9} 27, 28]. The framework de-
veloped in [7] is qualitatively different as it is based
on solving convex optimization problems involving
linear and relative entropy functions to obtain guar-
anteed bounds on the optimal values of SPs. This
approach is founded on the insight that the joint
convexity of the relative entropy function leads to
an effective convex parametrization of certain fami-
lies of globally nonnegative signomials.

We focus this discussion on the problem of uncon-
strained minimization of a signomial; our approach
to this problem can be adapted to constrained SPs
[7]. Central to our development is a view of global
minimization that is grounded in duality: globally
minimizing a signomial is computationally equiva-
lent to the problem of certifying global nonnegativ-
ity of a signomial. In other words, one may rephrase
any unconstrained minimization problem as follows:

£ = inf f(x)
xER™

=sup v s.t. f(x)—v>0VxeR"
vER

Note that v = yexp{0’x}. Thus, for a given sig-
nomial f(x) and for each fixed v, the constraint in
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the maximization problem entails checking whether
a signomial is globally nonnegative. Of course, as
with global minimization, checking global nonneg-
ativity of a signomial is also a computationally in-
tractable problem in general. However, this reformu-
lation suggests a natural strategy for obtaining lower
bounds on f* (note that upper bounds on f* may be
obtained by evaluating f at points in R™). Specif-
ically, we devise a sufficient condition for certifying
nonnegativity of a signomial, which can be checked
by solving a convex REP feasibility problem. Em-
ploying this sufficient condition as a surrogate for
global nonnegativity in the constraint in the maxi-
mization problem above leads to a lower bound on
I
To formalize matters, fix an indexed collection
of exponents {a(i)}le C R™ Our objective is
to certify nonnegativity of a signomial f(x) =
Zle c; exp {a(i)/x}. Stated differently, we wish to

certify membership of the coefficient vector ¢ € R¢
in the following set:

NNG (a(l), e a(g))
‘
= {c e R’ | Zci exp {a(i)’x} >0Vxe R"} (2)
i=1
Although checking membership in
NNG (a(l), e ,a(f)) for a general set of expo-
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nents is a computationally intractable problem,
certifying nonnegativity of a signomial with all but
one coefficient being positive can be accomplished
in a computationally tractable manner (for any
exponent set). We fix some notation before demon-
strating this point: for any v € R¥, let v\; € RF—1
denote the vector obtained by removing the i’th
coordinate from v.

Consider a signomial ZEZI cj exp {a(j),x} with
c\; € Ri_l. A natural approach to certify the non-
negativity of this signomial is to identify a set of
weights 6 € R with 1’6 = 1,8, = 0 so that:
¢ cjexp {a(j)/x} >
(=™

=1,

> —C; exp {a(i)/x} .

The existence of such a & then establishes nonneg-
ativity as a consequence of the following weighted

AM/GM inequality:
N 8
¢ Cj exp {a(J) x}
I |\——]

=1

¢
Z Cj exp {a(j)lx} >

=15

The results in [7] give an REP parametriza-
tion to identify such a set of weights, and
more broadly, to characterize the set of all
coefficients ¢ € R’ with c; € Rﬁ so that
the associated signomial is nonnegative:

AGE (a(l), . .,a(i_l),a(i+1), .. .,a(f);a(i)> = NNG (a(l), .. .,a(f)) N {c e R | c\, € Rﬂ_l}

: 3)

={ceR | e\ € Rﬂ_l, Jv € R s.t. v\; € Rﬁ_l,d(l/\i,ec\i) < ci,Za(j)l/j =0,v; = —1'u\i

Here e is Euler’s constant. The reason for the
terminology AGE(+;-) is due to the connection with
the AM/GM inequality. This characterization sug-

J

J=1

(

gests a natural sufficient condition for membership
in NNG (aW,...,a®):
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SAGE (a(l), . ,a(£)> = EBf:lAGE (a(l), ey a(ifl), a(Hl), e ,a(e); a(i)> C NNG (a(l), e ,a(e)) .

