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The annual INFORMS meeting is coming! We
look forward to Houston and, in our small way, to
helping the city recover after Hurricane Harvey.

This newsletter marks the first time that the IN-
FORMS Optimization Society has published two
newsletters in a year! Many thanks to IOS Newslet-
ter Editor Marina Epelman for making this hap-
pen. We plan to continue with both fall and spring
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newsletters, and this is but one indicator of the
growth of the field of optimization and the Opti-
mization Society.

IOS Sessions in Houston: I look forward to seeing
you in Houston, where the Optimization Society is
sponsoring a record-breaking 93 sessions.

Business meeting: The IOS Business Meeting at
the annual conference will be held on Sunday, Oc-
tober 22, 6:15-7:15pm in the Convention Center,
Grand Ballroom, Level 3. Light refreshments, along
with beer and wine, will be provided.

I0S prizes: Congratulations to the winners of the
2017 INFORMS Optimization Society prizes:

e Robert Vanderbei: Khachiyan Prize

e Kim-Chuan Toh: Farkas Prize

e Alberto Del Pia and Aida Khajavirad: Prize for
Young Researchers

e Frans de Ruiter: Student Paper Prize
e Will Ma: Student Paper Prize, honorable men-
tion.

The winners will receive their prizes at the I0S Busi-
ness Meeting. Please join us for a special prize ses-
sion, immediately prior to the business meeting, in
which the prize recipients will present their award-
winning work: SD76, Sunday, October 22, 2017,
4:30-6:00pm, in Room 372E of the Convention Cen-
ter.

We are grateful to the prize committees for their
work: Khachiyan Prize: Gerald Brown (chair), Bill
Cook, Andrzej Ruszczynski, and Yinyu Ye; Farkas
Prize:  Margaret Wright (chair), Patrick Jaillet,
Zhi-Quan (Tom) Luo, and Pascal Van Hentenryck;
Young Researchers Prize: Michael Ferris (chair),
Jonathan Eckstein, Simge Kiigiikyavuz, and Suvra-
jeet Sen; Student Paper Prize: Vineet Goyal (chair),
Kiavash Kianfar, Javier Pena, and Ermin Wei.

I0OS board transitions: 10S officer elections were
held last month. We welcome our new vice-chairs,
who will be assuming their responsibilities on Jan-
uary 1, 2018:

e Computational Optimization and Software:
Dimitri Papageorgiou;
e Integer and Discrete Optimization: Akshay

Gupte;
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e Linear and Conic Optimization: Somayeh
Moazeni;

e Network Optimization: Jorge Sefair.

I'm also very happy to report that Burcu Keskin was
elected to continue as Treasurer/Secretary.

After eight years of service, which included the
nontrivial transition to the new format and struc-
ture of the INFORMS Web sites, Pietro Bellotti is
stepping down as the IOS Web Editor. His role will
be filled by Sertalp Cay. Please join me in thanking
Pietro and the vice chairs who complete their terms
this year: Hande Benson (Computational Optimiza-
tion and Software), Amitabh Basu (Integer and Dis-
crete Optimization), Sauleh Siddiqui (Linear and
Conic Optimization), and Austin Buchanan (Net-
work Optimization). Further thanks to Austin for
serving as the IOS Representative on the INFORMS
Subdivision Council.

INFORMS Optimization Society Conference:
Our biennial conference will take place March 23—
25, 2018 in Denver, Colorado. The team of Steve
Billups, Steffen Borgwardt, Manuel Laguna, and
Alexandra Newman has a great lineup of plenary
and tutorial speakers as detailed in this issue. The
deadline for abstract submissions is December 12.
If you would like to organize a session, please con-
tact Alexandra newman@mines.edu, who is serving
as Program Chair.

INFORMS Journal on Optimization: 1JOO is
“open for business.” We are grateful for the lead-
ership of Suvrajeet Sen in shepherding the journal
through the INFORMS approval process. Dimitris
Bertsimas serves as the journal’s founding Editor-
in-Chief. He recently launched the journal, which is
now accepting submissions. Please see further de-
tails in this issue.
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NONLINEAR
OPTIMIZATION AND
BEYOND

Sven Leyffer
Mathematics and Computer Science Division
Argonne National Laboratory
Lemonte, IL, USA

leyffer@anl.gov

I am deeply honored and grateful for receiving the
2016 Farkas Prize from the INFORMS Optimization
Society. Throughout my career, I had the great
fortune to work with some of the brightest opti-
mizers, and this article is a tribute to their influ-
ence, guidance, and inspiration. The remainder of
this article provides a personal view of three top-
ics in nonlinear optimization. Starting with filter
methods for global convergence of nonlinear solvers,
we consider two extensions of nonlinear optimiza-
tion, namely mixed-integer nonlinear programming

Sven Leyffer and Ariela Sofer

(MINLP), and mathematical programs with equilib-
rium constraints. Each topic concludes with a brief
outlook for future research challenges.

