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Foreword

Welcome to the 2015 Transportation Science and Logistics Society Workshop in Berlin!

There has been a significant body of research on making urban transportation more effi-
cient and sustainable. Planning of urban transportation services is challenging due to the 
crowded traffic infrastructure, increasing customer expectations, and rules set by munici-
palities. In recent years, a vast amount of urban transportation data has become available, 
e.g., travel times and customer demand data. The workshop brings together researchers
from the often-distinct fields of urban transportation and analytics to discuss recent op-
timization approaches and how to benefit from the increasing amount of detailed data.

This year's workshop will consist of 38 talks dealing with recent applications of urban 
transportation such as city logistics, urban traffic, shared mobility, e-mobility, pollution 
routing and public transport, environmental-friendly deliveries, and city logistics concepts 
in general. The program will feature a panel on “Challenges of Big Data in Urban Transpor-
tation Optimization”, moderated by Bruce Golden and including a set of industry experts 
from different areas of urban transportation such as city logistics, public transport and 
shared mobility services. We are also happy that Michael Ball and Arne Strauss will con-
tribute to the program with keynotes discussing challenges arising from detailed data in 
urban transportation optimization.

Last but not least, we look forward to networking and enjoying Berlin during the social 
program: We have planned a welcome reception at a rooftop bar overlooking downtown 
Berlin (Panoramapunkt) to start the event on Sunday evening. On Tuesday, we will limit 
talks to the first half of the day to explore the city in the afternoon. A city tour by boat 
followed by a guided walking tour will introduce you to historic sites of Berlin. We will end 
the day with a conference dinner in the historic heart of the German capital.

We hope that you will enjoy the workshop and look forward to meeting you. We thank 
you for participating, and give thanks to our sponsor INIT for supporting the workshop 
so generously.   

Ann Melissa Campbell, Catherine Cleophas & Jan Fabian Ehmke
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Recent Advances in Urban Transportation through 
Optimization and Analytics – Overview

Sunday, July 5th 
17:30 – 19:30		  Welcome Reception			   “Panoramapunkt” Potsdamer Platz [1]

Monday, July 6th 

09:00 – 17:00		         Harnack House [2]

09:00 – 10:00		         Hahn Hall, Laue Hall 
10:00 – 10:30		       Planck Lobby

10:30 – 11:30		
           Hahn Hall

11:30 – 12:30		         Hahn Hall, Laue Hall

12:30 – 13:30		       Planck Lobby 
13:30 – 15:30		        Hahn Hall, Laue Hall		
15:30 – 16:00		       Planck Lobby

16:00 – 17:00		

					

















       Hahn Hall

Tuesday, July 7th

09:00 – 14:00		 Workshop						         Harnack House [2]

09:00 – 10:30		 Sessions 4a / 4b						         Hahn Hall, Laue Hall

10:30 – 11:00		 Coffee Break							        Planck Lobby

11:00 – 12:00		 Sessions 5a / 5b						         Hahn Hall, Laue Hall 
12:10 – 13:00		 Keynote Model Decomposition and Integration: Case Studies from 

Urban Transit and Airline Planning Problems (Michael Ball)	        	      Hahn Hall

13:00 – 14:00		 Lunch Break							

14:30 – 18:30		 Boat and City Tour				

19:30 – 22:00		 Conference Dinner			

      Restaurant

Harnack House [2] 

Restaurant “Altes Zollhaus” [4]

Wednesday, July 8th

09:00 – 13:00		 Workshop						         Harnack House [2]

09:00 – 10:30		 Sessions 6a / 6b						         Hahn Hall, Laue Hall

10:30 – 11:00		 Coffee Break							               Laue Hall

11:00 – 12:30		 Sessions 7a / 7b						         Hahn Hall, Laue Hall 

12:30 – 13:00		 Farewell								             Laue Hall
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TSL Workshop | Scientific Program – Monday, July 6th  

Scientific Program – Monday, July 6th

Session 1a Network Design 09:00 – 10:00, Hahn Hall

• Robust Transit Network Design Based on Big Unrepresentative Data 	  Chungmok Lee, Gavin McArdle & Rahul Nair
• Stochastic Service Network Design of Bike Sharing Systems  Patrick Vogel, Achim Koberstein & Dirk Mattfeld

Session 1b Urban Infrastructure	 09:00 – 10:00, Laue Hall

• Optimizing Charging Station Locations for
 Urban Taxi Providers  Mario Ruthmair, Johannes Asamer, Martin Reinthaler & Jakob Puchinger

• A Bi-level Programming Model for the Workzone
 Scheduling Problem David Rey, Hillel Bar-Gera, Vinayak Dixit & Travis Waller 

Session 2a E-Mobility I			 11:30 – 12:30, Hahn Hall

• Emerging Area in Urban Transportation System Research –
 Optimization and Analytics on Wireless Charging Electric Bus Systems Young Jae Jang

• Optimal Deployment of Charging Lanes in Transportation Networks Yafeng Yin, Zhibin Chen & Fang He

Session 2b Pollution Routing 11:30 – 12:30, Laue Hall

• Time-Dependent Pollution-Routing Problems with
 Path Flexibility in Mega-City Logistics Yixiao Huang, Lei Zhao, Tom Van Woensel & Jean-Philippe Gross

• The Fleet Size and Mix Pollution-Routing Problem Cagri Koc, Tolga Bektas, Ola Jabali & Gilbert Laporte

Session 3a Shared Mobility 13:30 – 15:30, Hahn Hall

• The Taxi Recourse Problem Neža Vodopivec & Elise Miller-Hooks	
• Optimizing Ridesharing Services – Complexity, Formulation and Solution Methods  Wei Lu & Luca Quadrifoglio

• Relocation and Balancing Strategies for Free-Floating Car Sharing Systems
 using Real-Time Data and Social Networking Frederik Schulte & Stefan Voß

• Stochastic and Dynamic Inventory Routing in Bike Sharing Systems Dirk Mattfeld, Viola Ricker & Marlin Ulmer

Session 3b Urban Delivery			 13:30 – 15:30, Laue Hall

• Urban Distribution with Mobile Depots Michael Schneider & Michael Drexl	
• Some Recent Results on the Split Delivery Vehicle Routing Problem Bruce Golden & Xingyin Wang

• Crowdsourced Same Day Delivery Alp Arslan, Niels Agatz, Leo Kroon & Rob Zuidwijk

• Same-Day Delivery Barrett Thomas, Stacy Voccia & Ann Campbell

Session chairs are shown in bold.
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Session 4a E-Mobility II   09:00 – 10:30, Hahn Hall

• Applying Floating Car Data to Aid the Transition to Electric Taxi Services Michal Maciejewski & Joschka Bischoff	
• Enabling Urban Parcel Pickup and Delivery Services using
   All-Electric Trucks  Nan Ding, Rajan Batta, Changhyun Kwon & June Dong

• Adaptive Routing and Recharging Policies for Electric Vehicles Irina Dolinskaya, Timothy M. Sweda & Diego Klabjan

Session 4b Public Transport I			 09:00 – 10:30, Laue Hall

• Time Choice Data for Public Transport Optimization Paul Bouman, Clint Pennings, Jan van Dalen & Leo Kroon

• A Column Generation Approach for Crew Rostering Problems in
Public Bus Transit Lin Xie, Natalia Kliewer & Leena Suhl

• On-Demand Public Transportation  M. Grazia Speranza, Claudi Archetti & Dennis Weyland

Session 5a Vehicle Routing	             11:00 – 12:00, Hahn Hall

• Value-Function-Approximation-Based Rollout Algorithms for a Vehicle Routing Problem
with Stochastic Customer Requests  Marlin W. Ulmer, Justin C. Goodson, Dirk C. Mattfeld & Marco Henning

• A Scenario-Based Planning for the Pickup and Delivery Problem with
Scheduled Lines and Stochastic Demands Tom van Woensel, Veaceslav Ghilas & Emrah Demir

Session 5b Public Transport II			 11:00 – 12:00, Laue Hall

• Robust Efficiency in Public Transport: Minimizing Delay Propagation
in Cost-Efficient Resource Schedules  Bastian Amberg, Boris Amberg & Natalia Kliewer

• Tariff Zone Planning for Public Transport Companies Sven Müller & Knut Haase

Scientific Program – Tuesday, July 7th | TSL Workshop

Session chairs are shown in bold.
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Scientific Program – Wednesday, July 8th

Session 6a City Logistics I		            09:00 – 10:30, Hahn Hall

• Static MILP Solutions and Adaptive Solutions for Hub Decisions in
 Very Large Scale Logistics Networks Alexander Richter, Yann Disser, Wiebke Höhn & Sebastian Stiller

• Optimization Approaches for the Truck and Drone Delivery Problem Niels Agatz, Paul Bouman & Marie Schmidt

• Optimizing Time-Dependent Arrival Rates for Truck Handling Operations Axel Franz & Raik Stolletz

Session 6b Uncertain Travel Times			 09:00 – 10:30, Laue Hall

• Disruption Management in Local Public Transport: Service
 Regularity Issues 	  Emanuele Tresoldi, Frederico Malucelli, Stefano Gualandi & Samuela Carosi

• Assessing Customer Service Reliability in Route Planning with
 Self-Imposed Time Windows and Uncertain Travel Times  Panagiotis Repoussis, Anastasios Varias & Christos Tarantilis

• Robust Scheduling of Urban Home Health Care Services Using
 Time-Dependent  Public Transport Klaus-Dieter Rest & Patrick Hirsch

Session 7a City Logistics II	 11:00 – 12:30, Hahn Hall

• Handling Travel Time Uncertainly in City Logistics Systems Utku Kunter, Cem Iyigun & Haldun Sural 

• Freight Consolidation in Urban Networks With Transshipments 	   Wouter van Heeswijk, Martijn Mes & Marco Schutten

• Loading Bay Time Slot Allocation by Core-Selecting Package Auctions      Paul Karaenke, Martin Bichler & Stefan Minner

Session 7b Urban Traffic			 11:00 – 12:30, Laue Hall

• City Monitoring with Dynamic UAV-Sensor-Based Sweep Coverage
 as a Stochastic Arc-Inventory Routing Policy   Joseph Chow & Xintao Liu

• A Metamodel Simulation-Based Optimization Approach for the Efficient
 Calibration Of Stochastic Traffic Simulators   Carolina Osorio, Gunnar Flötteröd & Chao Zhang

• Information and Traffic Incident Management 			 Kalyan Talluri, Dmitrii Tikhonenko & Gregory Fridman

Session chairs are shown in bold.
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Keynote – Monday, July 6th | TSL Workshop

Keynote 1	 Nudge the Customer – and Deliver Cheaper (Arne Strauss)          
Many companies deliver goods or services to customers who need to be present to 
receive the delivery, and therefore can choose when the delivery should take place. 
Examples of such companies include online grocery retailing, parcel delivery or house 
visits of telecom engineers to install or repair devices. The delivery operation is often a 
major cost driver for these companies. 

Since the customers’choices of their desired delivery times will impact the overall de-
livery cost, it makes intuitive sense to nudge the customers towards choosing time 
slots that are expected to be cheap to serve by using appropriate incentives. The latter can take many forms such 
as discounts, delivery charges, loyalty points or even non-monetary ones like environmental impact.

However, the identification of a time slot that will be cheaper than others for a given customer request may 
in itself pose a non-trivial problem since the cost also depends on unknown future orders. Also, prediction 
of customers’choice behavior and subsequent optimization of incentives to influence their choices may  
likewise be challenging.

In this presentation, I will outline research opportunities in delivery planning with customer choice behavior 
along with various examples of business applications against the background of recent developments in industry. 