SAGE here denotes “sums of AGE.” Checking
membership in SAGE (a(l),...,a(z)) is computa-
tionally efficient based on ({3]), and consequently, re-
placing the nonnegativity condition in by the
SAGE condition leads to a tractable convex lower
bound on the infimum of a signomial. We refer to
this relaxation as the SAGE relazation.

Example 1. We consider signomials in three
variables with seven terms of the form f(x) =
2]7.:1 cjexp{a(j)lx} with x € R3 and the fol-
lowing parameters fized: ¢ = 0, cg = c3 =
cy = 10, oV = (0,0,0/, a® = (10.2,0,0),
a® = (0,9.8,0), and ¥ = (0,0,8.2)". The ez-
ponents a® a® o e R3 are chosen to be ran-
dom wvectors with entries distributed uniformly in
[0, 3], and the coefficients cs5,cg,c7 are chosen to be
random Gaussians with mean 0 and standard de-
viation 10. We employ this construction — rela-
tively large exponents a?, a®, a® in comparison
to a® a® o and the corresponding positive co-
efficients co = ¢3 = ¢4 = 10 — to obtain signomials
that are bounded below. An example of a signomial
generated in this manner is:

f(x) =10exp{10.2x1} + 10 exp{9.8x2} + 10 exp{8.2x3}
— 14.6794 exp{1.5089x; + 1.0981x5 + 1.3419x3}
— 7.8601 exp{1.0857x; + 1.9069x2 + 1.6192x3}

+ 8.7838 exp{1.0459x; + 0.0492x5 + 1.6245x3}.
()
The SAGE relazation applied to f(x) gives the lower
bound fsagr ~ —0.9747. By applying a technique
presented in [7], we obtain the point x* = (—0.3020,
—0.2586, —0.4010)" with f(x*) ~ —0.9747. Conse-
quently, the lower bound fsagr s tight in this case.
As another instance of the construction described
here, consider the randomly generated signomial:

f(x) =10exp{10.2x; } + 10exp{9.8x2} + 10 exp{8.2x3}
+ 7.5907 exp{1.9864x; + 0.2010x5 + 1.0855x3}
— 10.9888 exp{2.8242x; + 1.9355x5 + 2.0503x3}

— 13.9164 exp{0.1828x; + 2.7772x5 + 1.9001x3}.

(6)

In this case the SAGE relazation gives a lower bound
of —1.426, which turns out to not be tight. More gen-
erally, we generated 80 random signomials according

(4)

to the above description, and the SAGE relaxation
was tight in 63% of the cases, while there was a gap
in the remaining cases. (The results in [7] describe
techniques for verifying when the SAGE relaxation
is tight.)

We build on the preceding developments in [7] in
three respects. First, we describe a tractable REP
approach to obtain lower bounds on constrained SPs
in an analogous manner to the SAGE relaxation.
Second, we describe a principled framework to
obtain a family of increasingly tighter lower bounds
for general (constrained and unconstrained) SPs by
solving hierarchies of successively larger convex pro-
grams based on relative entropy optimization; these
hierarchies are derived by considering a sequence
of tighter nonnegativity certificates for a signomial
over a set defined by signomial constraints. Lastly,
we develop a dual viewpoint that is intimately
connected with representing the convex hull of the

set {(exp {a(l)/x} y...,exXp {a(ﬁ)/x}> | x € ]R"},

which in turn suggests a natural rounding procedure
to obtain approximate minimizers of SPs from REP
relaxations.

The hierarchy of convex relaxations that we de-
scribe in [7] has several notable features. First, GPs
are solved exactly by the first level in this hierar-
chy; thus, our hierarchy has the desirable property
that “easy problem instances remain easy.” Second,
the family of lower bounds is invariant under a natu-
ral transformation of the problem data. Specifically,
the optimal value of an SP remains unchanged under
the application of a non-singular linear transforma-
tion simultaneously to all the parameters a?) that
appear in the exponents of the signomials in an SP
(both in the objective and in the constraints). The
hierarchy of relative entropy relaxations described
in [7] leads to bounds that are invariant under such
transformations. Third, it is desirable that any pro-
cedure for obtaining lower bounds of the optimal
value of an SP be robust to small perturbations of
the exponents a/) in an SP. As discussed in [7], this
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is also a feature of our proposed approach. Fourth,
for broad families of SPs our approach leads to a con-
vergent sequence of lower bounds, i.e., our hierarchy
approximates the optimal value of the SP arbitrarily
well from below. Such a property of a hierarchy is
usually referred to as completeness.