1 Filter Methods

Nonlinearly constrained optimization, or nonlinear
programming (NLP), problems are a fundamental
class of optimization problems that underpin many
applications and more complex optimization prob-
lems. NLP problems can be compactly stated as

f(x)

c(x) >0 (L)

{ minimize
X

subject to

where the objective function f(x) and the constraint
functions ¢(x) are smooth.

Many methods for solving (1.1) are based on New-
ton’s method and are iterative. Given an estimate
) of the solution z* of (1.1), a simpler (linear or
quadratic) approximation of (1.1) is solved for a new
and, one hopes better, estimate z(¥*1). Near a so-
lution, this process is guaranteed to converge. Far
from the solution, however, the sequence {z(¥)} gen-
erated in this way may not converge.

Traditionally, penalty or merit functions have
been used to enforce convergence from remote start-
ing points. These functions are a linear combi-
nation of the objective function and a measure of
the constraint violation such as h(z) := |lc(z)”|,
where |la”|| = ||min(a,0)|| for some norm. An ex-
ample is the ¢; exact penalty function, p(x;7) :=
f(z) + mh(z), where m > 0 is the penalty parame-
ter. Provided = is sufficiently large, we can use this
penalty function to ensure progress in our iterative
scheme by enforcing sufficient decrease in each step.
Unfortunately, in classical penalty methods, a suit-
able penalty parameter depends on the solution of
(1.1), namely, = > |ly*||p, where y* are the optimal
multipliers and |- || p is the dual norm. If the penalty
parameter is too large, then any monotonic method
would be forced to follow the nonlinear constraint
manifold very closely, resulting in much shortened
Newton steps and slow convergence.

Roger Fletcher had been unhappy with the per-
formance of classical penalty functions for NLP, and
had been playing around with methods that instead
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use the Lagrangian as a merit function within a tol-
erance tube around the constraints [43], similar to
the funnel ideas [24] developed later by Nick Gould
and Philippe Toint. Our filter method [17] grew out
of these early experiments.

Filter methods avoid the pitfalls of penalty func-
tion methods. Instead of combining the objective
and constraint violation into a single function, we
borrow the concept of domination from multiobjec-
tive optimization and say that a point z*) domi-
nates a point ) if and only if f(z®) < f(z®)
and h(z®) < h(z®). We define a filter as a list of
pairs (h(:c(l)),f(x(l))) such that no pair dominates
another pair. A typical filter is illustrated in Fig-
ure 1, where the shaded area shows the region dom-
inated by the filter entries. The contours of the ¢;
exact penalty function are the purple lines with slope
—7 in this plot.

Figure 1: A typical filter. All pairs (f(z), h(z)) that
are below and to the left of the shaded area are ac-
ceptable to the filter.

A rough outline of a filter trust-region method is
as follows. At iteration & = 0, we initialize the fil-
ter F = {(U, —oo)}, where U is an upper bound
on the acceptable constraint violation. We proceed
by accepting only steps, s, that are not dominated
by the current filter. If a point is acceptable, then
we set zFt1D) = z(k) 4 5 and possibly increase the
trust-region radius, and update the filter (adding
(h(k), f%)Y from the previous iterate and removing
any dominated entries). If, on the other hand, the
step is dominated by the current filter, then we reject
it, set z(-+t1) = 2(¥) reduce the trust-region radius,
and resolve the trust-region subproblem.

This simple description of a filter method requires
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a number of refinements to ensure convergence:

1. Filter Envelope. To avoid convergence to infea-
sible limit points where h* > 0, we add an en-
velope around the current filter. A new iterate
is acceptable if, V(b ) ¢ F,

R < gpO) o D) < p) (et

(1.2)

holds, where 0 < £,y < 1 are constants, see

[8, 7]. In [8, Lemma 1] it is shown that if an

infinite number of points are added to the filter,

and f(z) is bounded below, then the limit point
must be feasible.

2. Sufficient Reduction. The filter alone cannot en-
sure convergence to stationary points. For ex-
ample, if the sequence satisfies h(¥T1) < Bpk),
then the iterates could converge to an arbitrary
feasible point. Therefore, if constraint viola-
tion becomes small, we enforce a sufficient re-
duction condition similar to unconstrained op-
timization. We denote the predicted reduction
by Agy := —Vf(k)Ts — %STH(k)S and introduce
the following switching condition:

if (Agp>0) then

check f) — f+D > 5 Aqy, (1.3)

where o € (0,1) is a constant.

3. Feasibility Restoration. As the trust-region ra-
dius is reduced, the subproblem may become in-
consistent and we take this inconsistency as an
indication that the current point is too far from
the feasible set to make meaningful progress to
optimality. Hence we invoke an SQP-like algo-
rithm that minimizes the constraint violation
h(zx), and we exit the restoration phase once a
filter-acceptable point has been found.