Arne K. Strauss is Associate Professor of Operational Research in the ORMS Group at Warwick Business 
School (WBS) since 2014. Previously, he held positions as Assistant Professor in the same group (2011-2013)  
at WBS and as Senior Research Associate (2010-2011) under the LANCS Initiative at Lancaster University ś 
Department of Management Science where he completed the Ph.D. programme in 2009 under supervision  
of Prof Joern Meissner. From October 2009 until September 2010, he held an EPSRC PhD Plus fellowship  
(now called EPSRC Doctoral Prize) at Lancaster. 

During his doctoral studies, his main research area was revenue optimisation involving models of customer 
choice; an interest that he continues to pursue with various on-going projects, including industrial collaborations 
with Lufthansa Systems. He won several prizes for his doctoral dissertation including the doctoral prize of the 
Operational Research Society for the best PhD dissertation 2009. A paper resulting from his master thesis in the 
area of option pricing received the “Most Successful 2008 IMACS Paper Award” in the journal Applied Numerical 
Mathematics, and he was awarded the OR Societỳ s Goodeve medal for the best paper published in the Journal 
of the Operational Research Society in 2012.

Keynotes Hahn Hall
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Keynote 2	 Model Decomposition and Integration: Case Studies from 
Urban Transit and Airline Planning Problems (Michael Ball)         

The scientific study of transportation planning problems very often starts with the 
definition of a mathematical model that represents a real problem. That mathemati-
cal model could lead to extensive research on solution methods. These methods 
are typically compared on the basis of solution quality and computation speed.  
Yet even though the mathematical model might very accurately represent reality and 
the solution methods might produce an optimal solution very quickly, the model could 
have practical limitations because the problem defined exists in a broader application context. 

In the case of urban transit planning, some key problems are vehicle scheduling, crew duty generation and 
crew rostering. While research exists on each of these three problems, crew duties are constrained by vehicle 
schedules, and crew rosters are in turn constrained by crew duties. It is also the case that operational dis-
ruptions, such as extreme traffic congestion, vehicle breakdowns and crew illnesses, can cause actual opera-
tional costs to exceed those calculated based on planned schedules. When one traces research on planning 
problems for important application systems such as urban transit and scheduled air transportation services, 
major progress not only involves better solution methods for “core” problems but also better models that 
consider the broader application context.  These better models might integrate multiple problem steps, e.g. 
combined vehicle and crew scheduling, might employ objective functions or linking constraints that allow 
features of “downstream” problems to be taken into account when solving an “upstream” problem or might 
use other techniques to improve the daily performance of the overall application system. In this talk, we review 
and compare the progress in both transit and airline planning problems from these perspectives.

Michael Ball is the Senior Associate Dean and holds the Dean`s Chair in Management Science at the Robert 
H. Smith School of Business at the University of Maryland. He also has a joint appointment within the Institute 
for Systems Research (ISR) in the Clark School of Engineering and is a member of the Decision, Operations and 
Information Technologies Department within the Smith School. 

Dr. Ball has over 100 scholarly publications, covering a range of subjects including air transportation,  
revenue management and pricing, supply chain management and system reliability. He is co-Director of 
NEXTOR-II, an 8-university consortium funded by the FAA to carry out research in aviation operations  
research. Several of his research and consulting projects have led to implementations in industry and  
government. In the past five years he has been a member of various expert panels that have given advice to 
the United Nations, the FAA, the National Academy of Engineering and multiple airport authorities on aviation 
policies. 

Throughout his career Dr. Ball has been an active member of INFORMS, the Institute for Operations  
Research and the Management Sciences. He recently stepped down as area editor for the journals Ope-
rations Research and is now associate editor for the journal, Operations Research and Transportation 
Science. In 2008, he was president of the INFORMS Transportation Science and Logistics Society. In 2004,  
he was named an INFORMS Fellow. 

Dr. Ball received BES and MSE degrees from Johns Hopkins University in 1972 and a PhD in Operations  
Research from Cornell University in 1977.  
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Challenges of Big Data in Urban Transportation Optimization

The workshop will feature a panel on “Challenges of Big Data in Urban Transportation Optimization”.  
The panel will be moderated by Bruce Golden and include a set of industry experts from different areas  
of urban transportation such as city logistics, public transport and shared mobility services.

• Bruce Golden (Moderator, University of Maryland)

Bruce Golden is the France-Merrick Chair in Management Science in the Robert H. Smith School of Business
at University of Maryland. He received his undergraduate degree in mathematics from the University of Penn-
sylvania and his masters and doctoral degrees from the Massachusetts Institute of Technology. His research
interests include, but are not limited to, combinatorial optimization, network models, logistics, distribution,
vehicle routing, data mining and applied operations research.

Dr Golden has received numerous awards, including the Thomas L. Saaty Prize (1994 and 2005), the Univer-
sity of Maryland Distinguished Faculty Research Fellowship (1996) and Distinguished Scholar-Teacher Award
(2000), the INFORMS Award for the Teaching of OR/MS Practice (2003), the INFORMS Computing Society Prize
(2005), and the Harvey J. Greenberg Award for lifetime contributions to the INFORMS Computing Society. He
was named an INFORMS Fellow in 2004 and was selected as one of 25 outstanding undergraduate mentors
on campus in 2009.

• Eileen Mandir (Moovel)

Eileen Mandir is the head of product at moovel GmbH, a Daimler subsidiary, since 2015. From 2013 to 2014, she
worked with Daimler Mobility Services as the head of moovel software development for inter-modal routing.
She joined Daimler as mobility innovations specialist in 2012, after receiving a PhD in transport planning and
urban mobility from Stuttgart University in 2006. Her interest areas include designing connected multi-modal
transport systems, human behaviour and decision making in transportation, the interdependency between
urban life style and mobility patterns and disruptive change in mobility services enhanced by technology.

Moovel GmbH, formerly Daimler Mobility Services GmbH, is a wholly owned subsidiary of Daimler AG and is
assigned to Daimler Financial Services AG for organisational purposes. With services like car2go, car2go black,
Park2gether, mytaxi and RideScout, moovel is already offering innovative solutions for getting from A to B the
smart way.

Panel – Monday, July 6th | TSL Workshop
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• Leendert Kok (ORTEC)

Leendert Kok is a senior OR engineer at ORTEC and responsible for algorithmic research and development.
Leendert received his PhD from the University of Twente in 2010, where he worked on “Congestion avoid-
ance and break scheduling within vehicle routing“. During his academic work, he published several articles
in peer-reviewed international journals. In a current project in cooperation with Free University Amsterdam,
Leendert focuses on “Network planning and contract design for chain management in cash networks“. He is a
member of the advisory board at the Free University of Amsterdam.

ORTEC is one of the largest providers of advanced planning and optimization solutions and services. ORTEC ś
products and services result in optimized fleet routing and dispatch, vehicle and pallet loading, workforce
scheduling, delivery forecasting, logistics network planning and warehouse control.  The companỳ s mission
mission is to support companies and public institutions in their strategic and operational decision making
through the delivery of sophisticated planning and optimization software solutions, professional consulting
and mathematical modeling services.

• Michael Beck (INIT)

Michael Beck has been working with initplan GmbH as Director of Development since 2008. He is responsible
for the development of the planning system MOBILE-PLAN. The main focus is the usability of MOBILE-PLAN as
well as the further development and provision of efficient optimization algorithms. Michael graduated in 1993
at University of Karlsruhe. Before changing to INIT AG, he worked at PTV AG, Karlsruhe for more than 20 years
as head of department for the INTERPLAN planning system.

INIT is the worldwide leading supplier of integrated ITS, planning, dispatching and ticketing systems for buses
and trains. For more than 30 years, INIT has been assisting transport companies in making public transport
more attractive, faster and more efficient. More than 400 customers rely on INIT`s integrated solutions to
support planning & dispatching, ticketing & fare management, operations control & real-time passenger in-
formation, as well as analyzing & optimizing.

TSL Workshop | Panel – Monday, July 6th 
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How to get to . . . | TSL Workshop

[1] Welcome Reception at “Panoramapunkt” | Sunday, 17:30 – 19:30
Potsdamer Platz 1, 10785 Berlin           2,       200 (and many more), stop Potsdamer Platz

					                 
             


From the Lindner hotel to the reception:
Walk to stop Bahnhof Zoo (3 minutes) and take
      200 (leaves every 10 minutes).
Get off at Varian-Fry-Straße and enter the 
Panoramapunkt.

We offer to walk you to the welcome 
reception. We will meet in the lobbies of 
Lindner hotel and Harnack House at 16:45.

The welcome reception is not included in student tickets.

How to get to . . .

Public Transport 

Included in the registration fee is a personalized public transport ticket for the city of Berlin (zones A&B).  
It is valid from Sun, 15:00 to Wed, 15:00 in all subways, buses, trams and regional trains within the city of Berlin. 
Please have the ticket with you at all times and show it to the bus driver when entering a bus. The ticket in-
cludes 15% discount on 40 tourist highlights. 

© Open Street Maps

From the Harnack house to the reception: 
Take       3,       12 and      2 to Potsdamer Platz via 
Wittenbergplatz and Gleisdreieck.
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[2] Harnack House	| Conference Venue
Ihnestraße 16 – 20, 14195 Berlin  					              3,       110, stop Thielplatz

	



 From the Lindner hotel to the workshop:
Take       110 leaving at stop Kurfürstendamm (in front of the hotel, departure 8:28, direction Oskar-Helene- 
Heim, leaves every 20 min.)

– alternatively –

Walk to subway station Augsburger Straße, take subway       3 (direction Krumme Lanke, leaves every 5 
minutes).  

On Monday, we offer to walk you to the conference venue. We will meet in the lobby of Lindner hotel at 8:15.

[3] Boat and City Tour | Tuesday, 14:30 – 18:30
Magnus-Hirschfeld-Ufer, 10557 Berlin  				  100, stop Haus der Kulturen der Welt

Join us for a boat tour through the city and a one-hour walking tour to see Berlin's most famous sights  
(Brandenburg Gate, Reichstag, Jewish Memorial). 

 We will walk you to the starting point of the tour. We will meet in front of the Harnack House at 14:30.

Boat & city tours are not included in student tickets.

Harnack House surroundings
© Open Street Maps

© Open Street Maps

Lindner Hotel surroundings



Walk back to subway      12 (stop Prinzenstraße,  
direction Olympia-Stadion). 
Leave at Zoologischer Garten for Lindner hotel. 
For Harnack House, transfer at Wittenbergplatz to 
subway       3.

14

[4] Conference Dinner Restaurant “Altes Zollhaus” | Tuesday, 19:30
Carl-Herz-Ufer 30, 10961 Berlin 							   12, stop Prinzenstraße

On behalf of our sponsor, we invite you to a reception and a traditional German 4-course dinner in the heart of 
Berlin, in the restaurant “Altes Zollhaus”. 

To the conference dinner: 
Take      12 and leave at stop Prinzenstraße. Walk 
about 6 minutes to the restaurant “Altes Zollhaus“.

Travel back from the conference dinner 
to the Lindner hotel and Harnack House:

Registration and Wireless Internet 

Registration is possible at the welcome reception on Sunday evening and in the Harnack house 
(conference venue) during the workshop.  
In case of any questions, call the registration hotline at +49 30 5770 4725.  
Wifi is available via Eduroam or get an access code at the reception.

How to get to  . . .  | TSL Workshop

© Open Street Maps
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For your notes . . .



