Optimization-based analysis of slot allocation strategies for EU airports

João P. Pita
António P. Antunes

Comments and suggestions from Profs Amedeo Odoni and Cynthia Barnhart (MIT) are thankfully acknowledged.
Summary

1. Motivation
2. Problem
3. Optimization Model
4. Application
5. Conclusion
6. Future Work
Motivation [1/2]

1. The increase in passenger demand and airport utilization has led to airport congestion
 a. 33 minutes was the average delay time per delayed flight in Europe (2010)
 b. 23% of flights in Europe (2010) were delayed > 15 min (CODA, 2011)
 c. $28.9 billion was estimated as the direct cost of delays in the US (2007)
 d. $4.0 billion was estimated as the impact in the US GDP of air transportation delays (2007)

2. Airport slots are needed to control airport usage
 a. Limit airport capacity using administrative measures
 b. Slot allocation is based on grandfather rights and the lose-it-or-lose-it rule
Motivation [2/2]

3. Congestion increases exponentially when airport utilization is above 80% / 85%
 a. Several European airports operate at capacity throughout the day
 b. At peak periods a greater number of airports operate at capacity
 c. Average utilization rate is much lower than peak utilization rate
Problem [1/4]

Initial Research Questions

1. Is it possible to satisfy the current passenger demand with less cost to the air transportation system (including passengers) without compromising the airline competition and profitability?

2. Is it possible to reduce and/or reorganize the number of slots at the airports to reduce the delay time without losing a “big portion” of passenger demand?

Possible contributions of this research

1. Give insights about the use of airport capacity in congested airports

2. Help strategic decisions regarding slot allocation process
Problem [2/4]

Initial Assumptions

1. A set of airlines compete in an air transportation network;
2. Each airline has a given number of slots per airport (can be time-fixed or not)
3. Airport and vehicle costs per aircraft type are known
4. Unit delay costs per aircraft and passenger are known
5. Demand per leg, airline, and demand period is known
6. Demand that is not satisfied can be recaptured by other airlines
7. The expected delay time per airport and time period is known
Problem [3/4]

Airport Capacity and Slot Allocation

Old flag carriers still have a dominant position in “home” airports

Even when demand for slots is above capacity, airport capacity is not totally used
Problem [4/4]

Airport Utilization and Expected Delay Time

- DELAYS© - is a stochastic and dynamic queuing model developed at MIT (Odoni and Malone)
- Small slot reduction/reallocation can reduce significantly the delay time
- Reduction/reallocation of slots needs to be done in a “fair” way to airlines

<table>
<thead>
<tr>
<th>LHR Airport</th>
<th>Current Slots</th>
<th>Avg. Delay <10min</th>
<th>Max 21 slots/15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>1367</td>
<td>1362</td>
<td>0.37%</td>
</tr>
<tr>
<td>Capacity</td>
<td>2112</td>
<td>2112</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total Delay</td>
<td>8625.92</td>
<td>8044.73</td>
<td>6.74%</td>
</tr>
<tr>
<td>Maximum Delay (min)</td>
<td>11.29</td>
<td>9.57</td>
<td>15.23%</td>
</tr>
<tr>
<td>Average Delay (min)</td>
<td>6.31</td>
<td>5.91</td>
<td>6.34%</td>
</tr>
</tbody>
</table>

If airport capacity was limited below current value would be possible to satisfy the current demand?
Optimization Model [1/2]

Objective Function – minimize network costs

\[
\text{min } \text{Cost} = \sum_{j,k \in A} \sum_{c \in C} \sum_{f \in F} \sum_{t \in T} \left(c_{Vjk} \times x_{jkcf} + c_{A_j} \times x_{jkcf} \right) \times s_{Vf} + \sum_{j,k \in A} \sum_{c \in C} \sum_{f \in F} \sum_{t \in T} c_{Dj} \times d_{Tjk} \times x_{jkcf} \times s_{Vf} + \sum_{j,k \in A} \sum_{t \in T} \sum_{c \in C} c_{Tjk} \times \left(d_{Tjk} - s_{P_{jk}} \right) \times p_{jkct} + \sum_{j,k \in A} \sum_{p \in P} \sum_{c \in C} \left(q_{jkcp} - \sum_{t \in T_p} p_{jkct} \right) \times a_{Tjk} + \sum_{j,k \in A} \sum_{c \in C} \sum_{p \in P} \sum_{v \in V} c_{Sjk} \times p_{Tjkcpv} \times s_{Dv}
\]