Successful steps that satisfy (1.3) are called f-type
steps and all other steps are called h-type steps. The
first global convergence proof of a filter method was
developed by Roger and Philippe in the context of
sequential linear programming (SLP) methods, see
[22], and I still regard this as the most easily un-
derstood proof. This proof was later generalized to
sequential quadratic programming (SQP) methods
in [21, 15] together with Nick Gould and Andreas
Wachter, who corrected many errors in the early
proof.
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Originally, we had believed that filter methods
avoid the Maratos effect [34], which rejects New-
ton steps arbitrarily close to a solution, destroying
the second-order convergence properties of Newton’s
method. However, Nick and Philippe developed an
example that showed that filter methods also suffer
from the Maratos effect:

2zt + 23— 1) —x

minimize
xT
i +23-1=0.

subject to

The starting point x = (cos(t),sin(t)) for ¢ > 0
small and multipliers y = 3/2 shows that the SQP
step increases both f(x) and ||c(z)||, leading to a
filter-rejected step. We can avoid the Maratos ef-
fect by using second-order correction steps, and this
approach was analyzed in [41]. However, a more
appealing approach is to use a nonmonotone filter,
developed by Chungen Chen at Argonne, see [38].
The method uses two filters: a standard, global fil-
ter for global convergence, and a local nonmonotone
filter that allows us to establish fast local conver-
gence. The switching mechanism between the filters
can be analyzed to show both global and fast local
convergence.

Originally, filter methods were developed in the
context of SQP methods. However, they were
quickly extended to interior-point methods [40, 9,
42], and augmented Lagrangian methods [23, 30].
Filter methods have also become popular in other
areas, such as the solution of systems of equations
[18, 25], derivative-free optimization [2], and math-
ematical programs with equilibrium constraints (see

Section 3) [29].

Conclusions. Following the development of fil-
ter methods, modern penalty functions methods
emerged. Most notable are the steering methods
developed by Byrd, Nocedal, and Waltz, see [6, 5].
These methods adjust the penalty parameter to en-
sure sufficient reduction in a measure of constraint
violation. At this point, I do not believe that there
exists a big difference between filter methods and
modern penalty function methods, and the choice of
method is really a question of personal preference.

2 MINLP

Many optimal decision problems in scientific, en-
gineering, and public sector applications involve
both discrete decisions and nonlinear system dy-
namics that affect the quality of the final de-
sign or plan. Mixed-integer nonlinear program-
ming (MINLP) problems combine the combinato-
rial difficulty of optimizing over discrete variable
sets with the challenges of handling nonlinear func-
tions. MINLPs are one of the most general modeling
paradigms in optimization and are conveniently ex-
pressed as

f (@),
c(x) <0,
re Xz, €7, Vi€l

minimize
xT

subject to (2.4)

where f : R” — R and ¢ : R” — R™ are twice con-
tinuously differentiable conver functions, X C R" is
a bounded polyhedral set, and I C {1,...,n} is the
index set of integer variables.

During my PhD studies with Roger Fletcher,
we generalized outer approximation by Duran and
Grossmann [13], see [16], “simplified” its conver-
gence analysis, and provided a one-dimensional ex-
ample where outer approximation visits all integer
points. Later, Bonami et al. corrected our conver-
gence proof [4], and Pierre developed a much nicer
example that showed that outer approximation can
take an exponential number of iterations [26].

Over the last 10 years or so, I have been for-
tunate to collaborate with some very smart dis-
crete optimizers. With a student of Jeff Linderoth’s,
we built FIIMINT [1], which efficiently implements
the Quesada-Grossmann algorithm [36], which is
arguably the best approach to solving MINLPs.
FilMINT creates an initial outer approximation of a

convex MINLP by linearizing f(z) and ¢(z) around
(k)
€ )

FO v R (g — 2k,
B 4 7" (g — 20,

z 2 (2.5)

0 > (2.6)

where z is the objective value. FiIMINT then starts
an MILP tree-search using MINTO. Whenever this
tree search finds a new integer assignment, we (ap-
proximately) solve an NLP obtained by fixing the in-
teger variables in (2.4), and add linearizations about



its solution to the MILP, and resume the tree search.
FiIMINT implements a number of computational re-
finements that proved critical to its performance,
such as efficient cut management to remove redun-
dant cuts and a more aggressive cut generation strat-
egy that generates cuts at non-integer points, and it
takes full advantage of the modern MIP techniques
within MINTO.

Most solution methods for MINLP apply some
form of tree-search, and we can distinguish two
broad classes of methods: single-tree and multitree
methods. Classical single-tree methods include non-
linear branch-and-bound and branch-and-cut meth-
ods, while classical multitree methods include outer
approximation and Benders decomposition. The
most efficient class of methods for convex MINLP
are hybrid methods that combine the strengths of
both classes of classical techniques.

All these MINLP algorithms share a range of com-
mon building blocks, namely relazation and con-
straint enforcement. A relaxation is obtained by en-
larging the feasible set of the MINLP, and is used to
compute a lower bound on the optimal solution of
(2.4). Typically, we are interested in relaxations that
are substantially easier to solve than the MINLP it-
self. Together with upper bounds, which can be ob-
tained from any feasible point, relaxations allow us
to terminate the search for a solution whenever the
lower bound is larger than the current upper bound.
Constraint enforcement refers to procedures used to
exclude solutions that are feasible to the relaxation
but not to the original MINLP. Constraint enforce-
ment may be accomplished by refining or tightening
the relaxation, often by adding valid inequalities, or
by branching, where the relaxation is divided into
two or more separate problems.