Subway Map
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Scientific Program – Monday, July 6th

Session 1a Network Design 09:00 – 10:00, Hahn Hall

• Robust Transit Network Design Based on Big Unrepresentative Data 	  Chungmok Lee, Gavin McArdle & Rahul Nair
• Stochastic Service Network Design of Bike Sharing Systems  Patrick Vogel, Achim Koberstein & Dirk Mattfeld

Session 1b Urban Infrastructure	 09:00 – 10:00, Laue Hall

• Optimizing Charging Station Locations for
 Urban Taxi Providers  Mario Ruthmair, Johannes Asamer, Martin Reinthaler & Jakob Puchinger

• A Bi-level Programming Model for the Workzone
 Scheduling Problem David Rey, Hillel Bar-Gera, Vinayak Dixit & Travis Waller 

Session 2a E-Mobility I			 11:30 – 12:30, Hahn Hall

• Emerging Area in Urban Transportation System Research –
 Optimization and Analytics on Wireless Charging Electric Bus Systems Young Jae Jang

• Optimal Deployment of Charging Lanes in Transportation Networks Yafeng Yin, Zhibin Chen & Fang He

Session 2b Pollution Routing 11:30 – 12:30, Laue Hall

• Time-Dependent Pollution-Routing Problems with
 Path Flexibility in Mega-City Logistics Yixiao Huang, Lei Zhao, Tom Van Woensel & Jean-Philippe Gross

• The Fleet Size and Mix Pollution-Routing Problem Cagri Koc, Tolga Bektas, Ola Jabali & Gilbert Laporte

Session 3a Shared Mobility 13:30 – 15:30, Hahn Hall

• The Taxi Recourse Problem Neža Vodopivec & Elise Miller-Hooks	
• Optimizing Ridesharing Services – Complexity, Formulation and Solution Methods  Wei Lu & Luca Quadrifoglio

• Relocation and Balancing Strategies for Free-Floating Car Sharing Systems
 using Real-Time Data and Social Networking Frederik Schulte & Stefan Voß

• Stochastic and Dynamic Inventory Routing in Bike Sharing Systems Dirk Mattfeld, Viola Ricker & Marlin Ulmer

Session 3b Urban Delivery			 13:30 – 15:30, Laue Hall

• Urban Distribution with Mobile Depots Michael Schneider & Michael Drexl	
• Some Recent Results on the Split Delivery Vehicle Routing Problem Bruce Golden & Xingyin Wang

• Crowdsourced Same Day Delivery Alp Arslan, Niels Agatz, Leo Kroon & Rob Zuidwijk

• Same-Day Delivery Barrett Thomas, Stacy Voccia & Ann Campbell

Session chairs are shown in bold.
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Robust Transit Network Design  
Based on Big Unrepresentative Data

C. Leea, G. McArdleb, R. Naira

aIBM Research – Ireland 
 bNational University of Ireland, Maynooth

Robust transit network design based on big unrepresentative data

Chungmok Leea

chungmok@ie.ibm.com

Gavin McArdleb

gavin.mcardle@nuim.ie

Rahul Naira

rahul.nair@ie.ibm.com

a IBM Research - Ireland
b National University of Ireland, Maynooth

January 15, 2015

We investigate the extent to which systematic bias in source data can impact resource allocation
decisions. This question arises in real-world applications of using opportunistically sensed data for trans-
portation service design models. “Big” data available from telecommunication operators provide a rich and
current estimate of travel demand at the disaggregate level, but likely suffer from systematic biases that de-
pend on a range of factors, such as mobile phone market penetration rates, provider availability, ownership
levels, usage patterns, costs and other factors. While optimization models leveraging such data benefit from
high resolution data, the decisions are likely to lack equity on account of such systematic biases.

This question is addressed in the context of robust transit network design using origin-destination
(OD) flows estimated from telecommunications data. The source data in this case is typically from call
detail records (CDRs) from operators. A CDR is a disaggregate log of transactions (call or text) for each
billed user of a mobile phone service provider. Taken as an aggregate, it provides sample sizes that are a few
orders of magnitude larger than classical travel surveys. This high fidelity comes without representativeness
guarantees however. Subsequent design models therefore are prone to inequity.

Past work by the authors have used a such data for line planning [1]. More recently, robust opti-
mization methods where considered where demand is treated as a range estimate [2]. The key notion is the
definition of an uncertainty set that considers all possible realizations and then optimizes for the worst-case
realization. The resulting designs are conservative and hedges against uncertainty in demand estimates. The
motivation behind having the uncertainty set is representativeness can be greatly improved by taking into
account many possible outcomes rather than any single estimation of the world. In this paper, we address
the extent to which such robust approaches can hedge against systematic biases, such as underrepresentation
of key socio-demographic groups.

The examination of the representativeness question in the real-world has been previously hindered
by the lack of global ground truth information on travel patterns. We exploit the unique Place of Work,
School or College Census of Anonymised Records (POWSCAR) for Ireland. Unlike the Public Use Mi-
crosample Data (PUMS) in the US or the Sample of Anonymized Records (SAR) in the UK which were
obtained from statistical sampling, the POWSCAR data was obtained via a national population census and
provides socio-demographic and travel data for every worker or student in the country which is close to
the ground truth. By systematically degrading observability over this baseline data, the impacts of design
decisions and the value of robust optimization are studied.

We first present an urban sampling model that considers socio-demographic variables to yield spe-
cific subgroups, e.g. segments of the population that do not conform to dominant travel patterns, or sub-
groups with low probabilities of having digital signatures. Observability rates are then systematically con-
sidered for each market segment and range uncertainties are established. We focus on data for 2.7 million
commuters and workers in Ireland.

1

Session 1a – Network Design – Monday, July 6th | TSL Workshop
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The demand estimates along with their associated uncertainty from the urban sampling model are
used in the robust transit network design model. Results from the partial observability cases are compared
to the true demand process to study how under-represented groups are impacted by systematic biases.

Such representative considerations are critical in public sector applications, such as transit network
design where equity is important. In growth market settings, opportunistic sensing is a key since classical
surveys are prohibitively expensive and cities grow at a pace faster that the surveys can be conducted.
African cities for example experience an annual growth of between 3-5% [3]. Design models implemented
in these cases require careful real-world assessment where ground truth is available.

References

[1] Michele Berlingerio, Francesco Calabrese, Giusy Di Lorenzo, Rahul Nair, Fabio Pinelli, and
Marco Luca Sbodio. Allaboard: a system for exploring urban mobility and optimizing public transport
using cellphone data. In Machine Learning and Knowledge Discovery in Databases, pages 663–666.
Springer, 2013.

[2] L. Chungmok and R. Nair. Robust transit design with uncertain demands. in review, 2014.

[3] A. Kumar and F. Barrett. Stuck in traffic: Urban transport in africa. AICD, Background Paper, World
Bank, Washington, DC, 2008.

2
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Stochastic Service Network  
Design of Bike Sharing Systems

P. Vogela, A. Kobersteinb, D. C. Mattfelda
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This paper presents a stochastic programming approach to support the service network design 
of bike sharing systems. Bike sharing systems combine the advantages of public and private 
transportation to better exploit the given transportation infrastructure (DeMaio 2009). They 
enable sustainable means of shared mobility through automated rental stations. However, 
spatio-temporal variation of bike rentals in combination with one-way trips lead to imbalances 
in the distribution of bikes. Imbalances affect the service level, i.e., the successful provision of 
bikes and free bike racks when demanded. Due to limited capacity at stations, the fill level of 
bikes either prohibits rentals at empty stations or returns at full stations. 

Ensuring the reliable provision of service is crucial for the viability of these systems. During 
the course of the day, the bike sharing operator relocates bikes in trucks from full to empty 
stations. Associated relocation services are described by pickup and return station, time 
period, and the number of relocated bikes. Operational planning of relocation usually involves 
vehicle routing models deciding on the assignment of relocation services to relocation vehicles 
and sequencing of relocation services in tours. Objectives for the optimization of relocation 
operations comprise e.g. minimizing the travel times or costs of relocation vehicles.  

We aim at a tactical planning approach of service network design (Crainic 2000). Service 
network design supports the balancing of bikes to stations by determining target fill levels of 
bikes at stations in the course of day. Neglecting relocation in service network design will lead 
to suboptimal target fill level decisions since fill levels and relocation are directly 
interconnected. Poor target fill levels will induce high relocation effort whereas good target 
fill levels can alleviate relocation effort. 

Thus, service network design of bike sharing systems requires the suitable anticipation of 
relocation. In order to formulate a computationally tractable model integrating decisions on 
fill levels and relocation, we refrain from using a computationally challenging vehicle routing 
model. Instead, operational relocation decisions are anticipated by a dynamic transportation 
model. The dynamic transportation model yields the set of relocation services required to 
maintain the target fill levels. 

Implementation of target fill levels has to cover demand uncertainties. On the one hand side, 
trips follow typical traffic patterns in the course of day and week caused by e.g. commuter, 
leisure or tourist activities. On the other hand side, demand for trips is distorted by events, 
e.g. failure of bike stations, traffic jams or sport events, and weather effects such as seasonal 
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temperature and sudden rain. As a result, robust fill levels are desired taking demand 
uncertainties into account. 

In order to determine robust target fill levels, we present a stochastic service network design 
model. Similar to a recent approach in freight transportation (Bai et al. 2014), a two-stage 
linear program with recourse (Birge and Louveaux 2011) seems appropriate for our stochastic 
model formulation. The stochastic network design model aims at cost-efficient target fill levels 
given a predefined service level for uncertain bike demand. Uncertain demand is considered 
by means of scenarios representing different realizations of bike flows in the course of day. 
Each scenario is assigned a certain probability. In the first stage, target fill levels of bikes at 
stations are determined to satisfy a predefined service level. In the second stage, recourse 
actions are determined in the form of relocation services required for each scenario to 
maintain the target fill level. The objective is to minimize expected costs of relocation services. 
Output of the stochastic service network design model are robust time-dependent target fill 
levels at stations. In addition, sets of cost-efficient relocation services to facilitate these target 
fill levels for different demand scenarios are determined.  

The two-stage model is solved by means of the parallelized nested L-shaped algorithm using 
dynamic sequencing and cut consolidation (Wolf and Koberstein 2013). 

The proposed methodology is exemplified based on two years of operational data from 
Vienna’s “Citybike Wien”. Computational experiments show how to set robust target fill levels 
according to different scenarios of bike flows. Furthermore, spatio-temporal characteristics of 
relocation services are provided, which can support operators of bike sharing systems in the 
operational planning and implementation of relocation services. 
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Electric vehicles gain in importance and help to reduce dependency on oil, increase energy efficiency of
transportation, reduce carbon emissions, and avoid tail pipe emissions. Major drawbacks of battery-only
electric vehicles (BEVs) are higher acquisition costs and limited driving ranges due to limited energy
storage capabilities. However, higher acquisition costs of BEVs compared to internal combustion engine
vehicles (ICEVs) are compensated by lower operational costs. According to [3] the total cost of ownership
(TCO) of a Smart Fortwo ICEV exceeds the TCO of a comparable BEV after approximately eight years,
assuming an annual mileage of 10 000 km.

According to [2, 4, 5], taxi vehicles are ideal candidates for being replaced by BEVs, because of short
driving distances, high mileages and intermediate waiting times, especially in urban areas. Trips can
be accomplished without running out of electric energy, and intermediate waiting times can be used for
charging. Although driving patterns of taxis are advantageous for introducing BEVs, there are some
peculiarities which have to be considered. Many taxi vehicles are operated 24/7, meaning that several
drivers share one vehicle over different shifts. Since nearly no time is left between two shifts, there is
not sufficient time left for slow level I and II charging which usually takes several hours. Additionally,
the number of charging operations should be kept as low as possible, because each time the driver has
to search for a charging station (CS) and frequently plugging and unplugging to a CS is inconvenient.
As shown in previous studies [2, 4, 5], the expected waiting time is below one hour implying that for
level I and II CSs several charging operations are necessary and therefore not feasible. Fast level III
chargers are more expensive and need more power but are able to charge the battery of an appropriate
vehicle, e.g., the Nissan e-NV200, in about 30 minutes to 80% of its capacity. The Nissan e-NV200 has
a maximum driving range of 170km and is a promising candidate for acting as taxi.

