More Equitable Congestion-Mitigation Policies for Multimodal Transportation Networks*

Yafeng Yin
Department of Civil and Coastal Engineering
University of Florida

*Joint work with Di Wu, Toi Lawphongpanich and Hai Yang
Background

- Congestion-Mitigation Policies
 - Congestion pricing
 - Tradable credit schemes (Verhoef et al., 1997; Yang and Wang, 2011)
 - Government distributes credits to travelers
 - Credits are charged for using transportation services
 - Credits can be traded among all the travelers
 - Equity is critical for both policies
Background (Cont’d)

- Despite the fact that successful implementations exist, congestion pricing remains very tough to sell.
- Much of the public opposition centers on the perceived inequalities:
 - Congestion pricing harms the poor who may have to pay more due to their inflexible schedules or switch to less desirable routes, departure times or transportation modes.
Background (Cont’d)

- We attempt to design more equitable pricing/credit schemes to alleviate congestion or improve social benefit in multimodal urban transportation networks
- Existing pricing models are not able to capture the distributional effects of pricing schemes on different income groups and thus do not offer meaningful discussions on the income-based equity
Objective

• Design more equitable pricing/credit schemes by
 – Directly taking into account the effects of income on choices of trip generation, mode and route
 – Explicitly capturing the distributional impacts of pricing/credit schemes across different income and geographic groups

• A pricing/credit scheme is deemed to be more equitable if it leads to a more uniform distribution of wealth across population
Basic Considerations

- A general multimodal transportation network
 - Three types of facilities, i.e., transit services, high-occupancy/toll (HOT) and regular lanes
- Multiple user groups with different incomes and different preferences among four modes:
 - No travel, transit, drive alone (SOV), and car pool (HOV)
 - The number of travelers between each OD pair is fixed
Choices of Mode and Route

- Nested Logit model

\[
p_{k}^{w,m,g} = \frac{\exp\left(\frac{v_{k}^{w,m,g}}{\theta_{w,m,g}}\right)}{\sum_{j \in K^{w,m}} \exp\left(\frac{v_{j}^{w,m,g}}{\theta_{w,m,g}}\right)} \cdot \frac{\exp(\tilde{v}_{w,m,g})}{\sum_{m' \in M} \exp(\tilde{v}_{w,m,g})}
\]

\[
\tilde{v}_{w,m,g} = \ln\left(\sum_{j \in K^{w,m}} \exp\left(\frac{v_{j}^{w,m,g}}{\theta_{w,m,g}}\right)\right)^{\theta_{w,m,g}}
\]
Utility Function

- Linear-in-income

\[v = \beta_0 + \beta_1 T + \beta_2 (y_0 - \tau) \]

The above conventional specification with constant marginal utility of income may lead to an underestimate of the regressivity of a pricing scheme (e.g., Franklin, 2006; Bureau and Glachant, 2008)
Nonlinear Utility Function

- **Generalized Leonief**
 \[\nu = \beta_0 + \beta_1 T + \beta_2 \sqrt{T} + \beta_3 y + \beta_4 \sqrt{y} + \beta_5 \sqrt{T} \sqrt{y} \]

- **Translog**
 \[\nu = \beta_0 + \beta_1 \ln T + \beta_2 \ln^2 T + \beta_3 \ln y + \beta_4 \ln^2 y + \beta_5 \ln T \ln y \]

Pricing: \(y = y_0 - \tau \)
Credit: \(y = y_0 + p(q - \tau) \)
Tolled User Equilibrium

- VI Formulation

\((f^*, d^*) \in \Phi\) is in user equilibrium if

\[
\sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K} \left(-\nu_{k}^{w,m,g} + \theta_{w,m,g,\ln f_{k}^{w,m,g}} \right) \cdot \left(f_{k}^{w,m,g} - f_{k}^{w,m,g^*} \right) + \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \left(1 - \theta_{w,m,g,\ln d_{w,m,g}} \right) \ln d_{w,m,g} \cdot \left(d_{w,m,g} - d_{w,m,g^*} \right) \geq 0,
\]