Several strategies are used to obtain relaxations of
MINLPs.

1. Relazing integrality. Integrality constraints x; €
Z can be relaxed to x; € R for all ¢ € I.
This procedure yields a nonlinear relaxation
of MINLP. This type of relaxation is used in
branch-and-bound algorithms.

2. Relaxing convex constraints. Constraints ¢(z) <
0 and f(z) < z containing convex functions c
and f can be relaxed with a set of supporting
hyperplanes obtained from first-order Taylor se-
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ries approximation, (2.5) and (2.6), for a set of
points z®_ k =1,...,K. This class of relax-
ations is used in the outer approximation meth-
ods.

3. Relaxing nonconvex constraints. Constraints
c¢(xr) < 0 and f(r) < z containing nonconvex
functions require more work to be relaxed, e.g.,
by deriving convex underestimators.

Given a point & that is feasible to a relaxation but
is not feasible to the MINLP, the goal of constraint
enforcement is to exclude this solution, so that the
algorithm can eventually converge to a solution that
satisfies all the constraints. Two broad classes of
constraint enforcement strategies exist: relaxation
refinement and branching. Most modern MINLP al-
gorithms use both classes.

Algorithmic advances over the last decade or so
have often taken advantage of the special struc-
ture of problems, which motivated us to develop the
Minotaur software framework [33]. Minotaur stands
for Mixed-Integer Nonlinear Optimization Toolkit:
Algorithms, Underestimators, and Relaxations. It
was developed by Ashutosh Mahajan at Argonne to-
gether with Jeff Linderoth, Jim Luedtke, and Todd
Munson. The goal of Minotaur is to (1) implement a
range of algorithms in a common framework; (2) pro-
vide fast and usable MINLP solver; (3) provide flex-
ibility for developing new efficient algorithms; and
(4) reduce the burden of developing new algorithms
by providing a common software infrastructure. Our
vision is to enable researchers to implement new al-
gorithms that take advantage of problem structure,
by providing a general framework that is agnostic of
problem type or solvers.

Minotaur allows us to exploit problem structure in
new algorithmic developments, by making it easier
to be tailored to special problem classes and noncon-
vex structures. In particular, Minotaur can evaluate,
examine, and possibly modify the nonlinear problem
description, which is significantly more complex than
LP or QP problem specifications. In addition, a sin-
gle MINLP algorithm may require several types of
LP, QP, NLP, or MILP relaxations or approxima-
tions to be solved as subproblems. Different non-
convex structures benefit from tailored branching,
bound tightening, and cut-generation routines, as
well as requiring possibly novel separation routines.
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In general, nonconvex forms are more challenging
and diverse than integer variables, which motivates
a more tailored approach. Minotaur provides an
extensible toolkit that enables researchers to imple-
ment new algorithms, taking advantage of problem
structure by providing a general framework that is
agnostic of problem type or solvers.

Conclusions and Outlook. There has been
tremendous progress in solving MINLP problems
over the past decade (and this short note does not
do justice to the many clever developments in the
field). In addition, new classes of MINLPs are
emerging, such as MIPs with second-order cone con-
straints [12, 11] and MINLPs with partial-differential
equation constraints [31], which necessitate novel ap-
proaches.

3 Complementarity Constraints

Mathematical programs with equilibrium con-
straints (MPECs) are a class of problems that gener-
alize nonlinear programs. Until recently, it had been
assumed that these problems were too difficult for
standard nonlinear solvers. However, as long as we
take care with the problem formulation and the algo-
rithm design, modern NLP solvers can tackle these
problems.

MPECs arise in a variety of applications, see the
surveys [14, 32, 35|, and the test problem libraries
[27, 10]. The most famous set of applications are
leader-follower games (also known as Stackelberg
games [39]), which result in optimization problems
that contain optimality conditions of the follower’s
problem as constraints, including the complementar-
ity conditions. In general, MPECs can be expressed
as

minimize  f(z)
subject to  ¢;(z) =0, ie&
ci(x) >0, 1€l (3.7)
0 S I 1 i) Z 0,
where * = (z9,21,22) is a decomposition of the

problem variables into controls x¢p € R™ and states
(r1,72) € R?. The objective function, f(x), and
the constraint functions, ¢;(x), are twice continu-
ously differentiable.

The complementarity constraint involving x; and
x9 means that forallt =1,...,p, x1; > 0and x9; >0
and that x1; = 0 or x9; = 0, i.e., x1; and x9; cannot
both be non-zero. Clearly, an MPEC with a more
general complementarity condition such as

0<G(z) L H(z)>0 (3.8)
can be written in the form (3.7) by introducing slack
variables. One can easily show that the reformulated
MPEC has the same properties (such as constraint
qualifications or second-order conditions) as the orig-
inal MPEC. In this sense, nothing is lost by intro-
ducing slack variables. However, we show below that
the simpler form of complementarity is necessary for
the convergence of NLP solvers.