Prior to replacing taxis by BEVs, a suitable charging infrastructure has to be established. Sellmair
and Hamacher [5] describe the optimization of CSs for taxi BEVs. They consider taxi stands as possible
locations for CSs, where the demand for charging is identified by estimating the consumed electric energy
for each trip. The analysis is based on GPS records of five taxis in Munich, Germany. The objective of
the optimization was to gain an economic benefit for the entire system, meaning a cost-effective operation
of CS.

Our study is based on operational data of a radio taxi provider in Vienna, Austria. We use positioning
data of approximately 800 taxi vehicles (currently ICEVs) over one week. This period is representative
since it contains a large number of trips (> 60 000) from weekend, weekdays, day and night times. We aim
to find locations for a limited number of CSs solely dedicated to taxis, while cost-efficiency for operating
the CSs is not an objective. Instead of assuming taxi stands as the only possible locations for a CS, we
focus on finding regions in which CSs should be placed. The exact location within an area is identified
in a post-optimization phase, where environmental conditions, i.e., the capacity of the power network,
availability of space, and legal issues, are considered. Such detailed information about specific locations
might not be available in the planning phase. The investigated area is subdivided into uniform cells,
i.e., hexagons, where each cell may contain at most one CS. The spatially distributed charging demand
is aggregated, meaning that start and end locations of taxi trips within each cell were summed up. We
assume that if a cell contains a CS it covers the charging demand of the corresponding cell, independent
where exactly the CS is placed. This is only possible if travel times and distances within a cell are low.
Therefore, the diameter of a cell was chosen to be one kilometre, which results in a maximum travel time
of four minutes, given an average European urban travel speed of 15km/h [1]. A CS in a cell not only
covers the demand of the same cell but also with a certain weight the demand of its neighbours.

Based on this data, an optimization problem – a set-covering problem – is defined as follows: Each
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Figure 1: Hexagons with existing charging stations (stars) and recommended for placing a charging
station (triangles). Weights w0 = w1 = 1.

hexagon in the considered region is assigned a value counting the taxi trips starting or ending in it. A
hexagon is covered with some weight w0 ∈ [0, 1] if it is chosen as a location for a CS and with weight
w1 ∈ [0, 1] if a neighboring hexagon contains a CS. We also consider already installed CSs here. The
number of new CSs to be built is limited by R. The aim is to maximize the sum of covered trip counts,
whereas (due to the weighting) a region can only be covered at most M ≥ 0 times while using at most
R CSs.

We formulate this problem as a mixed-integer linear program and solve it exactly by using the solver
software IBM ILOG CPLEX 12.6. The optimization problem for the Vienna city region with about 1500
hexagons can be solved exactly within one second. We set R = 10 which is the number of budgeted CSs
in the considered project. There are also two existing CS which are considered in the optimization. In
Fig. 1 the corresponding solution is shown. Local authorities, power network operators, representatives of
taxi driver guilds as well as radio taxi providers participated in the project and identified exact locations
for CSs based on our suggested areas.
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[4] Martin Reinthaler, Johannes Asamer, Hannes Koller, and Markus Litzlbauer. Utilizing mobility data
to facilitate the introduction of e-taxis in vienna. In Proceedings of the International Conference on
Connected Vehicles and Expo (ICCVE) 2014, 2014.

[5] Reinhard Sellmair and Thomas Hamacher. Method of optimization for the infrastructure of charging
station for electric taxis. In Proceedings of the 93rd Annual Meeting of the Transportation Research
Board, 2014.

2

Optimizing Charging Station Locations for Urban Taxi Providers

M. Ruthmair, J. Asamer, M. Reinthaler, J. Puchinger
Mobility Department, Austrian Institute of Technology

Vienna, Austria

Electric vehicles gain in importance and help to reduce dependency on oil, increase energy efficiency of
transportation, reduce carbon emissions, and avoid tail pipe emissions. Major drawbacks of battery-only
electric vehicles (BEVs) are higher acquisition costs and limited driving ranges due to limited energy
storage capabilities. However, higher acquisition costs of BEVs compared to internal combustion engine
vehicles (ICEVs) are compensated by lower operational costs. According to [3] the total cost of ownership
(TCO) of a Smart Fortwo ICEV exceeds the TCO of a comparable BEV after approximately eight years,
assuming an annual mileage of 10 000 km.

According to [2, 4, 5], taxi vehicles are ideal candidates for being replaced by BEVs, because of short
driving distances, high mileages and intermediate waiting times, especially in urban areas. Trips can
be accomplished without running out of electric energy, and intermediate waiting times can be used for
charging. Although driving patterns of taxis are advantageous for introducing BEVs, there are some
peculiarities which have to be considered. Many taxi vehicles are operated 24/7, meaning that several
drivers share one vehicle over different shifts. Since nearly no time is left between two shifts, there is
not sufficient time left for slow level I and II charging which usually takes several hours. Additionally,
the number of charging operations should be kept as low as possible, because each time the driver has
to search for a charging station (CS) and frequently plugging and unplugging to a CS is inconvenient.
As shown in previous studies [2, 4, 5], the expected waiting time is below one hour implying that for
level I and II CSs several charging operations are necessary and therefore not feasible. Fast level III
chargers are more expensive and need more power but are able to charge the battery of an appropriate
vehicle, e.g., the Nissan e-NV200, in about 30 minutes to 80% of its capacity. The Nissan e-NV200 has
a maximum driving range of 170km and is a promising candidate for acting as taxi.

Prior to replacing taxis by BEVs, a suitable charging infrastructure has to be established. Sellmair
and Hamacher [5] describe the optimization of CSs for taxi BEVs. They consider taxi stands as possible
locations for CSs, where the demand for charging is identified by estimating the consumed electric energy
for each trip. The analysis is based on GPS records of five taxis in Munich, Germany. The objective of
the optimization was to gain an economic benefit for the entire system, meaning a cost-effective operation
of CS.

Our study is based on operational data of a radio taxi provider in Vienna, Austria. We use positioning
data of approximately 800 taxi vehicles (currently ICEVs) over one week. This period is representative
since it contains a large number of trips (> 60 000) from weekend, weekdays, day and night times. We aim
to find locations for a limited number of CSs solely dedicated to taxis, while cost-efficiency for operating
the CSs is not an objective. Instead of assuming taxi stands as the only possible locations for a CS, we
focus on finding regions in which CSs should be placed. The exact location within an area is identified
in a post-optimization phase, where environmental conditions, i.e., the capacity of the power network,
availability of space, and legal issues, are considered. Such detailed information about specific locations
might not be available in the planning phase. The investigated area is subdivided into uniform cells,
i.e., hexagons, where each cell may contain at most one CS. The spatially distributed charging demand
is aggregated, meaning that start and end locations of taxi trips within each cell were summed up. We
assume that if a cell contains a CS it covers the charging demand of the corresponding cell, independent
where exactly the CS is placed. This is only possible if travel times and distances within a cell are low.
Therefore, the diameter of a cell was chosen to be one kilometre, which results in a maximum travel time
of four minutes, given an average European urban travel speed of 15km/h [1]. A CS in a cell not only
covers the demand of the same cell but also with a certain weight the demand of its neighbours.

Based on this data, an optimization problem – a set-covering problem – is defined as follows: Each

1

Figure 1: Hexagons with existing charging stations (stars) and recommended for placing a charging
station (triangles). Weights w0 = w1 = 1.

hexagon in the considered region is assigned a value counting the taxi trips starting or ending in it. A
hexagon is covered with some weight w0 ∈ [0, 1] if it is chosen as a location for a CS and with weight
w1 ∈ [0, 1] if a neighboring hexagon contains a CS. We also consider already installed CSs here. The
number of new CSs to be built is limited by R. The aim is to maximize the sum of covered trip counts,
whereas (due to the weighting) a region can only be covered at most M ≥ 0 times while using at most
R CSs.

We formulate this problem as a mixed-integer linear program and solve it exactly by using the solver
software IBM ILOG CPLEX 12.6. The optimization problem for the Vienna city region with about 1500
hexagons can be solved exactly within one second. We set R = 10 which is the number of budgeted CSs
in the considered project. There are also two existing CS which are considered in the optimization. In
Fig. 1 the corresponding solution is shown. Local authorities, power network operators, representatives of
taxi driver guilds as well as radio taxi providers participated in the project and identified exact locations
for CSs based on our suggested areas.

References

[1] Pablo Jensen, Jean-Baptiste Rouquier, Nicolas Ovtracht, and Céline Robardet. Characterizing the
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Major cities have dense road networks which require regular maintenance
operations. Further, the organization of urban areas often relies on the road
network to incorporate utility networks, such as electricity, telecommunica-
tions and water networks. As a result, lane or road closures—hereby referred
to as workzones—are frequent and can lead to significant delays within the
city if they are conducted without any coordination across the network. In
this paper, we address the problem of determining an optimal schedule for
the conduction of workzones in urban transportation networks. We propose
a novel solution method for the Workzone Scheduling Problem (WSP) [1]
that finds a schedule which maximizes the network performance while ac-
counting for traffic prediction based on a forecasted travel demand.

Predicting and managing traffic flows in urban transportation networks
is a complex modelling and planning problem that major cities confront on
a daily basis. The prediction of traffic flows seeks to provide insight on the
way travelers choose their route within a network and this step is known
as the Traffic Assignment Problem (TAP) [2]. Such predictions are useful
to evaluate the impact of transport planning policies concerned with the
improvement of traffic conditions at a network level. The management of
traffic flows is often focused on identifying the most suitable network design
in order to reach a system optimum state, that is, to maximize the network
performance. Among the available performance metrics, the Total System
Travel Time (TSTT) is a well-studied objective function for traffic assign-
ment based transportation models. Embedding the TAP into a Network
Design Problem (NDP) has been widely studied in the field of transporta-
tion and this problem is generally represented as a bi-level programming
where the upper level is the NDP and the lower level is the TAP [3].
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To address the WSP, we propose a bi-level programming model with a
scheduling problem that seeks to minimize the TSTT for the upper level and
the TAP for the lower level. Specifically, the main decision variables of the
upper level are the workzones start times and the main design constraints
ensure that the workzones are completed within a given planning period.
Each workzone is assumed to affect a given set of links in the network, for
a specified duration; and the impact of workzones onto traffic conditions is
represented by road capacity reductions. We use a link performance function
to determine the travel time on a link according to its flow and its capacity.
Travelers’ route choice are represented using a static User Equilibrium (UE)
model, which can be formulated as a convex optimization problem [4]. Due
to the combinatorial nature of scheduling problem, the WSP problem is
intractable for large instances and advanced search methods are required to
efficiently find good solutions. We introduce a novel solution method for
the WSP that uses the TAPAS algorithm [5] to solve the static TAP, which
provides stable route flows under the assumption of proportionality. Our
approach is based on a decomposition of the upper level search space where
workzones schedules are evaluated according to their spatial (links affected)
and temporal (workzone duration) characteristics. The model behavior is
examined through tests conducted on benchmark traffic instances and we
propose a heuristic approach to tackle larger instances. Further, we develop
complexity metrics to classify instances for the WSP based on the spatial
and temporal interaction between workzones. We show that the proposed
model is competitive, even on difficult instances.
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We introduce the innovative wireless charging electric vehicle which charges the battery wirelessly 
from the charging infrastructure installed under the road. The technology is innovative in that the 
vehicle is charged while it is even in motion. One example of the commercialized system is the Korea 
Advanced Institute of Science and Technology (KAIST) wireless charging EV shuttle, which is called 
Online Electric Vehicle (OLEV) currently operating in the KAIST campus. 