\forall (f, d) \in \Phi
User Equilibrium under Credit Scheme

• VI Formulation

\((f^*, d^*, p^*) \in \Phi\) is in equilibrium if

\[
\sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K^w,m} \left(-v_k^{w,m,g} + \theta_k^{w,m} \ln f_k^{w,m,g^*} \right) \cdot (f_k^{w,m,g} - f_k^{w,m,g^*}) \\
+ \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \left(1 - \theta_k^{w,m} \right) \ln d_k^{w,m,g^*} \cdot (d_k^{w,m,g} - d_k^{w,m,g^*}) \\
+ \left(Q - \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K^w,m} \sum_{l \in L} \Delta_{l,k}^{k_l,m} f_k^{w,m,g^*} \right) \cdot (p - p^*) \\
\geq 0, \\
\forall (f, d, p) \in \Phi
\]
Welfare Measure

- Equivalent Income
 - The income level that allows the individual to experience under the no-toll scenario the same level of utility as the original income does under the tolling scenario

\[e^{w,g}(\tau) = \arg\{z : u^{w,g}(z, 0) = u^{w,g}(y^g, \tau)\} \]
Welfare Measure (Cont’d)

- Equivalent Income

\[y_0 \rightarrow u_0 \text{ No toll} \]
Welfare Measure (Cont’d)

- Equivalent Income

Income

\[y_0 \]

Utility

\[u_0 \]

\[u_1 \]

No toll

With toll
Welfare Measure (Cont’d)

- Equivalent Income

\[y_0 \rightarrow u_0 \]

No toll

With toll

\[u_1 \]
Welfare Measure (Cont’d)

- Equivalent Income

Equivalent Income

Income

Utility

No toll

With toll

\(-\mathcal{EV}\)

\(u_0\)

\(u_1\)
Welfare Measure (Cont’d)

- Equivalent income is a measure of how wealthy a traveler feels under the pricing/credit scheme.
- Due to the existence of the random error term in the utility function, the equivalent income is also random for each individual traveler.

\[e^{w,g}(\tau) = \arg\{z: u^{w,g}(z, 0) = u^{w,g}(y^g, \tau)\} \]

- Expected equivalent income
 - Dagsvik and Karlstrom (2005)
Welfare Measure (Cont’d)

\[E(e^{w,g}(\tau)) \]

\[= \sum_{m^0 \in M} \sum_{k^0 \in K^{w,m^0}} \int_0^{p_{k^0}^{w,m^0,g}(\tau)} \left(\sum_{k \in K^{w,m^0}} \exp \left(\frac{h_k^{w,m^0,g}(z,\tau)}{\theta^{m^0}} \right) \right)^{\theta^{m^0} - 1} \cdot \exp \left(\frac{v_{k^0}^{w,m^0,g}(y_g,0)}{\theta^{m^0}} \right) \]

\[\sum_{m \in M} \left(\sum_{k \in K^{w,m}} \exp \left(\frac{h_k^{w,m,g}(z,\tau)}{\theta^{m}} \right) \right)^{\theta^{m}} \]

\[v_{k^0}^{w,m^0,g}(y_g,\tau) = v_{k^0}^{w,m^0,g}(p_{k^0}^{w,m^0,g}(\tau),0) \]

\[h_k^{w,m^0,g}(z,\tau) = \max(v_k^{w,m^0,g}(y_g,\tau),v_k^{w,m^0,g}(z,0)) \]
Equity Measure

- Gini coefficient
 - Calculated based on expected equivalent income with 0 being complete equality and 1 being complete inequality

\[
GN(\tau) = \frac{1}{2 \cdot \left(\sum_{g \in G} \sum_{w \in W} D^{w,g} \right)^2 \cdot E(e(\tau))}
\cdot \sum_{g_1, g_2 \in G} \sum_{w_1, w_2 \in W} (D^{w_1, g_1} \cdot D^{w_2, g_2} \cdot |E(e^{w,g}(\tau)) - E(e^{w,g}(\tau))|)
\]

- A more equitable pricing/credit scheme will lead to a smaller value of the Gini coefficient
Model Formulation

• Objective
 – Efficiency: maximize the sum of the total expected equivalent income (user benefit) and the toll revenue (producer benefit)
 – Equity: minimize the Gini coefficient

\[
\max_{\tau,d,f} \alpha \cdot \frac{SB(\tau)}{SB(0)} - (1 - \alpha) \cdot \frac{GN(\tau)}{GN(0)}
\]
Design Decisions

- Congestion Pricing Scheme
 - Where to charge?
 - How much to charge?