3 Connections to Polynomial Op-
timization

A prominent example of hierarchies of tractable con-
vex programs being employed for intractable prob-
lems is in the setting of polynomial optimization
problems, for which SDP relaxations have been de-
veloped based on sum-of-squares techniques [17), 23]
24]. However, those methods are not directly rele-
vant to SPs for several reasons, and we briefly high-
light these distinctions here. As with SPs, poly-
nomial optimization problems are also non-convex
in general, and they include families of NP-hard
problems. Parrilo [23, 24] and Lasserre [17] de-
scribe computationally feasible methods to obtain
lower bounds for polynomial optimization problems.
These techniques rely on nonnegativity certificates
for polynomials based on sum-of-squares decompo-
sitions [16} 21}, [30], and the observation by Shor [29]
that checking if a polynomial is a sum-of-squares can
be recast as an SDP feasibility problem.

SPs with rational exponents can be transformed to
polynomial optimization problems over the nonneg-
ative orthant by clearing denominators in the expo-
nents. This transformation generally leads to poly-
nomials of very large degrees, thus making sum-of-
squares techniques ill-suited for general SPs. Con-
cretely, consider the signomial f, g(z) = exp{dz} +
aexp{z} + [ with x € R. For each fixed o, € R
and for each d € Zy,, one can efficiently check
whether f, g is globally nonnegative using the REP
feasibility problem (3) (as 8 must be nonnegative
for f,g to be globally nonnegative, we are left
with a signomial with at most one negative coeffi-
cient). In particular, f, g is globally nonnegative
if and only if (a,f) € {(a,b) € Rx Ry | Jv €
R2 s.t. D(v,e(1,b)") < a, (d— 1)1 = va}. Note
that the size of this description does not grow with
d. One can also apply the transformation y? < exp x
to transform the question of nonnegativity of the sig-
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nomial f, g to one of nonnegativity of the the poly-
nomial faﬁ(y) = y? + ay? + B for y € R. How-
ever, the corresponding nonnegativity certificates for
faﬁ based on sum-of-squares methods grow in size
with increasing d (see [I7, 23, 24] for more details
about constructing these certificates), which in turn
entails the solution of large SDPs. Underlying this
discussion is the insight that REP-based relaxations
(based on the AM/GM inequality) offer a different
proof system than SDP relaxations (based on sum-
of-squares methods) for certifying nonnegativity.

More broadly, relative entropy relaxations for SPs
also have the virtue that the bounds they provide
are generally robust to small perturbations of the
exponents

Example 2. Consider the following signomial ob-
tained by perturbing the exponents of the signomial
in Exzample |1 (but leaving the coefficients un-
changed):

£(x) =10 exp{10.2070x; + 0.0082x> — 0.0039x3}
+ 10exp{—0.0081x; + 9.8024x5 — 0.0097x3}
+ 10exp{0.0070x; — 0.0156x2 + 8.1923x3}
— 14.6794 exp{1.5296x; + 1.0927x5 + 1.3441x3}
— 7.8601 exp{1.0750x; + 1.9108x5 + 1.6339x3}
+ 8.7838 exp{1.0513x1 + 0.0571x2 + 1.6188x3}.

The SAGE lower bound is tight for the perturbed
signomial specified here, with the optimal value be-
ing equal to —0.9458, and the optimal solution be-
ing x* = (—0.3016, —0.2605, —0.4013)". Recall that
the SAGE lower bound was also tight for the signo-
mial of Example with the optimal value be-
ing equal to —0.9747 and the optimal solution be-
ing x* = (—0.3020, —0.2586, —0.4010)". Hence, this
example provides numerical evidence for the robust-
ness of our relative entropy relaxation methods with
respect to small perturbations of the exponents.