As shown in Figure 1, the OLEV system comprises vehicle units and power supply systems. Note that 
although the name OLEV indicates a vehicle unit alone, it actually refers to a system comprising a 
vehicle or fleet of vehicles combined with a charging infrastructure that takes the form of a set of power 
supply systems buried in the road. A vehicle in the OLEV system has a pickup device that collects 
electric energy from the power supply systems. When the vehicle operates in the vicinity of a power 
supply system, the inductive cable sends electricity wirelessly to the pickup device. Because charging 
takes place while the vehicle is in motion, the system eliminates the major problem of conventional 
electric vehicles, the need to discontinue bus operation to charge the battery. 

We introduce the optimization problem allocating the charging infrastructure of the wireless charging 
EVs. The problem is different from the conventional charging infrastructure allocation based on the 
facility location problem. Since the charging can be done while the vehicle is in motion, any place where 
the vehicle moves can be the candidate for allocating the charging infrastructure. We present a several 
optimization methods and algorithms developed and currently used in designing the commercial OLEV 
system. We also propose the new problems and research opportunities in wireless charging EVs to the 
OR/MS community.  
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Abstract

Electric vehicles have been long recognized as a promising way to reduce traffic emissions 

locally and petroleum dependence. Early models of electric vehicles all came with limitations and 

costs that prevented them from competing with gas-fuelled cars. However, recent advances in 

battery technologies and expeditiously rising prices of crude oil have helped re-launch electric 

vehicles. Many governments also provide a variety of subsidies or incentives to promote the 

adoption of electric vehicles. With the deployment of charging or battery swapping stations and 

further improvement of battery technologies, a fast-growing adoption of electric vehicles can be 

expected.  

This paper attempts to develop a mathematical model to optimally deploy in a large-scale 

highway network charging lanes that charge electric vehicles while they are on the move. Quite a 

number of technologies could enable charging lanes. Researchers at Volvo are testing two types 

of “conductive charging”, the same technology used for trams and trains, to power electric vehicles 

on long-distance highway trips. One method charges via lines overhead and the other uses two 

metal bars in the road. Scania is also investigating a similar overhead charging technology to power 

heavy trucks and has a two kilometers of test track outside Berlin to field test the technology. On 

the other hand, remarkable progress has been made in the field of inductive charging. Recent 

research advances have enabled transferring power across large air gaps with high efficiency and 

signaled bright prospects that electric vehicles in motion can be charged wirelessly. The Energy 

Dynamics Laboratory at Utah State University has proved that enough power can be transferred 

wirelessly to safely and effectively charge electric vehicles. Future versions of their system are 

expected to wirelessly charge vehicles at a speed of 75mph. Companies such as Scania and 
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Qualcomm have been developing their own inductive charging technologies. 15 miles of charging 

lane has been constructed in Gumi, South Korea, which recharges a dozen of buses while in motion. 

We envision in this paper that charging lanes can be deployed in regional or even urban road 

networks using either conductive or inductive charging technologies. With charging lanes 

deployed, drivers of electric vehicles will not fear any more running out of battery en route. This 

paper optimizes a deployment plan or design of charging lanes in a general road network. More 

specifically, given a limited budget, the model will determine the location and length of each 

charging lane to minimize total social cost that includes travel time and emissions.  To achieve this 

goal, we first develop a new user equilibrium traffic assignment model that describes the network 

equilibrium flow distribution across the road network, given a particular deployment plan or design 

of charging lanes. It is assumed that drivers of electric vehicles, when traveling between their 

origins and destinations, select routes and decide battery recharging plans to minimize their trip 

times while making sure to complete their trips without running out of charge. A battery charging 

plan will dictate which charging lane to use and where to enter and leave the lane, and which speed 

to operate an electric vehicle. The speed will affect the recharging rate of electricity as well as the 

travel time. With the established user equilibrium conditions, we further formulate the design of 

charging lanes as a mathematical program with equilibrium constraints, which will be solved and 

demonstrated on a realistic network.  
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Freight transportation in urban areas of mega-cities has always been challenging. Congestion, which prolongs

delivery time and causes more fuel consumption, is one of the major challenges for logistics companies in

mega-cities. Smart routing under uncertain traffic condition requires the combination of planning in advance

and decisions in real time. Fuel cost can account for over 46% of the total operation cost for a logistics

company (China Federation of Logistics & Purchasing)1. It is critical to route its fleet of vehicles smartly

to save fuel cost.

Bektaş and Laporte (2011) first introduced the pollution-routing problem (PRP) to take fuel cost and

congestion into account. Franceschetti et al. (2013) further proposed the time-dependent pollution-routing

problem (TDPRP) to consider the time dependency and spatial difference of traffic condition. Specifically,

the travel time on each arc can be modeled as a piecewise linear function of the departure time at the origin

node of the arc. Both models (implicitly) assume that an arc (which connects two customer locations) is

mapped to one given path. However, it is possible that a vehicle may choose an alternative path to avoid

the congestion, especially under time-dependent traffic condition. This paper focuses on TDPRP with Path

Flexibility (TDPRP-PF) under both deterministic and stochastic traffic conditions, which highlights the

importance of path flexibility in smart routing.

In this study, we emphasize the importance of decoupling two graphs in the time-dependent routing problem,

the customer graph (with customer locations as nodes in the network) and the geographical graph (with

intersections as nodes in the road network). Each arc in the customer graph corresponds to multiple paths

in the geographical graph, which can be the distance-minimizing shortest path or the time-dependent time-

minimizing shortest paths. These two types of paths can be generated in polynomial time. Assume that

the travel speed of each road segment is a step function of the departure time at the starting node t, the

total travel time on the road segment is a piecewise linear function of t. For a path containing finite road

segments, the total travel time on this path is also a piecewise linear function of the departure time at the

starting node of the path.

Under deterministic traffic condition, we formulate TDPRP-PF as a mixed integer program based on the

two-index single-commodity flow model of the classical VRP (Gavish and Graves, 1981). The piecewise

linear travel time function of each path can be modeled via integer programming techniques (Sridhar et al.,

2013). Our model aims to minimize the total cost including fuel cost and distance-based (e.g., depreciation)

cost. The fuel consumption is calculated via the Comprehensive Modal Emission Model (CMEM, Barth and

Boriboonsomsin, 2009). Under stochastic traffic condition, the problem is modeled as a two-stage stochastic

∗huangyx12@mails.tsinghua.edu.cn
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‡T.v.Woensel@tue.nl
§jpgross@numericable.fr
1http://www.chinawuliu.com.cn/zixun/201402/27/283124.shtml, in Chinese, last accessed on January 27, 2015
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program, where in the first stage the offline routing decision is made in the customer graph and in the

second stage the en route path selection is decided in the geographical graph. Note that the decoupling

of the customer graph and the geographical graph enables the decoupling of offline routing decision and

the en route path selection decision. The two-stage stochastic program has binary variables in both stages.

We apply modified Benders’ decomposition method (Carøe and Tind, 1998; Sherali and Fraticelli, 2002) to

improve the solution efficiency.

We construct a case study based on the urban area of Beijing. The

road segments in the geographical graph are classified into three

categories: expressways, arterial roads, and small roads (Wang

et al., 2008). The geographical graph contains of 409 nodes (road

intersections) and 917 arcs (road segments) of expressways and ar-

terial roads. Small roads are calculated using Manhattan distance.

The customer set is composed of 54 hypermarkets (Carrefour, Wal-

Mart, Auchan, Metro, and Beijing Hualian) in Beijing, which are

representatives of the retail demand (also the delivery demand) in

the city. For each instance, customer nodes in the customer graph

are randomly selected from the customer set.

Expressway
Arterial
Customer

Figure 1: Road network and customer loca-
tions in Beijing

In the baseline instances, we assume the demand is equal at each customer site. Numerical results illustrate

the importance of the path flexibility in TDPRP, under both deterministic and stochastic traffic conditions.

Under deterministic traffic condition, TDPRP-PF saves 7.1% of the total cost on average comparing to

distance-minimizing vehicle routing problem (CVRP), while TDPRP without path flexibility only saves

1.3% of the total cost. Similarly, under stochastic traffic condition, TDPRP-PF saves 7.3% of the total

cost comparing to CVRP, while TDPRP without path flexibility only saves 1.3% of total cost. Moreover, we

study the impact of key parameters on total cost savings and routing decisions, such as the demand/capacity

ratios at customer sites, and the demand variation among customer sites. Furthermore, we study the impact

of the flexibility of departure time at the depot and post-service waiting time at the customer sites.

Keywords: mega-city logistics; time-dependent vehicle routing problem; pollution-routing

problem; path flexibility; geographical graph; uncertainty
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Abstract

Many cities face significant challenges related to the pollution generated by the number of vehicles that

need to travel within their areas. Urban freight transportation of goods is one of the primary sources of

greenhouse gases (GHGs) emissions such as carbon dioxide (CO2). This transportation activity is often

captured by the Vehicle Routing Problem with Time Windows (VRPTW), which aims to design feasible

routes for a homogeneous set of vehicles to meet customer demands within predetermined time windows.

To account for environmental concerns Bektaş and Laporte (2011) introduced the pollution-routing problem

(PRP) as an extension to the VRPTW. The PRP consists of routing a set of homogenous vehicles to serve

a set of customers, and of determining their speed on each route segment to minimize a function comprising

fuel cost, emissions and driver costs. However, in most real-world distribution problems, customer demands

are met with heterogeneous vehicle fleets (Hoff et al., 2010). Therefore, the aim of this paper is to extend

the pollution-routing problem by considering a heterogeneous vehicle fleet.

Using a heterogeneous fleet in VRPs was introduced by Golden et al. (1984) as the fleet size and mix

vehicle routing problem, which works with an unlimited heterogeneous fleet. To our knowledge, the fleet

size and mix vehicle routing problem combining time windows with the PRP objectives has not yet been

investigated. We believe there is merit in analyzing and solving the fleet size and mix pollution-routing

problem (FSMPRP), not only to quantify the benefits of using a flexible fleet with respect to fuel, emissions

and the relevant costs, but also to overcome the necessary methodological challenges to solve the problem.

To estimate pollution resulting from goods transportation we use a simplified version of the emission

and fuel consumption model proposed by Barth et al. (2005), Scora and Barth (2006) and Barth and

Boriboonsomsin (2009). The simplified model assumes that in a vehicle trip all parameters will remain

constant on a given arc, but load and speed may change from one arc to another. As such, the PRP model

approximates the total amount of energy consumed on a given road segment, which directly translates into

fuel consumption and further into GHG emissions. Furthermore, in our study, we consider the three main

vehicle types of MAN (2014a) . These three vehicle types are TGL, TGM and TGX by MAN (2014a), which

correspond to light duty, medium duty and heavy duty.

We develop a new hybrid evolutionary algorithm for the FSMPRP. This algorithm builds on the work of

Koç et al. (2014), which is itself based on the principles put forward by Vidal et al. (2014). In this paper, we

have additionally developed the heterogeneous adaptive large neighbourhood search which is used as main

element in the algorithm. An adapted version of the Speed Optimization Algorithm (Norstad et al., 2010;

Hvattum et al., 2013) is applied on a solution within the algorithm to optimize speeds between nodes.

The effectiveness of the algorithm was demonstrated through extensive computational experiments on

realistic PRP and FSMPRP instances. These tests have enabled us to assess the effects of several algorithmic

components and to measure the trade-offs between various cost indicators such as vehicle fixed cost, distance,

fuel and emissions, driver cost and total cost. We have demonstrated the benefit of using a heterogeneous

fleet over a homogeneous one. An interesting insight derived from this study is that using a heterogeneous

fleet without speed optimization allows for a further reduction in total cost than using a homogeneous fleet

with speed optimization. Furthermore, we have shown that using an adequate fixed speed yields results that

are only slightly worse than optimizing the speed on each arc. This has a practical implication since it is
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The fleet size and mix pollution-routing problem

Abstract
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captured by the Vehicle Routing Problem with Time Windows (VRPTW), which aims to design feasible

routes for a homogeneous set of vehicles to meet customer demands within predetermined time windows.