One attractive way of solving (3.7) is to replace
the complementarity condition by a set of nonlinear
inequalities, such as ¥z < 0, and then solve the
equivalent nonlinear program (NLP),

minimize  f(z)

subject to  ¢;(x) =0, (3.9)
) :

Unfortunately, it has been shown [37] that (3.9) vio-
lates the Mangasarian-Fromowitz constraint qualifi-
cation (MFCQ) at any feasible point. This failure of
MFCQ implies that the multiplier set is unbounded,
the central path fails to exist, the active constraint
normals are linearly dependent, and linearizations
of (3.9) can become inconsistent arbitrarily close to
a solution. In addition, early numerical experience
with this approach has been disappointing [3] with
failure on 50-70% of some bilevel problems. As a
consequence, solving MPECs via NLPs such as (3.9)
has been commonly regarded as numerically unsafe.

In contrast, our initial numerical experience with
filterSQP was very positive [19], and we investigated
the convergence of SQP methods applied to (3.9) to-
gether with Roger Fletcher, Danny Ralph, and Ste-
fan Scholtes [20]. Our analysis starts by considering
the two index sets X1, Xo C {1,...,p} with

...

we denote their respective complements in {1,...,p}
by X~ and Xt For any such pair of index sets, we

XU Xy = ,p}; (310)



define the relazed NLP corresponding to the MPEC
(3.7) as

minixmize f(x)
subject to  ¢i(x) =0 €&
ci(e) >0 ieZ
;=0 VjeXs (3.11)
Toj = 0 Vj € Xf‘
T4 >0 \V/j € Xy
T2j >0 Vj e X

Concepts such as constraint qualifications, station-
arity, and a second-order condition for MPECs can
be defined in terms of the relaxed NLPs. The term
“relaxed NLP” stems from the observation that if
x* is a local solution of a relaxed NLP (3.11) and
satisfies complementarity :c{T:cg = 0, then z* is also
a local solution of the original MPEC (3.7).

Our results relate to the following notion of strong
stationarity.

Definition 1. A point x* is called strongly station-
ary if there exist multipliers X of c¢(x) and vy and D
of x1 and xo, Tespectively, such that the KKT condi-
tions of the relaxed NLP, (3.11), hold.

We note, that some of the multipliers v, v5 may
be negative, and we only require that vy;, vo; > 0 if
:c“{j = x’Q‘j = 0.

We can then show that SQP methods converge
quadratically near a strongly stationary point under
mild conditions. In particular, we are interested in
the situation where (¥ is close to a strongly station-
ary point, z*, but xgk)Txék) is mot necessarily zero.
SQP then solves a sequence of quadratic program-
ming approximations, given by

g d+ Ld"w kg

subject to cék) + A(gk)Td =0
B A7 g
l'gk) +d; >0
l’ék) +dy >0
(k) (k) + $§k

Ly Ty
T
+ai® dy <0,

minimize
d

)T

dy

\

where W) = v2£(z®) (k) is the Hessian of the
Lagrangian of (3.9) and pu®) = (A(®) Vik), Vék),f(k)).
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The last constraint of (QP*) is the linearization of
the complementarity condition 27z < 0. Under
reasonable assumptions we can show the following
result.

Theorem 2. Let the following assumptions hold:
(1) f and c are twice Lipschitz continuously differen-
tiable; (2) x* is a strongly stationary point of (3.7),
which satisfies an MPEC-LICQ (linear independence
constraint qualification); (3) strict complementarity
holds for the MPEC multipliers; and (4) our QP
solver always chooses a linearly independent basis.
Then it follows that SQP applied to the NLP formu-
lation (3.9) of the MPEC (3.7) converges quadrati-
cally near a solution (x*, u*).

The proof is divided into two parts. First, it is
shown that if azgk)T:L‘gk) = 0 at some iteration k, then
the SQP approximation of (3.9) about this point is
equivalent to the SQP approximation of the relaxed
NLP. Since the latter is a well-behaved problem, su-
perlinear convergence follows. The second part of
the proof assumes that a:gk)Txgk) > 0, and it is shown
that each QP basis remains bounded away from sin-
gularity. Again, convergence can be established by
using standard techniques.

Later, together with Jorge Nocedal and Gabriel
Lépez-Calva, we extended the analysis to interior-
point methods (IPMs) [28]. IPMs require an addi-
tional reformulation of the equivalent NLP (3.9), in
order to mitigate the effect of the loss of MFCQ. T'wo
alternative approaches are relaxation, where we use
i=1,... (3.12)

122 < 0, D,

or penalization, which replaces the objective by

f(x) 4wl x,, (3.13)
where m > 0 is a penalty parameter. If 7 is cho-
sen large enough, the solution of the MPEC can be
recast as the minimization of the penalty function.
With both approaches, we can analyze methods that
control the regularization or penalty parameters at
the same time as the barrier parameter, resulting in
a single loop for convergence.

