Integrated disruption management and flight planning to trade off delay and fuel burn

Lavanya Marla (presenting)
Carnegie Mellon University
Heinz College

Bo Vaaben
Jeppesen

Cynthia Barnhart
MIT
Irregular operations and recovery

- Inherent uncertainty in airline operations
 - Delays, disruptions

- Disruption management and Operations recovery
 - *Reactive* approach to mitigating delay
 - Manages disruptions during execution of operations
 - Minimize additional operating costs due to delay

- Air delays cost $40 B in 2007
 - $19B to airlines
 - $9-12B to passengers

- 74.04% on-time in 2008 (83% in 2003)
Disruption management and Flight Planning

- **Disruption management**: get plan back on schedule with minimum cost
 - Network interactions: aircraft, crew and passengers
 - Swaps, re-timings, cancelations, etc.
 - More flexibility => better recoverability

- **Flight planning**: find best route (3D) and speed to minimize time + fuel costs
 - Mechanisms: Route and *speed change*
 - Travel time, arrival time and fuel burn cost
 - Impact block time and arrival time of flight
Opportunity: Flight speed changes and ground holds

Original flight plan for flight a

Alternative flight plans for flights a, b, c, d
Concept: Integration adds flexibility

- Re-allocate slack in block and ground times in the network
 - Recovery mechanisms
 - Swaps, cancelations, re-timing, reserve crew
 - Flight planning mechanisms
 - Speed changes and ground holds for passenger connections

- **Goal:** Decrease disruption costs and dynamically optimize tradeoffs between
 - flight and passenger delay costs
 - Fuel burn costs
• Flight Planning and choosing the right speed
 – Limitations of current practice
• Disruption management - re-arrangement of slack
 – Re-allocation of slack through integration
• Taking a dynamic and network perspective
• Mathematical model
• Computational results
• Summary
Flight Planning and Cost-Index (CI)

Cost Index: (Historical) cost of time/cost of fuel = 500
OR speed-based (431 min)

Rule of thumb
Max CI = 300

‘Normal’
CI=30

Cost Index = \(\frac{\text{dollars / min}}{\text{dollars / kg}} = \frac{\text{kg}}{\text{min}} \)
Amount of fuel (kg) worth burning to save one minute of time

CI: historically derived, ‘static’
Problem: cost of time non-linear

- *Current* airline system state not accounted for
 - *Network* perspective missing
 - Current practice uses a constant metric for entire network
 - Delay propagation, passenger connections not explicitly modeled

- The ‘optimal’ CI/speed to use is based on aircraft and passenger connectivity based on current network state
 - Interest from airlines with significant long-haul operations
Fuel-Time cost tradeoff dependent on system state

Optimal CI/speed based on current system state
Flight time - delay cost relationships

- Disruption scenario: Departure delay = 1 hour

Airline rules of thumb can be far from optimal
Dynamic, network perspectives

- **Dispatchers and pilots:**
 - Flight by flight view
 - Choice of CI far from optimal

- **Ops controlers:**
 - Network view
 - Swaps, cancelations, delays
 - More schedule flexibility improves recoverability
Enhanced recovery: Modeling framework

Planned schedule
Current disrupted state
Passenger itineraries
Flight holds Θ allowed

Possible flight plans (all flights)
1. Fuel burn
2. Flying time

Integrated Flight Planning and Disruption Management

All flights

Current flights +disruptions (State of the system)
Flights departing in 0.5-1 hour (optimize flight plans)
Flights departing after 1 hour (re-optimize before departure)

Optimization point

Time

Optimized recovery decisions
1. Optimized flight plans
2. Re-timing
3. Swaps
4. Cancelations
5. Fuel burn
Modeling Architecture

Aircraft connections impacted by swaps, re-timing, *speed changes*

Passenger connections impacted by speed changes, *holding flights*
Model

- Disrupted scenario:
 - Long-haul flight disrupted, departs late from origin
- Identify non-propagating time, or set of flights impacted due to connectivity
 - Aircraft and passenger connectivity
- Solve model for flight planning and recovery
- Assumptions:
 - Cannot depart before the actual (observed) departure time
 - En-route delays not taken into account
Notation