To account for environmental concerns Bektaş and Laporte (2011) introduced the pollution-routing problem

(PRP) as an extension to the VRPTW. The PRP consists of routing a set of homogenous vehicles to serve

a set of customers, and of determining their speed on each route segment to minimize a function comprising

fuel cost, emissions and driver costs. However, in most real-world distribution problems, customer demands

are met with heterogeneous vehicle fleets (Hoff et al., 2010). Therefore, the aim of this paper is to extend

the pollution-routing problem by considering a heterogeneous vehicle fleet.

Using a heterogeneous fleet in VRPs was introduced by Golden et al. (1984) as the fleet size and mix

vehicle routing problem, which works with an unlimited heterogeneous fleet. To our knowledge, the fleet

size and mix vehicle routing problem combining time windows with the PRP objectives has not yet been

investigated. We believe there is merit in analyzing and solving the fleet size and mix pollution-routing

problem (FSMPRP), not only to quantify the benefits of using a flexible fleet with respect to fuel, emissions

and the relevant costs, but also to overcome the necessary methodological challenges to solve the problem.

To estimate pollution resulting from goods transportation we use a simplified version of the emission

and fuel consumption model proposed by Barth et al. (2005), Scora and Barth (2006) and Barth and

Boriboonsomsin (2009). The simplified model assumes that in a vehicle trip all parameters will remain

constant on a given arc, but load and speed may change from one arc to another. As such, the PRP model

approximates the total amount of energy consumed on a given road segment, which directly translates into

fuel consumption and further into GHG emissions. Furthermore, in our study, we consider the three main

vehicle types of MAN (2014a) . These three vehicle types are TGL, TGM and TGX by MAN (2014a), which

correspond to light duty, medium duty and heavy duty.

We develop a new hybrid evolutionary algorithm for the FSMPRP. This algorithm builds on the work of

Koç et al. (2014), which is itself based on the principles put forward by Vidal et al. (2014). In this paper, we

have additionally developed the heterogeneous adaptive large neighbourhood search which is used as main

element in the algorithm. An adapted version of the Speed Optimization Algorithm (Norstad et al., 2010;

Hvattum et al., 2013) is applied on a solution within the algorithm to optimize speeds between nodes.

The effectiveness of the algorithm was demonstrated through extensive computational experiments on

realistic PRP and FSMPRP instances. These tests have enabled us to assess the effects of several algorithmic

components and to measure the trade-offs between various cost indicators such as vehicle fixed cost, distance,

fuel and emissions, driver cost and total cost. We have demonstrated the benefit of using a heterogeneous

fleet over a homogeneous one. An interesting insight derived from this study is that using a heterogeneous

fleet without speed optimization allows for a further reduction in total cost than using a homogeneous fleet

with speed optimization. Furthermore, we have shown that using an adequate fixed speed yields results that

are only slightly worse than optimizing the speed on each arc. This has a practical implication since it is

1

easier to instruct drivers to hold a constant speed for their entire trip rather than change their speed on each

segment.
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Dial-a-ride services are demand-responsive door-to-door ridesharing services. Their typical users are 
mobility-impaired passengers seeking rides to doctors’ appointments and travelers accessing airports. 
Providers of such ridesharing services must negotiate between high customer expectations and rules set 
by planning agencies that fund such services. The Dial-A-Ride Problem considers efficient routes and 
schedules for these services. Although the problem is well researched, most models assume that exact 
travel times are known in advance. Even strategies that do plan for various uncertainties may not perform 
well in actual circumstances. 

As a recourse measure and strategy for increasing operational efficiency, we consider dynamically 
reassigning customers to taxis when ridesharing vehicles fall behind schedule. We focus not on route 
development or revision, but on an effective strategy for calling taxis as backup to a vehicle deployed 
along a given route. We assume that operators must negotiate between two costs: the added fare for 
calling a taxi and a penalty for picking up a customer late. Moreover, if a taxi is called but does not arrive 
on time, the operator must pay both the added fare and the penalty. 

As time passes, the vehicle approaches its destination and the operator knows with greater 
certainty whether calling a taxi is warranted. However, the more the decision is postponed, the greater 
the chance that a taxi, if called, will itself arrive late. We refer to the problem of determining if and when 
to call a taxi in this context as the Taxi Recourse Problem (TRP). 

The decision to call a taxi is fundamentally different from the decision to continue with the 
vehicle—the first is irreversible and the second always contains a hidden opportunity for later recourse. 
In the language of investment, this implies that comparing the net present value of our options is not the 
optimal strategy. With this in mind, we model the TRP as an optimal stopping problem, in which the 
decision to stop and call a taxi can be made at any point on a continuous, finite interval of time. Along the 
open interval, the stopping cost is known a priori and increases linearly with time. If stopping has not 
occurred by the end of the horizon, the decision process is terminated and the terminal stopping cost is a 
binary value determined by whether the vehicle has reached its destination. 

Model description, formulation and solution 
We take as our decision horizon the interval [0, 𝑇𝑇]. Time 0 is the last moment that a taxi, if called, would 
be certain to arrive on time. (A rational decision maker would never call a taxi before this time.) Time 𝑇𝑇 is 
the customer pickup deadline. In the proposed model, the vehicle adheres to its preplanned route. Its 
position along the route, 𝑥𝑥(𝑡𝑡), follows a Brownian motion with drift, 𝑑𝑑𝑑𝑑 = 𝜇𝜇 𝑑𝑑𝑑𝑑 + 𝜎𝜎 𝑑𝑑𝑑𝑑, where 𝑑𝑑𝑑𝑑 is the 
increment of a standard Wiener process. Drift rate 𝜇𝜇 is the mean velocity of the vehicle. The vehicle begins 
at initial position 𝑥𝑥0 = 0 at time 0 and, if taken to the end, must reach position 𝑋𝑋 by time 𝑇𝑇. If the vehicle 
is taken to the end and does not arrive by that time, that is, if 𝑥𝑥𝑇𝑇 < 𝑋𝑋, the company incurs a cost of 𝐶𝐶late. 

Alternatively, at any point along the decision horizon, a taxi may be called for a fixed taxi fare of 
𝐶𝐶fare. The taxi’s travel time to the pickup is uniformly distributed on the interval [0, 𝑇𝑇]. Because the taxi’s 
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position is exogenous to our model, we consider only its expected cost if called. This expected cost is a 
known, deterministic function of call time, which increases linearly from 𝐶𝐶fare to 𝐶𝐶fare + 𝐶𝐶late on [0, 𝑇𝑇]. 

We define our stopping cost Ω(𝑥𝑥, 𝑡𝑡) as follows: 
 

Ω(𝑥𝑥, 𝑡𝑡) = 𝐶𝐶fare + 𝐶𝐶late ∙ 𝑡𝑡
𝑇𝑇 0 ≤ 𝑡𝑡 < 𝑇𝑇

Ω(𝑥𝑥, 𝑇𝑇) = {𝐶𝐶late
0

𝑥𝑥 < 𝑋𝑋
otherwise

 

The first equation gives the stopping cost if the taxi is called and the second gives the terminal stopping 
cost if the vehicle is taken to the end. 

We formulate our optimal stopping problem as a stochastic dynamic program (SDP) on the 
defined costs:       

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = min{Ω(𝑥𝑥, 𝑡𝑡), E[𝐹𝐹(𝑥𝑥 + 𝑑𝑑𝑑𝑑, 𝑡𝑡 + 𝑑𝑑𝑑𝑑) | 𝑥𝑥]}
𝐹𝐹(𝑥𝑥, 𝑇𝑇) = Ω(𝑥𝑥, 𝑇𝑇),

where 𝐹𝐹(𝑥𝑥, 𝑡𝑡) is a cost function that gives the operator’s expected costs given that all future decisions are 
made optimally, and 𝐹𝐹(𝑥𝑥, 𝑇𝑇) is the terminal boundary condition. 

We show that the optimal policy is a benchmark policy, characterized at each point in time by a 
single critical position that the vehicle must have reached in order to continue. More formally, for each 𝑡𝑡, 
there exists a unique 𝑥𝑥∗(𝑡𝑡) such that it is optimal to continue with the vehicle if 𝑥𝑥(𝑡𝑡) ≥ 𝑥𝑥∗(𝑡𝑡) and to call 
a taxi if 𝑥𝑥(𝑡𝑡) < 𝑥𝑥∗(𝑡𝑡). In other words, over the interval [0, 𝑇𝑇], 𝑥𝑥∗(𝑡𝑡) partitions the (𝑥𝑥, 𝑡𝑡) space into two 
regions: one where it is optimal for the vehicle to continue and another where recourse should be taken. 

By Ito’s Lemma, our cost function 𝐹𝐹(𝑥𝑥, 𝑡𝑡) must satisfy the following partial differential equation 
in the continuation region above the free boundary 𝑥𝑥∗(𝑡𝑡): 
 

 1
2𝜎𝜎2 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝜇𝜇 𝐹𝐹𝑥𝑥 + 𝐹𝐹𝑡𝑡 = 0 (Kolmogorov backward equation) 

 𝐹𝐹(𝑥𝑥, 𝑇𝑇) = Ω(𝑥𝑥, 𝑇𝑇) (terminal boundary condition) 
 𝐹𝐹(𝑥𝑥∗(𝑡𝑡), 𝑡𝑡) = Ω(𝑥𝑥∗(𝑡𝑡), 𝑡𝑡) (value matching at free boundary) 
 𝐹𝐹𝑥𝑥(𝑥𝑥∗(𝑡𝑡), 𝑡𝑡) = Ω𝑥𝑥(𝑥𝑥∗(𝑡𝑡), 𝑡𝑡) = 0 (smooth pasting at free boundary) 
 

We give a numerical approximation to the free boundary 𝑥𝑥∗(𝑡𝑡). 
The ‘wait-and-see’ solution above accounts for the ability to take later recourse based on more 

accurate information. We compare this solution to a ‘now-or-never’ solution, which is chosen at each 
point based on a comparison of net present values of recourse and no recourse. We show that the benefits 
of the ‘wait-and-see’ solution are highest when we are most uncertain about our decision. 
 

A Bilevel Model with Embedded SDP to Study Tradeoffs against Slack 
With a reliable recourse plan, ridesharing service providers may be able to reduce unnecessary slack in 
the schedules when creating routes. The above SDP is embedded within a bilevel framework in which the 
upper level seeks an optimal use of slack in schedule planning given optimal taxi recourse decisions in 
response to actual circumstances at the lower level. An equilibrium is reached that balances added slack 
levied in the planning stage against late penalties and taxi fares imposed in the execution stage. We 
present numerical results to explore this point of equilibrium. 
 

Relevance to Workshop Theme 
This work addresses a dynamic ridesharing problem under real-time information. Up-to-the-minute 
travel-time forecasts and real-time location updates have been made widely available through mobile 
devices. The developed methodology exploits this information to make dynamic routing decisions in a 
stochastic environment. In an urban setting, where taxis are readily available, the proposed taxi recourse 
can help overcome existing challenges faced by shared mobility service providers.   
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Ridesharing services, which aim to bring together travelers with similar itineraries and compat-

ible time schedules, may provide substantial societal and environmental benefits by reducing the

use of private vehicles. When the operations of a ridesharing system is optimized, it can also save

travelers significant amount of transportation cost. The economic benefits associated with rideshar-

ing in turn attract more travelers to participate in ridesharing services and thereby improving

the utilization of transportation infrastructure capacity. We study the most generalized setting of

ridesharing problem – given a set of travelers and their origins/destinations, we aim to simultane-

ously make decisions on driver/rider role assignment, customer partition and route planning, with

the goal of minimizing the system-wide total vehicle-miles.