The feasible toll set Ψ can be defined as:

$$\tau_l^m \geq 0, \quad \forall l \in L, m \in \{S, H\}$$
$$\tau_l^S = \tau_l^H, \quad \forall l \in L_{RT}$$
$$\tau_l^R = 0, \quad \forall l \in L$$

$$\sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K^w} f_{k, m, g} \sum_{l \in L} \Delta_{k, l} \tau_l^m \geq 0$$
Design Decisions (Cont’d)

- Tradable Credit Scheme
 - How to distribute the credits?
 - Where to charge the credits?
 - How many credits to charge?

The feasible credit scheme set Ψ can be defined as:

$$
\tau^m_l \geq 0, \quad \forall m \in \{S, H, T\}, l \in L
$$

$$
\tau^R_l = 0, \quad \forall l \in L
$$

$$
q^{w,g} \geq 0, \quad \forall w \in W, g \in G
$$

$$
\sum_{w \in W} \sum_{g \in G} q^{w,g} D^{w,g} = Q
$$
Design Model for Pricing

\[
\max_{\tau, d, f} \alpha \cdot \frac{SB(\tau)}{SB(0)} - (1 - \alpha) \cdot \frac{GN(\tau)}{GN(0)}
\]

s.t.

\[
\sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K_w^m} \left(-v_k^{w,m,g} + \theta^{w,m,g} \ln f_k^{w,m,g} \right) \cdot (f_k^{w,m,g} - f_k^{w,m,g*}) \\
+ \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \left(1 - \theta^{w,m,g} \right) \ln d^{w,m,g} \cdot (d^{w,m,g} - d^{w,m,g*}) \geq 0,
\]

\[\forall (f, d) \in \Phi\]

\[(f^*, d^*) \in \Phi, \quad \tau \in \Psi\]
Design Model for Credit

\[
\begin{align*}
\max_{d,f,p,q,\tau} & \quad \alpha \cdot \frac{SB(\tau)}{SB(0)} - (1 - \alpha) \cdot \frac{GN(\tau)}{GN(0)} \\
\text{s.t.} & \quad \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K^{w,m}} (-v^w_{k,m,g} + \theta^w_m \ln f^w_{k,m,g} \cdot (f^w_{k,m,g} - f^w_{k,m,g}^*) \\
& \quad + \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} (1 - \theta^w_m) \ln d^w_{m,g} (d^w_{m,g} - d^w_{m,g}^*) \\
& \quad + \left(Q - \sum_{g \in G} \sum_{w \in W} \sum_{m \in M} \sum_{k \in K^{w,m}} \sum_{l \in L} \Delta_{l,k;m} f^w_{k,m,g}^* \right) \cdot (p - p^*) \geq 0, \\
(f^*, d^*, p^*) & \in \Phi \\
(q, \tau) & \in \Psi
\end{align*}
\]
Solution Algorithm

- Mathematical programs with equilibrium constraints (MPEC), a class of problems difficult to solve
- Compounding the difficulty is that the computation of the expected equivalent income involves numerical integrations
- Derivative-free algorithms
 - Compass search algorithm
 - SID-PSM algorithm (Custódio and Vicente, 2007; Custódio et al., 2010)
Numerical Example

- **Seattle Regional Freeway Network**
 - Four income groups ($20,000; $40,000; $70,000; $120,000)
 - Translog utility function (Franklin, 2006)

\[

v_{k}^{w,m,g} = \beta_{0}^{R} \log y_{g} + \beta_{1} \ln \left(y_{g} - c_{k}^{w,m} \right) + \beta_{2} \ln T_{k}^{w,m} + \beta_{3} \ln^2 T_{k}^{w,m}