- **F**: Set of flight legs \(f \) operated by the airline
- **A**: Set of aircraft \(a \) available to the airline
- **\(C_f \)**: Set of copies of flight \(f \). **Copies are flight plans or delayed flights.** The set also contains the original flight plan and flight plans with new equipment types
- **\(G_a \)**: Set of ground arcs in the aircraft flow network for aircraft \(a \)
- **\(N_a \)**: Set of nodes in the aircraft flow network for aircraft \(a \)
- **\(G_p \)**: Set of ground arcs in the pax flow network for pax itinerary \(p \)
- **\(N_p \)**: Set of nodes in pax flow network for pax itinerary \(p \)
- **\(n^-, n^+ \)**: Set of incoming and outgoing arcs to node \(n \) in time-space network
- **\(M \)**: Set of passenger itineraries \(m \)
- **\(p_m \)**: Number of pax on itinerary \(m \)
- **\(c^k_f \)**: Cost of operating copy \(k \) of flight \(f \); including fuel, delay and swap costs
- **\(\delta(f_1, f_2, m) \)**: indicator parameter; 1 if \(f_1, f_2 \) connect in itinerary \(m \)
- **\(c_g \)**: Cost of using ground arc \(g \)
- **\(c_f \)**: Cost of cancelling flight \(f \)
- **\(s^n_a \)**: Supply of aircraft \(a \) at node \(n \). A demand is specified as a negative supply.
- **\(x^k_f \)**: 1 if copy \(k \) of flight leg \(f \) is present in solution, 0 otherwise
- **\(y_g \)**: 1 if ground arc \(g \) is present in solution (applies to aircraft or pax networks)
- **\(z_f \)**: is 1 if flight \(f \) is cancelled in the solution and 0 otherwise
Aircraft and Passenger Recovery Formulation

\[\text{Min} \sum_{f \in F} \sum_{k \in C_f} c_f^k x_f^k + \sum_{p \in P} c_p^r \rho_p^r \]

s.t.

\[\sum_{k \in C_f} x_f^k + z_f = 1 \quad \forall f \in F \]

\[\sum_{g \in n^-} y_g + \sum_{(f,k) \in n^-} x_f^k + s_a^n = \sum_{g \in n^+} y_g + \sum_{(f,k) \in n^+} x_f^k \quad \forall n \in N \]

\[\sum_{r \in R(p)} \rho_p^r = n_p \quad \forall p \in P \]

\[\sum_{p \in P} \sum_{r \in R(p)} \delta_f^r \rho_p^r \leq \text{Cap}_f (1 - z_f) \quad \forall f \in F \]

\[x_f^k \in \{0,1\} \]

\[z_f \in \{0,1\} \]

\[\rho_p^r \in Z^+ \]

\[y_g \geq 0 \]

Fuel + pax delay cost

Flight cover/ cancel

Aircraft flow balance

Passenger flow balance

Plane capacity

Integrality
Model capabilities

- Re-optimize pre-departure of each flight
- Allow/disallow swapping of aircraft within a fleet family
- Allows capture of maintenance constraints
 - If some planes have to be maintained today, do not allow swaps
- Capture passenger re-accommodations
Aircraft and Passenger Recovery

• Solving the full aircraft and passenger recovery model is hard in real-time
• Use a simpler model that captures passenger connectivity
 – Connections within the propagation boundary
 – Minimize passenger disruptions while allowing small deviation in aircraft recovery costs
 – Actual realized passenger costs calculated by implementing solution on Jeppesen’s GUI, which gives estimate of re-accommodation costs
Enhanced recovery with Fuel burn-
Passenger disruption trade-offs