Capacity Constraints – airline movements per airport cannot exceed airline slots

\[
\sum_{k \in A} \sum_{f \in F} x_{jkcf} + x_{kijc,t-t_{ij}} \leq s_{jct}, \forall j \in A, c \in C, t \in T
\]
Optimization Model [2/2]

Demand Equations – passengers per leg cannot exceed demand

\[\sum_{c \in C} \sum_{t \in T_p} p_{jkt} \leq \sum_{c \in C} q_{jcp}, \forall j, k \in A, p \in P \]

\[\sum_{t \in T_p} p_{jkt} \geq q_{jcp} \times (1 - \alpha_{jk}), \forall j, k \in A, c \in C, p \in P \]

\[\sum_{t \in T_p} p_{jkt} \leq q_{jcp} \times (1 + \alpha_{jk}), \forall j, k \in A, c \in C, p \in P \]

\[\alpha \text{ – maximum variation from current airline demand per leg} \]
\[\alpha = 5\% \text{ – airline can gain/lose up to 5\% of passenger demand in that leg} \]

Schedule Delay – frequency per leg is used as proxy of average schedule delay time

\[\sum_{f \in F} a_{Sjkpf} \leq 1, \forall j, k \in A, c \in C, p \in P \]

\[p_{jkt} \leq \sum_{f \in F} a_{Sjkpf} \times s_{vf}, \forall j, k \in A, c \in C, p \in P, t \in T_p \]

\[x_{jkcft} \leq a_{Sjkpf}, \forall j, k \in A, c \in C, f \in F, p \in P, t \in T_p \]
Network – 10 busy European Airports

<table>
<thead>
<tr>
<th>Airlines</th>
<th>AMS</th>
<th>BCN</th>
<th>CDG</th>
<th>FCO</th>
<th>FRA</th>
<th>LHR</th>
<th>MAD</th>
<th>MUC</th>
<th>VIE</th>
<th>ZRH</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>14</td>
<td>16</td>
<td>126</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>20</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>252</td>
</tr>
<tr>
<td>BA</td>
<td>12</td>
<td>10</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>104</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>208</td>
</tr>
<tr>
<td>IB</td>
<td>8</td>
<td>84</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>138</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>288</td>
</tr>
<tr>
<td>KL</td>
<td>104</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>208</td>
</tr>
<tr>
<td>LH</td>
<td>28</td>
<td>22</td>
<td>36</td>
<td>24</td>
<td>132</td>
<td>36</td>
<td>16</td>
<td>120</td>
<td>20</td>
<td>22</td>
<td>456</td>
</tr>
<tr>
<td>LX</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>78</td>
<td>156</td>
</tr>
<tr>
<td>OS</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>54</td>
<td>8</td>
<td>108</td>
</tr>
<tr>
<td>U2</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>31</td>
<td>80</td>
<td>22</td>
<td>67</td>
<td>20</td>
<td>17</td>
<td>65</td>
<td>11</td>
<td>38</td>
<td>7</td>
<td>358</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>238</td>
<td>240</td>
<td>145</td>
<td>214</td>
<td>229</td>
<td>271</td>
<td>195</td>
<td>148</td>
<td>157</td>
<td>2050</td>
</tr>
</tbody>
</table>

Airport Demand, Capacity, and Average Delay

<table>
<thead>
<tr>
<th>Indicators</th>
<th>AM</th>
<th>BCN</th>
<th>CDG</th>
<th>FCO</th>
<th>FRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin (pax/day)</td>
<td>15168</td>
<td>15878</td>
<td>16747</td>
<td>12511</td>
<td>12551</td>
</tr>
<tr>
<td>Destination (pax/day)</td>
<td>14149</td>
<td>15560</td>
<td>15259</td>
<td>13327</td>
<td>13226</td>
</tr>
<tr>
<td>Declared Cap. (mov/h)</td>
<td>106</td>
<td>60</td>
<td>112</td>
<td>88</td>
<td>80</td>
</tr>
<tr>
<td>Average Delay (min)</td>
<td>0.87</td>
<td>0.51</td>
<td>2.09</td>
<td>0.79</td>
<td>3.36</td>
</tr>
</tbody>
</table>