The Importance of Being Slack. The use of
slacks in (3.9) is critical for the convergence of SQP
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methods. In [20] we give an example that shows
that an SQP method applied to a nonlinear comple-
mentarity constraint can converge to a nonstation-
ary point. We also provide an example that shows
that SQP converges linearly to a spurious stationary
point if we use #¥z9 = 0 instead of the relaxation

:E{ﬂ:g < 0.

Beyond NLP Solvers. Despite the success of
NLP solvers in tackling a wide range of MPECs,
there are still classes of problems where these solvers
fail. In particular, problems whose stationary points
are B-stationary [37], but not strongly-stationary,
will cause NLP solvers to fail or exhibit slow con-
vergence.

One idea is to extend SQP methods by taking
special care of the complementarity constraint. Ste-
fan suggested a sequential quadratic programming
with equality constraints (SQPEC) approach, where
we minimize a quadratic approximation of the La-
grangian subject to a linearized feasible set, and a
copy of the complementarity constraint. Remark-
ably, this approach can be shown to fail for MPECs
as demonstrated by the following example:

Igliyn (z—12+y3+4* st.0<z L y>0.
Starting from any point z = 0,y > 0, SQPEC con-
verges quadratically to a spurious stationary point at
x = (0,0), and fails to detect the descend direction
(1,0).

Todd Munson suggested a sequential linear pro-
gramming with equality constraints (SLPEC) ap-
proach [29] to avoid this issue. By interpreting the B-
stationarity conditions as the optimality conditions
of an LPEC, we can define an algorithm that solves
a sequence of LPECs inside a trust region of radius
A > 0 around the current point x:

g(z)'d

ce(z) + Ag(x)Td =0,

cz(@) + Az(z)Td > 0,
0§$1+dw1 L $2+dx2 >0,
d] < A.

minimize
d

subject to

We can add an EQP phase to accelerate convergence.
Global convergence is promoted through the use of
a three-dimensional filter that separates the comple-
mentarity error and the nonlinear infeasibility.

Conclusions and Outlook. Software and solvers
for MPECs are far less mature than NLP or MINLP.
In my opinion, reliable NLP solvers are still the best
approach for solving MPECs despite the potential
problems with slow convergence or convergence to
spurious stationary points. To develop better solvers
we need to build on our existing NLP solver infras-
tructure.
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My Life as an Optimizer
Aharon (Ronny) Ben-Tal

Technion — Israel Institute of Technology
Haifa, Israel

abental@technion.ac.il

My venture into “optimization land” started in
1970. During my senior year in Tel Aviv University,
I read a 1958 paper by Herbert Scarf. In that paper,
the expectation of a simple one-variable piecewise
linear equation was to be maximized in the face of
uncertain random demand d for which only its mean
and variance were known. Scarf modeled the prob-
lem as a max-min and derived the exact probabil-
ity function which minimized the expectation. In
today’s terminology, he solved a distributionally ro-
bust optimization problem. Looking for a subject for
my Master thesis, I decided to look at a significant
extension of Scarf’s results in which the objective
function is a general convexr function of n decision

Aharon (Ronny) Ben-Tal and Tamés Terlaky
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variables and m random variables. In my first at-
tempt to follow Scarf’s research, I assumed that for
each random variable, just the mean and variance
are known, and soon came to a dead end. I then
remembered that in such cases, one should “think
outside the box” and change the setting: Instead
of knowledge of mean-variance (mean square devi-
ation), I assumed knowledge of mean-mad (mean
absolute deviation). Amazingly, that led to pow-
erful results in which tight upper and lower bounds
were explicitly obtained for the expectation of a gen-
eral convex (or concave) function of m independent
random variables. These results were co-authored
with my Master thesis advisor, Eithan Hochman,
and were first published in 1972, in Journal of Ap-
plied Probability, and later applied to stochastic pro-
gramming problems in a 1976 paper published in
Operations Research.

I completed my Ph.D. studies in Applied Mathe-
matics at Northwestern University in 1973. I then
spent one year at McGill University and another year
at the University of Texas at Austin, working with
the great Abe Charnes. After that, I joined the Tech-
nion.

Frequently, my research interests were evoked by
some discrepancies in a theory which make it less
than perfect. The KKT optimality condition for con-
vex programming problems is such a case. Indeed,
the necessary condition needs the assumption of con-
straint qualification (CQ), such as the Slater condi-
tion, while the sufficient conditions are free from this
requirement. This, I observed, is the reason why full
characterization of Pareto-optimality was not avail-
able until 1976. Together with my Ph.D. advisor,
Adi Ben-Israel, and later with Sanjo Zlobec, we de-
veloped in 1976-1979 the so-called BBZ (Ben-Tal,
Ben-Israel, Zlobec) optimality conditions for convex
programming problems, not requiring CQ. This led
to a full characterization of Pareto Optimality in a
1977 paper, with Ben-Israel and Charnes, published
in Econometrica.