\]
Travel Demand

Production

Attraction
Optimal Pricing Schemes
Benefit Distribution

More equitable

Most efficient
Optimal Pricing Schemes

<table>
<thead>
<tr>
<th>Link</th>
<th>Policy 1</th>
<th>Policy 2</th>
<th>Policy 3</th>
<th>Policy 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auto</td>
<td>Transit</td>
<td>Auto</td>
<td>Transit</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>1.00</td>
<td>0.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>-5.00</td>
<td>0.00</td>
<td>-15.00</td>
</tr>
<tr>
<td>4</td>
<td>5.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>10.25</td>
<td>0.00</td>
<td>8.25</td>
<td>-2.00</td>
</tr>
<tr>
<td>6</td>
<td>13.00</td>
<td>-1.00</td>
<td>13.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>8</td>
<td>10.00</td>
<td>0.50</td>
<td>8.25</td>
<td>-2.50</td>
</tr>
<tr>
<td>9</td>
<td>13.00</td>
<td>-0.25</td>
<td>12.75</td>
<td>-2.25</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>0.00</td>
<td>10.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>20.00</td>
<td>-2.00</td>
<td>20.00</td>
<td>-6.00</td>
</tr>
<tr>
<td>15</td>
<td>11.50</td>
<td>0.00</td>
<td>11.00</td>
<td>-1.75</td>
</tr>
<tr>
<td>16</td>
<td>15.00</td>
<td>-2.00</td>
<td>15.00</td>
<td>-6.00</td>
</tr>
<tr>
<td>17</td>
<td>15.00</td>
<td>0.25</td>
<td>11.25</td>
<td>-5.50</td>
</tr>
<tr>
<td>20</td>
<td>8.00</td>
<td>-0.50</td>
<td>4.25</td>
<td>-4.50</td>
</tr>
</tbody>
</table>