Origin (pax/day)	17670	16940	9670	8239	9401
Destination (pax/day)	18018	18111	10294	8296	9143
Declared Cap. (mov/h)	88	90	90	66	68
Average Delay (min)	4.38	0.62	2.07	1.18	2.56

- 10 airports for Friday 17th July 2009
- 8 airlines + 1 (other airlines)
- Total flights – 1025
- Total passengers – 99446
- Average seat per leg and airline – flight database
- Demand per leg – EUROSTAT data for July 2009;

The model assumes that the flights outside the network stay the same
Application [2/5]

Daily Demand (per leg)

<table>
<thead>
<tr>
<th>Origin</th>
<th>AMS</th>
<th>BCN</th>
<th>CDG</th>
<th>FCO</th>
<th>FRA</th>
<th>LHR</th>
<th>MAD</th>
<th>MUC</th>
<th>VIE</th>
<th>ZRH</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>0</td>
<td>1599</td>
<td>1624</td>
<td>813</td>
<td>987</td>
<td>1836</td>
<td>1315</td>
<td>888</td>
<td>748</td>
<td>786</td>
</tr>
<tr>
<td>BCN</td>
<td>1474</td>
<td>0</td>
<td>1251</td>
<td>1007</td>
<td>754</td>
<td>1017</td>
<td>4375</td>
<td>675</td>
<td>387</td>
<td>415</td>
</tr>
<tr>
<td>CDG</td>
<td>1638</td>
<td>1326</td>
<td>0</td>
<td>2140</td>
<td>1608</td>
<td>1678</td>
<td>1261</td>
<td>1229</td>
<td>1045</td>
<td>1154</td>
</tr>
<tr>
<td>FCO</td>
<td>786</td>
<td>1005</td>
<td>1458</td>
<td>0</td>
<td>774</td>
<td>1248</td>
<td>1325</td>
<td>520</td>
<td>394</td>
<td>432</td>
</tr>
<tr>
<td>FRA</td>
<td>776</td>
<td>721</td>
<td>1261</td>
<td>793</td>
<td>0</td>
<td>1944</td>
<td>1453</td>
<td>1364</td>
<td>1219</td>
<td>772</td>
</tr>
<tr>
<td>LHR</td>
<td>1682</td>
<td>981</td>
<td>1605</td>
<td>1301</td>
<td>1978</td>
<td>0</td>
<td>1582</td>
<td>1398</td>
<td>800</td>
<td>1494</td>
</tr>
<tr>
<td>MAD</td>
<td>1141</td>
<td>3909</td>
<td>1491</td>
<td>1261</td>
<td>1388</td>
<td>1569</td>
<td>0</td>
<td>726</td>
<td>205</td>
<td>707</td>
</tr>
<tr>
<td>MUC</td>
<td>809</td>
<td>611</td>
<td>1089</td>
<td>459</td>
<td>1334</td>
<td>1360</td>
<td>707</td>
<td>0</td>
<td>662</td>
<td>437</td>
</tr>
<tr>
<td>VIE</td>
<td>717</td>
<td>400</td>
<td>983</td>
<td>408</td>
<td>1217</td>
<td>818</td>
<td>222</td>
<td>711</td>
<td>0</td>
<td>946</td>
</tr>
<tr>
<td>ZRH</td>
<td>896</td>
<td>429</td>
<td>1060</td>
<td>495</td>
<td>861</td>
<td>1207</td>
<td>647</td>
<td>512</td>
<td>991</td>
<td>0</td>
</tr>
</tbody>
</table>

Daily demand per leg (July 2009)

Vehicle and Airport Costs

- Landing fees are used as airport costs
- Vehicle costs were adapted from literature:

\[c_V = (d_{jk} + 722) \times (s_v + 104) \times 0.019 \ (\text{€/flight}) \]

Passenger Delay Cost

\[c_p = 0.77 \ (\text{€/min/pax}) \]

Flight Delay Cost

\[c_F = 8 + 0.75 \times (s_v - 40) \ (\text{€/min/flight}) \]
Application [3/5]

Type of results to compare from current situation

- Number of flights (leg and airline)
- Delay time and cost
- Demand transfer between airlines
 - Airport costs
 - Passenger schedule delay