Starting in 1980, I turned my efforts to optimal-
ity conditions for nonconver optimization problems,
more precisely, to second-order optimality condi-
tions for local minimum. I noticed that the classical
second-order results (e.g., those given in the Fiacco-
McCormick book) may fail to recognize local optimal
solutions, for example, that the point z = (0,0,0) is
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a local minimizer of the simple problem
min{z} + 125 | 23 + z123 <0, 23 + 2129 < 0},

(In fact, z is a global minimizer.) In a 1980 paper
in JOTA, 1 derived stronger optimality conditions,
both necessary ones and sufficient ones. The next
big challenge was to develop a theory for local opti-
mality for problems whose objective function and the
constraint functions are not even once differentiable!
This new theory was published first in 1980, and a
year later, in the second part of my first book (co-
authored with Ben-Israel and Zlobec). In that year,
my dear colleague and friend Jochem Zowe came for
a sabbatical year to the Technion, and this started
a 20-year collaboration which resulted in more than
10 papers. The most important of them is the 1981
paper published in Math. Programming Studies en-
titled “A Unified Theory of First snd Second Order
Conditions for Extremum Problems in Topological
Vector Spaces.” This paper has been cited every
year in the last 36 years, and continues to be cited.
We created in this work the notion of a second-order
directional derivative that later became known as
the “Ben-Tal-Zowe directional derivative” — a name
that was short-lived, since Terry Rockafellar came
up with the (better) name, “Parabolic directional
derivative.” Tragically, Jochem’s academic career
ended in 2000, due to a serious bike accident.

In the mid-80’s, I renewed my interest in stochas-
tic programming. I noticed that economists deal
mainly with uncertain objective functions, and adopt
the Expected Utility paradigm. What could be the
corresponding setup for uncertain constraints? My
first attempt was reported in a 1985 paper in Math.
of OR entitled “The Entropic Penalty Approach to
Stochastic Programming.” It resulted in a duality
relation between maximizing expected utility of an
objective function and penalizing deviations from
constraint feasibility — the utility function being ez-
ponential, and the penalty being a distance-like func-
tion associated with relative entropy. The natural
next step was to consider a general utility function
(monotone and concave). I posed this question to
Marc Teboulle who had just started his Ph.D. under
my supervision. The answer came in a big way in
two papers — one in 1986 in Management Science,
entitled “Expected Utility, Penalty Functions, and
Duality in Stochastic Nonlinear Programming,” and
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the second, a year later in Math. of OR, entitled
“Penalty Functions and Duality in Stochastic Pro-
gramming via ¢-Divergence Functionals.” In these
papers, a new notion of certainty equivalent (CE)
came out, replacing the classical one (u~!FEu(z)).
We called it “New CE,” but later changed the name
to “Recourse CE,” and finally it got the name “Opti-
mized CE” (OCE). When u is the exponential util-
ity, OCE = w~'Eu; when it is a simple piecewise
linear function, OCE is CVaR, and thus the famous
formula of Rockafellar—Uryasev is a special case of
a result in the OCE theory. The negative of OCE
has the properties used to define risk measures. In
2005, I met Philippe Artzner, the co-author of the
classical paper on coherent risk measures. Hearing
about the OCE and our 198687 papers, he encour-
aged us to write a paper extending our results and
putting them in the framework of Finance Theory.
We did so and the paper was published in 2007 in
Math. Finance. It shows, among other things, that
OCE is a convex risk measure, as defined by Follmer
and Schild in 2000. Marc and I had a very fruit-
ful collaboration on many other optimization topics,
which culminated in 20 joint papers.

In 1986-88, I spent two years as a visiting pro-
fessor in the IOE department of the University of
Michigan (Ann Arbor). This period marked a shift
in my career: I started to work in earnest on appli-
cations, particularly in engineering. The first works
were on optimization of mechanical structures. I
was introduced to this area by my colleague, Martin
Bendsge from the Technical University of Denmark.
The initial publication on this topic, with Martin
and later with Jochem Zowe, Michael Koc¢vara, Wolf-
gang Achziger and Arkadi Nemirovski, culminated in
a SIOPT paper (later published as SIGEST paper in
SIAM Review) on Free Material Optimization that
was the basis of a novel design of part of the new
Airbus 380 airplane.

Other important applications to which I con-
tributed are: Medical Imaging (algorithm for re-
covering images from Positron Emission Tomogra-
phy), Signal Processing, Designing water distribu-
tion networks, Machine Learning, Supply chain man-
agement, Use of renewable energy sources in energy
systems under uncertainty, and more.

The arrival at Technion of Arkadi Nemirovski in
1992 is another major event in my career. Our
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collaboration on numerous papers was fruitful right
from the start, and not just with regard to Robust
Optimization. Our work on RO started on a problem
in Truss Topology Design (TTD). We encountered a
case where a small unexpected force affecting the op-
timal truss can cause its collapse. That led to a gen-
eral question on how to avoid severe infeasibilities
in case data is uncertain. Our attempt to answer
this question was given in the 1998 Math. of OR
paper “Robust Convex Optimization,” which many
consider as the foundation of modern RO. By now,
RO is a well-established sub-area of optimization,
with a large number of papers, workshops, univer-
sity courses, and a wide variety of applications. (As
of August 2017, writing “Robust Optimization” in
Google, one gets 78,000,000 items.)