Suppose we have n ridesharing participants P = {1,2, . . . , n}. Each of them has an origin location

and a destination location. Denote the node set of origin and destination locations as VO and VD,

respectively. Let node i be customer i’s origin node (1≤ i ≤ n) and i+ n be his/her destination

node, then we have VO = {1,2, . . . , n} and VD = {n+ 1, n+ 2, . . . ,2n}. Then we have a complete

digraph G = (V,A), where V = VO ∪ VD is the set of all nodes and A = V × V is the set of all

arcs. Figure 1 provides an illustration showing two feasible solutions to ridesharing optimization

problem on G. Note that the number in a node indicates its associated customer index. Nodes

with a rectangular shape and a “+” label represent the destinations. Figure 1(a) is a solution that

consists of individual trips (no ridesharing at all). On the other hand, in Figure 1(b) customers 1

and 2 form a ridesharing group and customers 4,5 and 6 form a ridesharing group. Nodes in red

belong to the customers that are assigned as drivers.

We show that the ridesharing optimization problem is NP-hard through a reduction from the

set packing problem. A mixed-integer program (MIP) model is developed to solve the ridesharing

optimization problem to optimality. Because the NP-hardness of the problem, the MIP model is not

able to solve larger instances within a meaningful time. An insertion-based heuristic is developed to

get approximate solutions to the ridesharing optimization problem. Parallel algorithm approaches

are utilized to further improve the computational efficiency.

We conduct experiments to validate and evaluate the developed models and algorithms. All

algorithms are implemented in Java with CPLEX 12.6 and the Concert library. The data set1 we

1 The data sets can be downloaded from http://www.diku.dk/~sropke/
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Figure 1 (a) Individual trips vs. (b) organized ridesharing trips

Table 1 Performance of algorithms

Problem Total cost
size Solo Match Insertion
5 2509.5 2264.5 (9.8%) 2225.9 (11.3%)
10 5325.9 4476.5 (15.9%) 4272.7 (19.8%)
15 7929.6 6654.7 (16.1%) 6499.7 (18.0%)
20 10561.8 8454.6 (19.9%) 8201.7 (22.4%)
25 12695.5 10430.8 (17.8%) 9826.4 (22.6%)
30 16490.1 12975.2 (21.3%) 12190.0 (26.1%)
35 18367.0 14327.1 (22.0%) 13576.6 (26.1%)

use in the experiments are selected from Dumitrescu et al. (2010). From a societal perspective,

our ridesharing optimization model provides substantial system-wide travel cost saving (25%+)

compared to the non-ridesharing situation. Evaluation of the heuristic solution method shows that

the heuristic can solve the problem very fast and provide nearly optimal (98%) solutions. To further

compare the solution qualities of insertion heuristic (Insertion) and optimal matching (Match) (see

Wang 2013), the average solution values for each problem size are summarized in Table 1. The

percentage in parenthesis for each solution method indicates the cost saving percentage compared

to the non-ridesharing route plan (Solo). It can be seen that Insertion always outperforms Match,

and can further save about 5 percent of the total travel cost – a non-trivial amount of mileage. In

the future it will be interesting to see how our algorithms perform on the real-world data sets in

which customer locations are more likely to be clustered than random.
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Extended Abstract 
 

 
Introduced in recent years free-floating car-sharing systems (FFCS) face a rapid growth, making 
car sharing an attractive alternative to a self-owned car and contributing significantly to the 
worldwide growth in car sharing (Shaheen and Cohen, 2013). Current studies indicate that FFCS 
can lead to a significant reduction of urban emissions (Firnkorn and Müller, 2011; Glotz-Richter, 
2012). Previous work has furthermore demonstrated that, like in bike-sharing, FFCS tend to get 
imbalanced and system providers are challenged to reposition vehicles in an economic and eco-
friendly fashion (Herrmann et al., 2014; Weikl and Bogenberger, 2012). To encourage app 
development and to enter social network (SN) communities, system providers, such as car2go, 
started to provide web based interfaces that offer comprehensive real-time data from their 
systems. This creates new opportunities for researchers to develop smart strategies and 
optimization algorithms to guide relocation and balancing attempts in car sharing (Herrmann et 
al., 2014). In addition, access to SNs enables new forms of sharing (Belk, 2014). In FFCS SN 
can, e.g., connect users, combine trips, help to share demand, and thus relieve high demand areas 
in car sharing systems. 
 
Traditional car sharing operates stations where users have to pick-up and return cars. In contrast 
to these car sharing systems, free-floating systems define a geo-fence—an operating area around 
a city center—in which a user can hire and drop cars directly at or very close to his demand 
points without having to visit a station before or after the ride. This enables the user to simply 
search and book a car close to his current position using his smart phone. When a user decides to 
book a car, what matters most is the distance from his current position to the next available car 
(Herrmann et al., 2014). More generally, if a user frequently experiences that there are no 
available cars close to his demand points, he will probably not accept the system as a substitute to 
another, more reliable transportation mode. In car sharing, as well as in other vehicle sharing 
systems, e.g., in bike sharing, significant fluctuations in demand can be observed  (Raviv et al., 
2013). Depending on the day and the hour, certain areas in cities accumulate an extremely high 
demand, while others are not in the focus of the user. Thus, in certain areas there are a lot of 
empty or idle cars, while in other areas customers can hardly find a car close to their own 
position. 

Session 3a – Shared Mobility – Monday, July 6th | TSL Workshop



37

Relocation and Balancing Strategies for Free-
Floating Car Sharing Systems using Real-Time 

Data and Social Networking 

F. Schulte, S. Voß 
Institute of Information Systems, University of Hamburg, Germany 

Relocation and Balancing Strategies for Free-Floating Car Sharing Systems
using Real-Time Data and Social Networking

Frederik Schulte
Institute of Information Systems,
University of Hamburg,
Von-Melle-Park 5, 20146 Hamburg, Germany
Tel: 0049-42838-3064 Fax: 0049- 40-42838-5535; Email: frederik.schulte@uni-hamburg.de

Stefan Voß
Institute of Information Systems,
University of Hamburg,
Von-Melle-Park 5, 20146 Hamburg, Germany
Tel: 0049-42838-3064 Fax: 0049- 40-42838-5535; Email: stefan.voss@uni-hamburg.de

Extended Abstract

Introduced in recent years free-floating car-sharing systems (FFCS) face a rapid growth, making 
car sharing an attractive alternative to a self-owned car and contributing significantly to the 
worldwide growth in car sharing (Shaheen and Cohen, 2013). Current studies indicate that FFCS 
can lead to a significant reduction of urban emissions (Firnkorn and Müller, 2011; Glotz-Richter, 
2012). Previous work has furthermore demonstrated that, like in bike-sharing, FFCS tend to get 
imbalanced and system providers are challenged to reposition vehicles in an economic and eco-
friendly fashion (Herrmann et al., 2014; Weikl and Bogenberger, 2012). To encourage app 
development and to enter social network (SN) communities, system providers, such as car2go, 
started to provide web based interfaces that offer comprehensive real-time data from their 
systems. This creates new opportunities for researchers to develop smart strategies and 
optimization algorithms to guide relocation and balancing attempts in car sharing (Herrmann et 
al., 2014). In addition, access to SNs enables new forms of sharing (Belk, 2014). In FFCS SN 
can, e.g., connect users, combine trips, help to share demand, and thus relieve high demand areas 
in car sharing systems. 

Traditional car sharing operates stations where users have to pick-up and return cars. In contrast 
to these car sharing systems, free-floating systems define a geo-fence—an operating area around 
a city center—in which a user can hire and drop cars directly at or very close to his demand 
points without having to visit a station before or after the ride. This enables the user to simply 
search and book a car close to his current position using his smart phone. When a user decides to 
book a car, what matters most is the distance from his current position to the next available car 
(Herrmann et al., 2014). More generally, if a user frequently experiences that there are no 
available cars close to his demand points, he will probably not accept the system as a substitute to 
another, more reliable transportation mode. In car sharing, as well as in other vehicle sharing 
systems, e.g., in bike sharing, significant fluctuations in demand can be observed  (Raviv et al., 
2013). Depending on the day and the hour, certain areas in cities accumulate an extremely high 
demand, while others are not in the focus of the user. Thus, in certain areas there are a lot of 
empty or idle cars, while in other areas customers can hardly find a car close to their own 
position.  

To address this problem relocation or repositioning of the cars has to be considered, granting that 
no potential short- and long-term customers are lost. In free-floating car sharing the vehicles are 
dispersed within different demand areas. In this way the FFCS relocation problem extends related 
problems named one-way or flexible car sharing, which allow the user to freely choose among 
multiple stations where to drop the shared car. For the FFCS relocation problem few strategies 
have been developed, and no strategies are yet applied in industry (Weikl and Bogenberger, 
2012). Weikl and Bogenberger (2012) propose first user- and operator-based strategies for
relocation in free-floating systems and point out a need for future development and evaluation of 
related strategies.

This paper aims to introduce an integrated approach for decision support in balancing FFCS and 
evaluate user-orientated relocation strategies based SNs. We propose a clustering approach to
model car2go demand data and support effective relocation plans. Furthermore, we illustrate how 
demand forecasts and real-time data from the system provider can serve in an integrated decision
support approach, controlling the application of relocation strategies. For the evaluation we have 
conducted a discrete-event simulation study, using booking and availability data from the car2go
system in Hamburg, Germany. The results indicate that the proposed set of relocation strategies is 
significantly more economic and eco-friendly in terms of emissions than the classic relocation 
approach used in industry. This study includes a comprehensive literature review on FFCS, a new
approach towards short term forecasting of FFCS demand, and integrated decision support 
approach relocation in FFCS with a quantitative analysis of costs and emissions for various
relocation strategies using real-time data from car2go.
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In order to encounter traffic congestion and environmental pollution, many
cities established bike sharing as an addition to their local public transport
[2]. Station-based bike sharing systems allow spontaneous rental and return of
bikes at arbitrary stations. Depending on the locations of the stations, stocha-
stic customer demand differs throughout a day. This leads to spatio temporal
imbalances in the distribution of bikes [4]. If the demand cannot be fulfilled
at a station, customers are forced to detour to a nearby station in order to
rent or return bikes. To avoid these inconveniences, service providers repo-
sition bikes. Thus, they decide about origin and destination and number of
transported bikes and the routing of the transport vehicles. Customer demand
and bike transports constitute fill levels of stations in analogy to inventory
planning. This decision problem is a dynamic and stochastic case of the well
known inventory routing problem (IRP) [1].The first objective is to reduce the
customer inconveniences by minimizing the customer detours. The second is
to minimize routing effort of the service provider. Thus we propose a weighted
term of both objectives allowing a balanced consideration. Here anticipation
of future customer demand has the potential to improve the decision making.
This complex stochastic and dynamic IRP can be modeled as Markov decision
process (MDP), depicted in (1). Given a time horizon t = [0, T ], let k = 0, ..., K
denote equidistant decision points. A state Sk contains information about fill
levels at all stations i = 1, ..., n at a particular time tk as well as the position
of the transport vehicles. The decision d includes fill levels, transports, and
routing. Its instant costs represent the transport vehicles’ effort ctrk (d). The
post decision state Sd

k contains the resulting fill levels and vehicle positions.
The stochastic transition ωk including all bike flows generated by customer
actions leads to the next state Sk+1. Customer actions induce costs in terms
of detours cdetk (d, ωk).