Several situations will be tested

<table>
<thead>
<tr>
<th>Fixed number of slots (current situation)</th>
<th>Limited pax demand transfers</th>
<th>Variable avg seat demand transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in the number of slots (“pick the best”)</td>
<td>Free pax demand transfers</td>
<td>Fixed avg seat</td>
</tr>
</tbody>
</table>

Lower delay level

- Increase avg seats

Airline equity

- Airline competition

Load factor

- Decrease frequency
Application [4/5]

Results – base scenario \([\alpha = 5\% \text{; fixed slots}]\)

- **Total cost decreases 13,12%**
 - LH – 16,59% (biggest)
 - U2 – 7,52% (lowest)

- **Delay cost decreases 56,36%**
 - LH – 61,85% (biggest)
 - OS – 50,32% (lowest)

- **Passenger variation is nil (all demand must be satisfied)**
 - U2 – 1,08% (biggest) / IB – -0,34% (lowest)
Application [5/5]

Results – different maximum passenger variation

Total cost decreases with the increase in α

- Cost drops 10% from $\alpha = 0\%$ to $\alpha = 5\%$
- But only 2.5% from $\alpha = 5\%$ to $\alpha = 20\%$

Delay cost decreases 6.7% ($\alpha=0\%$ to $\alpha=20\%$)

- $\alpha = 0\%$ – 50.56% decrease
- $\alpha = 20\%$ – 57.33% decrease

Average seat per flight increases 4% - 5%

- Except for $\alpha = 20\%$ – + 7.08%

Passenger variation between airlines always below 1.5% except for U2 – very small number of passengers

- U2 – 1.08% ($\alpha = 5\%$) ; 4.73% ($\alpha = 10\%$) ; 9.21% ($\alpha = 20\%$)

“Free variation” gives the same results that $\alpha=20\%$
Conclusions

Total cost in the system can be reduced mainly by decreasing delay costs

a. Delay cost can be reduced to 6% of total costs (from 9%)

b. This reduction is achieved without passenger spilling

c. Delay cost decrease is well-distributed between the airlines

Reduction in flights is much lower than reduction in total cost

a. Flight reduction is higher in busiest periods and at the busiest airports

b. Passenger transfer between airlines is small – not compromising airline market power

c. Average seat per flight increases, in most of cases, by margin up to 5%

Biggest airlines have biggest reduction in delay costs

a. More slots in each airport, more capacity to change flight time;

b. Influence of delay cost is higher for the biggest airlines – thus greater reduction in delay cost

c. Passenger variation is negative to the biggest airline – better to promote competition
Future Work

Changing Slots – limiting max utilization to 90% current slots

1. Slots are changed by minimizing the total changing time in each airport;

2. Modification in the optimization model:

 \[\sum_{c \in C} s_{jct} \leq S_{jct}^{MAX} + \Delta s_{jct}, \quad \forall j \in A, t \in T \]

 \[\Delta s_{jct} \text{ is free} \]

3. Each airline retains the same number of slots;

4. Demand still needs to be satisfied in the corresponding demand period;

5. Expected delay times are updated to the new values;

<table>
<thead>
<tr>
<th>Parameters</th>
<th>AMS</th>
<th>BCN</th>
<th>CDG</th>
<th>FCO</th>
<th>FRA</th>
<th>LGW</th>
<th>MAD</th>
<th>MUC</th>
<th>VIE</th>
<th>ZRH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (slot/15m)</td>
<td>100%</td>
<td>28</td>
<td>23</td>
<td>28</td>
<td>23</td>
<td>21</td>
<td>22</td>
<td>30</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>90%</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>18</td>
<td>19</td>
<td>27</td>
<td>20</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Periods > 90%</td>
<td>5</td>
<td>1</td>
<td>16</td>
<td>4</td>
<td>29</td>
<td>31</td>
<td>3</td>
<td>19</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Reassigned Slots</td>
<td>11</td>
<td>3</td>
<td>65</td>
<td>7</td>
<td>96</td>
<td>135</td>
<td>12</td>
<td>71</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Avg Delay 100%</td>
<td>0.67</td>
<td>0.51</td>
<td>2.09</td>
<td>0.79</td>
<td>3.36</td>
<td>4.38</td>
<td>0.62</td>
<td>2.07</td>
<td>1.18</td>
<td>2.56</td>
</tr>
<tr>
<td>90%</td>
<td>0.63</td>
<td>0.5</td>
<td>1.57</td>
<td>0.56</td>
<td>2.29</td>
<td>2.47</td>
<td>0.57</td>
<td>1.59</td>
<td>1.18</td>
<td>1.95</td>
</tr>
<tr>
<td>Max Delay 100%</td>
<td>2.67</td>
<td>2.23</td>
<td>6.32</td>
<td>2.43</td>
<td>7.65</td>
<td>8.8</td>
<td>2.57</td>
<td>6.86</td>
<td>2.83</td>
<td>8.01</td>
</tr>
<tr>
<td>90%</td>
<td>1.9</td>
<td>1.57</td>
<td>2.54</td>
<td>2.09</td>
<td>2.45</td>
<td>2.47</td>
<td>1.61</td>
<td>2.44</td>
<td>2.83</td>
<td>3.57</td>
</tr>
</tbody>
</table>
Optimization-based analysis of slot allocation strategies for EU airports