Approaching this SP as a polynomial optimization
problem clearly illustrates the shortcomings of that
viewpoint, as small changes in the exponents can
lead to very different polynomials after clearing de-
nominators in the exponents. In turn, the quality of
the bounds and amount of computation required to
obtain them via SDP relaxations based on sum-of-
squares techniques can vary dramatically for small
changes in the exponents. However, relative entropy
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relaxations for SPs based on SAGE decompositions
are well-behaved under such small perturbations of
the exponents.
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Update on the 2018

INFORMS Optimization
Society Conference

Steve Billups (University of Colorado Denver),
Manuel Laguna (University of Colorado Boulder),
and Alexandra Newman (Colorado School of Mines)
are co-organizers of the 2018 INFORMS Optimiza-
tion Society Conference, slated for March 23-25
on the University of Colorado Denver’s downtown
campus. Our “Mountains of Optimization” theme
emphasizes many important, contemporary aspects
of optimization. Plenary speakers include Shab-
bir Ahmed (Georgia Tech), Marcos Goycoolea (Uni-
versidad Adolfo Ibanez), Moritz Hardt (Google,
UC Berkeley), Illya Hicks (Rice University), Karla
Hoffman (George Mason University), John Hooker
(Carnegie Mellon University), and Sven Leyffer (Ar-
gonne National Labs). We are working hard to make
this an exciting conference! More details are forth-
coming on the website.

Denver, CO (image used with permission of the University of

Colorado)
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The Vision for INFORMS
Journal on Optimization

Dimitris Bertsimas
Editor in Chief of INFORMS Journal on Optimization

dbertsim@Qmit.edu

Optimization has a long and distinguished history
and has been at the core of INFORMS from the
founding of ORSA in the early 1950s. I would argue
that without the Simplex method, the key algorithm
for Linear Optimization, ORSA might not have ex-
isted.

Historically optimization and operations research
have focused on the process of building models to
derive optimal decisions. While models have been
the protagonist, data has been a secondary actor.
In recent years we have witnessed an unprecedented
growth of data in electronic form and methods, typ-
ically associated with the area of machine learning,
for prediction. I feel that one of the largest opportu-
nities of the field of optimization is to embrace data
in a protagonist role and combine it with machine
learning. The vision of the future for the field of op-
timization I have is summarized in the graph below.

The definition of the field of Analytics I have is
the science that starts with data, builds models to
derive optimal decisions that add value.

Analytics

ML
OR/Optimization

Data Models Decisions

Predictions

Areas of interest for the journal: With these
ideas in mind my vision of the new journal includes
the following new areas:

e Data driven optimization;
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e Optimization methods in machine learning;
e Exciting real world applications of optimization.

In addition, the journal will publish papers in more
traditional areas of optimization.

A non-exclusive list of methodologies that the
journal covers is: convex optimization (including lin-
ear optimization); general purpose nonlinear opti-
mization; discrete optimization (combinatorial, in-
teger, mixed integer optimization); optimization un-
der uncertainty (dynamic programming, stochastic
programming, robust optimization, simulation based
optimization); infinite dimensional optimization; on-
line optimization.

Especially welcomed are contributions studying
new and significant applications. A non-exclusive
list of application areas that the journal will cover in-
cludes: health care; inventory and supply chain man-
agement; logistics; revenue management and pricing;
energy; the internet; interfaces with computer sci-
ence; and finance.

There are other leading journals in optimization,
including Mathematical Programming and STAM
Journal on Optimization, that are more focused in
the methodology of optimization. The aspiration of
the new journal is to add a new quality outlet that
in addition to methodological papers will also pub-
lish papers that place particular emphasis on data
driven optimization, interface with machine learn-
ing, and real world applications of optimization.

The journal will also invite reviews of new develop-
ments in optimization as well as new emerging areas
of interest to a wider audience.

Criteria for publication: Accepted papers are
expected to score highly in at least one of the fol-
lowing questions:

How new and significant is the application stud-
ied?

How original/creative is the optimization mod-
eling?

How original/creative is the optimization
methodology?

How significant is the impact in practice?