More efficient

More equitable
Optimal Credit Schemes
Benefit Distribution

Most efficient
Credit Charging Schemes

<table>
<thead>
<tr>
<th>Scheme 1</th>
<th>Scheme 2</th>
<th>Scheme 3</th>
<th>Scheme 4</th>
<th>Scheme 5</th>
<th>Scheme 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everett</td>
<td>0.0</td>
<td>2.0</td>
<td>8.2</td>
<td>15.8</td>
<td>15.3</td>
</tr>
<tr>
<td>Seattle</td>
<td>0.0</td>
<td>0.0</td>
<td>13.1</td>
<td>9.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Bellevue</td>
<td>13.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacoma</td>
<td>0.0</td>
<td>0.8</td>
<td>7.0</td>
<td>11.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Lynnwood</td>
<td>0.0</td>
<td>7.9</td>
<td>14.2</td>
<td>18.8</td>
<td>21.5</td>
</tr>
<tr>
<td>Renton</td>
<td>54.1</td>
<td>65.1</td>
<td>19.6</td>
<td>13.8</td>
<td>12.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit distributed</th>
<th>Auto</th>
<th>Transit</th>
<th>Auto</th>
<th>Transit</th>
<th>Auto</th>
<th>Transit</th>
<th>Auto</th>
<th>Transit</th>
<th>Auto</th>
<th>Transit</th>
<th>Auto</th>
<th>Transit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link 3</td>
<td>11.3</td>
<td>2.6</td>
<td>10.8</td>
<td>1.9</td>
<td>5.5</td>
<td>0.1</td>
<td>5.8</td>
<td>0.3</td>
<td>4.1</td>
<td>0.6</td>
<td>6.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Link 4</td>
<td>8.0</td>
<td>2.1</td>
<td>8.4</td>
<td>1.8</td>
<td>8.8</td>
<td>0.2</td>
<td>14.9</td>
<td>1.3</td>
<td>19.9</td>
<td>2.1</td>
<td>19.9</td>
<td>14.5</td>
</tr>
<tr>
<td>Link 5</td>
<td>11.8</td>
<td>0.6</td>
<td>12.1</td>
<td>0.6</td>
<td>14.0</td>
<td>1.6</td>
<td>12.3</td>
<td>0.3</td>
<td>11.5</td>
<td>0.8</td>
<td>14.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Link 6</td>
<td>12.9</td>
<td>0.0</td>
<td>13.3</td>
<td>0.0</td>
<td>18.6</td>
<td>0.0</td>
<td>19.9</td>
<td>1.7</td>
<td>19.9</td>
<td>2.5</td>
<td>19.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Link 8</td>
<td>13.1</td>
<td>0.8</td>
<td>13.4</td>
<td>1.0</td>
<td>15.3</td>
<td>1.6</td>
<td>15.2</td>
<td>0.2</td>
<td>19.9</td>
<td>2.2</td>
<td>19.9</td>
<td>14.4</td>
</tr>
<tr>
<td>Link 9</td>
<td>15.8</td>
<td>0.5</td>
<td>15.7</td>
<td>0.2</td>
<td>15.7</td>
<td>0.2</td>
<td>16.8</td>
<td>1.1</td>
<td>20.0</td>
<td>3.5</td>
<td>19.9</td>
<td>15.8</td>
</tr>
<tr>
<td>Link 12</td>
<td>9.7</td>
<td>0.0</td>
<td>10.2</td>
<td>0.0</td>
<td>16.1</td>
<td>0.0</td>
<td>16.6</td>
<td>2.0</td>
<td>19.9</td>
<td>3.1</td>
<td>19.9</td>
<td>15.4</td>
</tr>
<tr>
<td>Link 13</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Link 15</td>
<td>14.3</td>
<td>0.6</td>
<td>13.7</td>
<td>0.2</td>
<td>13.4</td>
<td>0.5</td>
<td>14.9</td>
<td>1.2</td>
<td>18.9</td>
<td>3.6</td>
<td>19.9</td>
<td>15.9</td>
</tr>
<tr>
<td>Link 16</td>
<td>16.9</td>
<td>0.0</td>
<td>15.5</td>
<td>0.0</td>
<td>12.3</td>
<td>0.0</td>
<td>12.5</td>
<td>0.0</td>
<td>16.4</td>
<td>0.0</td>
<td>17.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Link 17</td>
<td>17.3</td>
<td>0.7</td>
<td>17.5</td>
<td>0.6</td>
<td>14.4</td>
<td>0.9</td>
<td>13.9</td>
<td>0.6</td>
<td>13.4</td>
<td>1.0</td>
<td>16.3</td>
<td>6.4</td>
</tr>
<tr>
<td>Link 20</td>
<td>6.3</td>
<td>0.0</td>
<td>5.7</td>
<td>0.0</td>
<td>4.4</td>
<td>0.0</td>
<td>4.5</td>
<td>0.0</td>
<td>7.9</td>
<td>0.0</td>
<td>20.0</td>
<td>11.3</td>
</tr>
</tbody>
</table>
Comparison

![Graph showing comparison of Gini Coefficient vs Net Benefit (million USD)]
Summary

- We developed a modeling framework that explicitly captures the distributional effects of pricing/credit schemes on different income and geographic groups

- The framework can be used to generate more equitable yet efficient pricing/credit schemes for multimodal transportation networks
Optimal Pricing Schemes (Cont’d)
Observations

• Low-income travelers suffer the most when efficiency is maximized

• When equity is given enough weight, low-income and high-income travelers both benefit more than mid-income travelers
 – Low-income travelers: transit subsidy
 – High-income travelers: reduction in travel time

• Better equity is achieved via heavier transit subsidy
Observations

• Everybody is better off under the most efficient credit scheme.
 – Low-income travelers: selling extra credits
 – High-income travelers: reduction in travel time

• Better equity is achieved by increasing the number of credits charged at each link.
 – More credits charged \(\rightarrow\) more demand for credits \(\rightarrow\) higher credit price \(\rightarrow\) more subsidies