João P. Pita
António P. Antunes

Financial support from Fundação para a Ciência e Tecnologia through the MIT-Portugal Project - AirNets Project - and scholarship SFRH/BD/43060/2008
Motivation

5. Demand is higher than capacity in the busiest airports
 a. Requests for slots are above capacity at peak periods
 b. In those cases, assigned slots do not correspond to airline requests
 c. Airport capacity is “lost” even in airports where demand is higher than capacity
Motivation []

6. Market concentration is very strong in most of the busiest airports in Europe
 a. More than half (20) of the 34 biggest airports in Europe can be seen as “market-concentrated”
 b. Top-5 airlines have more than 70% of slots in all airports
 c. Biggest airline in 30 of the 34 airports is a country-based airline
 d. In those 4 airports the leading carrier is a low-cost carrier
Problem [5/5]

Possible contributions of this research

1. Give insights about the use of airport capacity in congested airports
2. Help strategic decisions regarding slot allocation process
3. Analyze the impact of a change in the landing fee scheme
Application []

Delay time and cost

- DELAYS© was used to get the average primary delay per flight and airport in each 15-minute time period
- Average primary delay is used as input to the optimization model
- To account for delay propagation we use multipliers
- Delay cost values were adapted from Cook et al. (2011):

 Passenger Delay Cost

 \[c_P = 0.77 \left(\frac{\text{€}}{\text{min/pax}} \right) \]

 Flight Delay Cost

 \[c_F = 8 + 0.75 \times (s_v - 40) \left(\frac{\text{€}}{\text{min/flight}} \right) \]
Application

Results – optimization without delay cost

Total cost decreases but less than when optimizing considering delay costs
- average decrease is 4.67% lower than with delay costs
- highest difference is with $\alpha = 20\%$ (5.20%)

Delay cost decreases up to 10% comparing with > 50%
- very close to total cost decrease
- related with the decrease in flights (same decrease)

Passenger (flight) variation between airlines is higher
- $\alpha = 5\%$ average variation 0.76% (0.32%)
- $\alpha = 10\%$ average variation 1.26% (1.04%)
- $\alpha = 20\%$ average variation 2.54% (1.62%)
Application []

Results – demand can be spilled up to a limit [5%; 10%; 20%]

Total cost is reduced between 13.67% and 19.46%
- Highest difference is with $\alpha = 20\%$
- Decrease from base scenario is only 0.54% [$\alpha = 5\%$]

Demand spill is much lower than the limit value [α]
- 2.95% with 5.85% flight reduction ($\alpha = 5\%$)
- 6.13% with 7.02% flight reduction ($\alpha = 10\%$)
- 12.98% with 13.05% flight reduction ($\alpha = 20\%$)

Delay cost decreases between 57.68% and 63.83%
- Average decrease is 7% higher than in the base scenario (for equal α)

Passenger variation is negative for all airlines except U2
- Highest drops for the biggest airlines [AF, LH, and KL]
Application []

Results – overview of the impact to the airports

Decrease in cost is higher in the busiest airports

- Highest drop is with \(\alpha = 20\% \) – FRA (20,75%)
- BCN and MUC – cost decrease are related with flight reduction (high frequency is internal legs)

Delay cost can represent more than 10% of airport costs

- Values vary very significantly between airports
- Lowest values for BCN, AMS, and FCO;
- Highest values for LHR, FRA, ZRH, and CDG;

When demand can be spilled:

- Busiest airports with higher losses in flights and passengers;
- Flight reduction with \(\alpha = 20\% \) is very significant;