Addressing delays and negativity: There are
two trends in our field that the journal aspires to re-
verse: (a) long delays, (b) negativity in the reviewing
process. To address these trends, the journal will try
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to solicit reviews from three reviewers of each paper
and aspires to get a response to the authors within
3 months of submission. The journal will not reject
a paper with one (out of three) negative report, un-
less there are serious questions on correctness. I very
much believe in finding what is good in an idea and
trying to improve it.

The review process: Authors submit a paper
to the journal and recommend 3 AEs and 6 review-
ers. If the paper is not sent to an AE or is not sent
to reviewers, we will communicate this negative de-
cision within 2 weeks. Assuming the paper enters
the reviewing process, I will assign the paper to an
AE (but not necessarily one of the 3 chosen) trying
to address issues of balance of the workload among
the AEs. The AE will solicit 3 reviews, making a
recommendation within 3 months. A positive rec-
ommendation needs to justify which of the four cri-
teria for publication the paper answers successfully
to deserve publication. I will then make the final de-
cision. As already mentioned, I aspire that the total
time to get back to the authors will be 3 months.

Editorial board: The inaugural editorial board
consists of

Shabbir Ahmed
John Birge

Dick den Hertzog
Brian Denton
Laurent El Ghaoui
Vivek Farias

Dan Iancu
Garud Iyengar
Patrick Jaillet
Andrea Lodi
David Morton
Georgia Perakis
Jim Renegar
Suvrajeet Sen
David Shmoys
Melvyn Sim

Ben van Roy

It is anticipated that the journal will start accept-
ing submissions by the end of July, 2017.
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Nominations for Society
Prizes Sought

The INFORMS Optimization Society awards four
prizes annually at the INFORMS annual meeting.
We seek nominations (including self-nominations)
for each of them, due by June 15, 2017 (please
note the earlier-than-usual deadline, due to the tim-
ing of the 2017 Annual Meeting). Each of the four
awards includes a cash amount of US$1,000 and a
citation plaque. The award winners will be invited
to give a presentation in a special session sponsored
by the Optimization Society during the INFORMS
annual meeting in Houston, TX, in October 2017
(the winners will be responsible for their own travel
expenses to the meeting). Award winners are also
asked to contribute an article about their award-
winning work to the Optimization Society newslet-
ter.

The four awards are listed below.
tional information on the awards,
nation instructions, can be found on the so-
ciety website (http://connect.informs.org/
optimizationsociety/prizes).

Please see the website for nomination instructions.
Inquiries should be sent directly via email to the
chair of the corresponding prize committee.

The Khachiyan Prize is awarded for outstand-
ing lifetime contributions to the field of optimization
by an individual or team. The topic of the con-
tribution must belong to the field of optimization
in its broadest sense. Recipients of the INFORMS
John von Neumann Theory Prize or the MPS/SIAM
Dantzig Prize in prior years are not eligible for the
Khachiyan Prize. The prize may be awarded once in
a lifetime to any individual. Nominations should be
submitted to the Chair of the committee.

The prize committee for this year’s Khachiyan
Prize is as follows:

Addi-

and nomi-

e Gerald Brown (Chair)
GBrown@nps.edu

e Bill Cook

e Andrzej Ruszczynski

e Yinyu Ye


http://connect.informs.org/optimizationsociety/prizes
http://connect.informs.org/optimizationsociety/prizes
mailto:GBrown@nps.edu
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The Farkas Prize is awarded for outstanding con-
tributions by a mid-career researcher to the field of
optimization, over the course of their career. Such
contributions could include papers (published or
submitted and accepted), books, monographs, and
software. The awardee will be within 25 years of
their terminal degree as of January 1 of the year of
the award. The prize serves as an esteemed recogni-
tion of colleagues in the middle of their career. The
prize may be awarded at most once in their lifetime
to any person. A nomination shall consist of: (i) a
letter of nomination, not exceeding two pages, sum-
marizing the nominee’s contributions with explana-
tions of their importance and impact; (ii) a curricu-
lum vitae for the nominee, not exceeding four pages;
and (iii) two support letters, each not exceeding two
pages. These letters can be sent directly to the com-
mittee chair or to the nominator, to be included in
the nomination package.