The success of RO is due to the fact that at
the same time conic optimization, particularly, conic
quadratic and semidefinite optimization were devel-
oped, and thus provided the technical tools needed
for developing RO. The two books written by Arkadi
and me were instrumental in this respect. In the last
seven years, my work on RO continued mainly with
Dick den Hertog and his group at Tilburg Univer-
sity. My most recent paper (just accepted to Opera-
tions Research), with my postdoc Krzysztof Postek,
den Hertog, and Bertrand Melenberg, “Robust opti-
mization with ambiguous stochastic constraints un-
der mean and dispersion information,” is particu-
larly meaningful to me as it is directly connected to
my very first 1970 paper!

I would like to end this brief “scientific biography”
of mine with a small poem I read when awarded the
2016 Khachiyan Prize:

What is an Optimizer?

An optimizer is one that will not rest
Until he achieves the very best

His frustration is clearly visible
If his solution is not even feasible

Facing uncertainty he will not trust
A solution that is not robust

He becomes completely ecstatic
If he can prove convergent quadratic
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2018 INFORMS

Optimization Society
Conference: update and call
for submissions

The next INFORMS Optimization Society is co-
organized by Steve Billups (University of Colorado
Denver), Steffen Borgwardt (University of Colorado
Denver), Manuel Laguna (University of Colorado
Boulder), and Alexandra Newman (Colorado School
of Mines). It will take place March 23-25, 2018,
on the University of Colorado Denver’s downtown
campus. The conference theme, Mountains of Opti-
mization, is designed to emphasize, in the mountain
setting, the myriad of topics, both theoretical and
applied, that confront optimizers today.

The conference will feature plenary speakers Shab-
bir Ahmed (Georgia Tech), Marcos Goycoolea (Uni-
versidad Adolfo Ibanez), Moritz Hardt (Google and
UC Berkeley), Illya Hicks (Rice University), Karla
Hoffman (George Mason University), John Hooker
(Carnegie Mellon University), and Sven Leyffer (Ar-
gonne National Labs), as well as tutorials by Bob
Fourer (AMPL), Ed Klotz (CPLEX), and Warren
Powell (Castle Labs).

Abstract submission is welcome at https://
acgi.informs.org/oasis_login.php? (before the
deadline of Tuesday, December 12, 2017); if you are
interested in chairing a session, please contact the
chair of the organizing committee Alexandra New-
man at newman@mines.edu and provide a tentative

Denver, CO (image used with permission of the University of
Colorado)
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session title and list of speakers.
Important dates to keep in mind:

e December 12, 2017: abstract submission dead-
line

e February 9, 2018: pre-registration deadline for
discounted rates

e February 22, 2018: cutoff date for hotels

Additional details are available on the conference
website, http://orwe.mines.edu/conference/.
The organizers are working hard to make this an
exciting conference!


https://acgi.informs.org/oasis_login.php?
https://acgi.informs.org/oasis_login.php?
mailto:newman@mines.edu
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INFORMS Journal on

Optimization

INFORMS Journal on Optimization is now accept-
ing submissions! Its home on the web is http:
//pubsonline.informs.org/journal/ijoo, where
you can find more information, submit your
manuscript, and in the near future, view published
and accepted articles.

Dimitris Bertsimas (Massachusetts Institute of
Technology) is serving as the inaugural Editor-in-
Chief, and the associate editors are:

Shabbir Ahmed
John Birge

Dick den Hertzog
Brian Denton
Laurent El Ghaoui
Vivek Farias

Dan Tancu
Garud Lyengar
Patrick Jaillet
Andrea Lodi
David Morton
Georgia Perakis
Jim Renegar
Suvrajeet Sen
David Shmoys
Melvyn Sim

Ben van Roy

The journal aims to publish papers in optimiza-
tion with particular emphasis on data-driven opti-
mization, optimization methods in machine learn-
ing, and exciting real-world applications of optimiza-
tion. The journal also covers more traditional areas
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such as: convex and linear optimization; general pur-
pose nonlinear optimization; discrete optimization
(combinatorial, integer, mixed integer optimization);
optimization under uncertainty (dynamic, stochas-
tic, robust, simulation-based optimization); infinite
dimensional optimization; and online optimization.
Especially welcomed are contributions studying new
and significant applications such as: healthcare; in-
ventory and supply chain management; logistics;
revenue management and pricing; energy; the Inter-
net; interfaces with computer science; and finance.

The journal welcomes three types of submissions:

e Regular articles: These are original papers
that build on an area and expand it in differ-
ent ways. A paper in this category will be pub-
lished electronically within 1 year of submission.
Accepted regular articles are expected to score
highly in at least one of the following questions:

— How new and significant is the application
studied?

— How original/creative is the optimization
modeling?

— How original/creative is the optimization
methodology?

— How significant is the impact in practice?

e Perspective articles: These are unusually
original papers that initiate an area, typically
the first of their kind. A paper in this category
will be published electronically within 2 months
of submission.

e Review articles: These are papers that
present a unifying and comprehensive review
of an area of optimization. A paper in this
category will be published electronically 6
months of submission.
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