\(\text{Min} \sum_{f \in F} \sum_{k \in C_f} (c^k_f + s^k_f + d^k_f)x^k_f + \sum_{f \in F} c_f z_f + \sum_{p \in P} c_p n_p \lambda_p \)

s.t.
\(\sum_{k \in C_f} x^k_f + z_f = 1 \quad \forall f \in F \)
\(\sum_{g \in n^-} y^k_g + \sum_{(f,k) \in n^-} x^k_f + s^n_f = \sum_{g \in n^+} y^k_g + \sum_{(f,k) \in n^+} x^k_f \quad \forall n \in N_a \)
\(x^I_T(p,1) + \sum_{m \in MC(p,IT(p,1),k)} x^m_{IT(p,2)} - \lambda_p \leq 1 \quad \forall k \in C_{IT(p,1)}, k \neq 0 \)
\(\lambda_p \geq z_f \quad \forall f \in IT(p), \forall p \in P \)
\(x^k_f \in \{0,1\} \)
\(z_f \in \{0,1\} \)
\(\lambda_p \in \{0,1\} \)
\(y_g \geq 0 \)

Fuel + swap + delay cost + pax disruption cost
Flight cover/cancel
Aircraft balance
Passenger misconnects
Integrality
Solution time capped at 2 min
Solution structure

- Dep delay 50 mins
- CI 900 Catch-up 40 mins
- Hold 15 mins 22 misconnects from Flight 030 avoided
- CI 300: no need to speed up too much
- Arrival delay 35 mins
Computational experiments

- Disruptions into hub airport
 - Flights delayed going into hub
 - Focus on long-haul flights
- 60 scenarios, 3 months of historic data
 - Grouped by severity of disruption
- Optimize flight plans pre-departure each flight
- Compare via simulation:
 - Baseline disruption management
 - Integrated disruption management + flight planning
Improvements in multiple delay metrics

Pax misconns reduced [%]

- Small: 100%
- Medium: 90%
- Large: 80%
- Very Large: 70%
- Total: 60%

Fuel Savings per operated LH flight [%]

- Small: -0.5%
- Medium: -0.4%
- Large: -0.3%
- Very Large: -0.2%
- Total: -0.1%

OTP improvement [%]

- Small: 10%
- Medium: 8%
- Large: 6%
- Very Large: 4%
- Total: 2%

Total cost savings [%]

- Small: 0%
- Medium: 2%
- Large: 4%
- Very Large: 6%
- Total: 8%
Improvements in multiple delay metrics

Pax misconnects reduced [%]

Fuel burn per LH flight [%]

OTP improvement [%]

Total airline cost savings [%]
Savings significant for large disruptions

- **Low and medium levels of disruption:**
 - Slack in system + flight holds helps absorb disruptions
 - Large % of flights can be slowed down
 - 60-98 % of passenger misconnections saved

- **Large and very-large disruptions:**
 - Delay *propagation* controlled
 - Swap opportunities increased, cancelations decreased
 - 57-81% decrease in passenger misconnects
 - Cost savings to airline: 2% for large disruptions, 18% for very large disruptions
Enhanced recovery models decrease overall delays and costs

<table>
<thead>
<tr>
<th></th>
<th>Enhanced recovery: don’t hold connecting flights</th>
<th>Enhanced recovery: hold connecting flights up to 15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger misconnections decreased</td>
<td>66.4%</td>
<td>83.3%</td>
</tr>
<tr>
<td>Fuel burn (CO₂) increase</td>
<td>0.155%</td>
<td>0.152%</td>
</tr>
<tr>
<td>Passenger delay costs decreased</td>
<td>58.2% ($17.5 M/60 days)</td>
<td>77.5% ($17.9M /60 days)</td>
</tr>
<tr>
<td>OTP (traditional recovery 88%)</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Total airline cost savings</td>
<td>5.9%</td>
<td>5.7%</td>
</tr>
</tbody>
</table>
Extensions and Future work

• Dynamic airline scheduling to match passenger demand
 – Tradeoffs between schedule, passenger revenue and fuel burn

• Re-routing under airport/airspace congestion
 – Flight planning to enhance slot/route availability and relationship to fuel burn