The prize committee for this year’s Farkas Prize
is as follows:

e Margaret Wright (Chair)
mhw@cims.nyu.edu

e Patrick Jaillet

e Zhi-Quan (Tom) Luo

e Pascal Van Hentenryck

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization. The paper must be pub-
lished in, or submitted to and accepted by, a refereed
professional journal within the four calendar years
preceding the year of the award. All authors must
have earned their most recent degree within the eight
calendar years preceding the year of the award or be
enrolled in a degree-granting program. The prize
serves as an esteemed recognition of promising col-
leagues who are at the beginning of their academic or
industrial career. Nominations should be submitted
to the Chair of the committee.

The prize committee for this year’s Prize for
Young Researchers is as follows:

e Michael Ferris (Chair)
ferris@Qcs.wisc.edu

e Jonathan Eckstein

e Simge Kiigiikyavuz

e Suvrajeet Sen
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The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received, or pub-
lished in a refereed professional journal no more than
three years before the closing date of nomination.
Every nominee/applicant must be a student on the
first of January of the year of the award. The prize
serves as an esteemed recognition of promising stu-
dents who are looking for an academic or industrial
career. A complete entry consists of: (i) an elec-
tronic PDF copy of the paper; (ii) an electronic PDF
file of a letter signed by all co-authors attesting that
the majority of the work was done by the student(s);
(iii) an electronic PDF file of a nomination letter at-
testing that the eligibility conditions have been sat-
isfied by the entrant(s) and the paper. Nominations
should be submitted via https://easychair.org/
conferences/7conf=iosstudentprize2017.

The prize committee for this year’s Student Paper
Prize is as follows:

e Vineet Goyal (Chair)
vgoyal@ieor.columbia.edu

e Kiavash Kianfar

e Javier Pena

e Ermin Wei
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Nominations of Candidates
for Society Officers Sought

Four Society Vice-Chairs will be completing their
two-year terms in 2017: Hande Benson, Amitabh
Basu, Sauleh Siddiqui, and Austin Buchanan. Burcu
Keskin will be completing her term as the Secre-
tary/Treasurer as well. We would like to thank these
officers for their work!

We are currently seeking nominations of candi-
dates for the following positions:

e Vice-Chair for Computational Optimization
and Software

e Vice-Chair for Integer and Discrete Optimiza-
tion

Vice-Chair for Linear and Conic Optimization

Vice-Chair for Network Optimization

Secretary/Treasurer

Self-nominations for all of these positions are encour-
aged.

Vice-Chairs serve a two-year term. According to
Society Bylaws, “The main responsibility of the Vice
Chairs will be to help INFORMS Local Organiz-
ing committees identify cluster chairs and/or session
chairs for the annual meetings. In general, the Vice
Chairs shall serve as the point of contact with their
sub-disciplines.”

The Secretary/Treasurer two-year
term. According to Society Bylaws, “The Secre-
tary/Treasurer shall conduct the correspondence

serves a
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of the OS, keep the minutes and records of the
Society, maintain contact with INFORMS, receive
reports of activities from those Society Committees
that may be established, conduct the election
of officers and Members of Council for the OS,
make arrangements for the regular meetings of the
Council and the membership meetings of the OS.
As treasurer, he/she shall also be responsible for
disbursement of the Society funds as directed by
the OS Council, prepare and distribute reports
of the financial condition of the OS, help prepare
the annual budget of the Society for submission
to INFORMS. It will be the responsibility of the
outgoing Secretary/Treasurer to make arrange-
ments for the orderly transfer of all the Society’s
records to the person succeeding him/her.” The
Secretary/Treasurer is allowed to serve at most two
consecutive terms.

Additional details on officer responsibil-
ities and elections can be found in the
Bylaws at http://connect.informs.org/

optimizationsociety/aboutios/bylaws

Please send your nominations or self-nominations
to Burcu Keskin (bkeskin@cba.ua.edu)), including
contact information for the nominee, by June 30,
2017. Online elections will begin in mid-August,
with new officers will assume their duties on January
Ist, 2018.
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