Sk
d−→ Sd

k

ωk−→ Sk+1 (1)

The size of the state space equals the number of all combinations of possible
fill levels at the stations and every position of the vehicle fleet. The decision

Contact: Decision Support Group, Technische Universität Braunschweig, Mühlenpfordt-
str. 23, 38106 Braunschweig, Germany, v.ricker@tu-braunschweig.de.
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space consists of the fill level changes at the stations and every associated fea-
sible routing plan. Due to the high dimensionality of real world instances a
reduction of state and decision spaces is required to efficiently apply solution
methods.
To reduce the decision space, we decompose the IRP into inventory planning
and routing. Decisions about the inventory are made considering an estimation
of the routing effort. The actual routing is applied subsequently.
For the inventory planning, we choose an anticipatory approximate dynamic
programming (ADP) method [3]. ADP selects the decision minimizing the sum
of instant and expected future costs. For the presented problem, the instant
costs are given by an estimation of the routing effort ctrk (d). The expected fu-
ture costs, i.e. customer detours cdetk (d, ωk), are approximated by simulation.
For a sufficient value approximation in reasonable time, we reduce the state
space in two ways. First, the stations’ post decision states Sdi

ik are considered
individually. Second, we aggregate fill levels to coarse grained intervals. For
routing we propose an adaption of a nearest neighbour heuristic.
We apply the decomposition to a real world case study, based on data of City-
Bike in Vienna. We compare our anticipatory approach to two different myopic
approaches regarding the overall time spent on customer detours and bike relo-
cation. The first is a greedy method (greedy), which avoids any transportation
actions because of its instant costs. The second approach uses inventory buffers
(buffer). The results show that relocation is inevitable to achive an acceptable
service level, as there is a huge amount of customer detours when we avoid any
transportation costs. Compared to the greedy method, the buffer approach im-
proves the solution quality, significantly reducing the customer detours. The
ADP approach outruns both approaches, underlining the advantage of antici-
pation.
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ik are considered
individually. Second, we aggregate fill levels to coarse grained intervals. For
routing we propose an adaption of a nearest neighbour heuristic.
We apply the decomposition to a real world case study, based on data of City-
Bike in Vienna. We compare our anticipatory approach to two different myopic
approaches regarding the overall time spent on customer detours and bike relo-
cation. The first is a greedy method (greedy), which avoids any transportation
actions because of its instant costs. The second approach uses inventory buffers
(buffer). The results show that relocation is inevitable to achive an acceptable
service level, as there is a huge amount of customer detours when we avoid any
transportation costs. Compared to the greedy method, the buffer approach im-
proves the solution quality, significantly reducing the customer detours. The
ADP approach outruns both approaches, underlining the advantage of antici-
pation.
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Abstract

The vehicle-routing problem with time windows and mobile depots (VRPTWMD) is a generic

problem, which can be described as follows. We are given a set of delivery vehicles and a set of

support vehicles, which are all positioned at a single depot and operate to visit a set of customers.

Each customer is associated with a nonnegative demand, a service time, and a single, hard time

window within which service at the customer has to start. With each ordered pair of locations, i.e.,

depot and customers, a travel time, and a fuel consumption are associated. Alternative to demand

associated with the customers, demand can be associated with the links between locations.

The delivery vehicles are characterized by a restricted load capacity, fuel capacity, and time

capacity (maximal route duration constraints). The respective capacities reduce depending on the

following four consumption types until either the vehicle returns to the depot or the route becomes

infeasible: i) load demands at customers, and ii) load demands on links between locations, iii) fuel

demands on links between locations, and iv) time demands on links between locations.

Depending on the application context, a support vehicle can serve as mobile depot to restore

either the load capacity for the load to be delivered, or the fuel capacity by serving as mobile

refueling station, or the time capacity by serving as driver exchange. Note that we assume the

“or” to be exclusive and that all support vehicles restore the same capacity type. To serve in

one of the described ways, a support vehicle must meet with a delivery vehicle at a location, and

both vehicles must stay at the location until the capacity transfer terminates. We assume that the

respective capacity of a delivery vehicle is always fully restored upon meeting with a support

vehicle. The possible meeting points are restricted to all customer locations and the transfer must

occur while the delivery vehicle serves the respective customer. A transfer time is incurred if

support vehicle and delivery vehicle meet. We further assume that the supply of a support vehicle

is limited and that a maximal route duration applies for the operation of this vehicle type.

The problem is related to multi-echelon VRPs (Cuda et al. 2015) and to the truck-and-trailer

routing problem (Drexl 2012). Application areas of the VRPTWMD are mainly found in the

city logistics context where small vehicles are used to navigate narrow streets and deliver/collect

goods or to collect waste, and a larger vehicle serves as mobile depot to replenish the good to be

delivered or to take over the collected goods or waste. Access in urban centers may not only be
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restricted with respect to the dimensions of the vehicle but also due to regulations on emissions,

which makes some areas only accessible for green vehicles such as, e.g., battery electric vehicles.

The latter case is likely to play a major role in city distribution in the future. A further application

area in the urban context is snow ploughing in city areas where the amount of snowfall forbids

to simply move the snow to the side of the road. Similar use cases occur in street sweeping and

bitumen delivery. In addition, the VRPTWMD lies at the heart of distribution/collection prob-

lems in a non-urban context like road painting, where the support vehicle refills the paint tanks of

the painting vehicles. Another interesting future application may be the support of a company’s

fleet of battery electric vehicles by means of a support vehicle that serves as mobile recharging

station or as battery swapping station. More generally, support vehicles may be reasonably em-

ployed as mobile fueling stations if alternative fuel vehicles are utilized in a region with sparse

infrastructure.

We formally describe the VRPTWMD as a mixed integer program. We use a compact formu-

lation with arc flow variables. The objective function is hierarchical, minimizing first the number

of vehicles used and then the total traveled distance. The order in which a delivery vehicle per-

forms the service at customer and the transfer with the support vehicle is a decision variable, but

may in some cases be imposed by the customer time window, the maximal route duration, or a

lack of capacity to deal with the customer demand. The VRPTWMD extends and generalizes

existing models from the literature.

In the talk, we report on analyses of the features of the VRPTWMD and their interaction using

the commercial solver Gurobi to solve small instances of the mixed integer program. Moreover,

we present results obtained with an effective and efficient Adaptive Large Neighborhood Search

(ALNS) tailored to the VRPTWMD. The ALNS includes a sophisticated local search improve-

ment component. Its main algorithmic contribution is a local move evaluation procedure that

adapts the time travel approach presented by Nagata et al. (2010) to synchronization.

Keywords: city logistics, vehicle routing, synchronization, mobile depots, time windows, meta-

heuristics.
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The vehicle-routing problem with time windows and mobile depots (VRPTWMD) is a generic

problem, which can be described as follows. We are given a set of delivery vehicles and a set of

support vehicles, which are all positioned at a single depot and operate to visit a set of customers.
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Abstract

The split delivery vehicle routing problem (SDVRP) is a relaxed version of the classic capacitated 
vehicle routing problem (CVRP). Customer demands are allowed to be split among several vehicles. This 
problem is computationally challenging and the state-of-the-art metaheuristics are often complicated to 
describe and to implement. Running times are usually large. These limitations hinder their application by 
practitioners to solve real-world vehicle routing problems. We propose an efficient, easy to implement, 
novel approach to the SDVRP using a priori customer demand splits. Our computational experiments on 
82 benchmark instances demonstrate that our approach is very efficient and produces results that are 
nearly comparable to those from the metaheuristic approaches. 

In related work, we compare the optimal solution to the CVRP with the solution to the SDVRP 
obtained using a priori splits with different split rules, from the worst-case point of view. This approach 
gives the analyst perfect control over how a customer demand is split (e.g., the number of splits per 
customer and the minimum delivery amount). The previous study shows the approach is 
computationally effective. In this study, we analyze the approach from a theoretical perspective. 

A third project on split delivery vehicle routing is described next. The min-max split delivery 
multi-depot vehicle routing problem with minimum delivery amounts (min-max SDMDVRP-MDA) is a 
variant of the standard multi-depot VRP. The objective is to minimize the total duration of the most 
costly route taking into account the travel times and the customer service times. The service times of a 
customer can be split among several vehicles, provided that each visit serves a minimum fraction of the 
total service required. We develop a heuristic that produces high-quality results. 

In our presentation in Berlin, we expect to discuss at least two of the three above-mentioned 
research projects. 
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Online retailing continues to grow at a fast pace. Many traditional retailers such as Walmart, Tar-
get, and Ahold sell online in addition to their traditional sales channels. One of the main challenges
of online retailing is to provide convenient home delivery services in a cost-efficient way. The trend
towards shorter delivery lead-times and same-day delivery further increases the strain on transport
efficiency. At the same time, internet and GPS-enabled smart phones give rise to new opportunities
to organize the last-mile. One of those new opportunities is crowdsourced delivery. This concept
entails obtaining transportation services from approved drivers and carrier companies with spare
capacity rather than from traditional employees or suppliers. The key idea is to exploit existing
transportation flows to save costs and additional vehicle miles. Several start-up companies, such
as Deliv, Rideship, Hitch and Kanga, recently started offering platforms to facilitate crowdsourced
delivery services. Besides the start-ups, large established corporations like DHL and Walmart are
experimenting with these ideas. While DHL pilots a crowdsourcing platform for parcels, Walmart
announced last year that it considers to invite their off-line store customers to deliver packages to
their online customers on their route home from the store [3].

To be successful, a crowdsourced delivery system would have to overcome several legal and reg-
ulatory obstacles. Also, since the crowd will typically be less reliable than a traditional employee
or service provider, crowd-shipping would generally be combined with the use of the company’s
own delivery vehicles. Thus, these service providers will have to synchronize the company’s vehicle
dispatching decisions with the assignment decisions of the delivery jobs to crowdshippers. These
systems require sophisticated decision support to facilitate the matching of delivery requests and
crowdshippers in real-time. In this study, we aim to develop optimization approaches with the objec-
tive to minimize the expected costs of deliveries while serving all delivery requests in time. We also
aim to investigate under what circumstances it may be viable to implement a crowdsourced delivery
system to support a same-day delivery service.

What makes crowdsourced delivery different from more traditional transportation settings is that
both demand and supply is arriving dynamically over time. Also, since the crowdshippers are not
employees, they are outside the direct control of the company. This makes the problem similar to
dynamic ride-sharing, as studied by Agatz et al. [1], where people share trips to reach their desti-
nations. While there are a lot of recent new developments in this area, the academic transportation
community has only recently started to pay attention to the use of existing transportation flows to
deliver packages. For example, [2] consider a setting in which they use taxi trips to transport pack-
ages. The model includes the taxi passengers’ willingness since a passenger might refuse to pay the
taxi fee if the taxi stops many times to pick up or drop packages. However, unlike our paper, they do
not consider the interaction of company resources with crowdshipping. Based on an empirical study
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of GPS-data, [4] conclude that there are opportunities to route packages over a dynamic network of
people.

In this study, we aim to investigate the opportunity of using in-store customers as an online
retailer’s last mile delivery couriers in a same-day delivery setting. In fact, crowdshippers cover a
much more general set than just walk-in customers. Any approved driver can join the system. For
instance, a taxi can stop at the store and collect a box while returning to the city from the airport.
To illustrate this goal, we describe a setting in which an online retailer incorporates crowd-shipping
into its transportation channels and propose a dynamic approach to match crowdshippers with online
requests.

Our research approach is to model described environment as a matching problem. We propose a
decision support mechanism for online retailers by implementing dynamic matching algorithm and
rolling horizon methodology. In our other contribution, we explicitly incorporate future arrivals into
our model. To evaluate different real-time matching strategies, we developed a simulation environ-
ment. We asses the following performance criteria to compare the different solution approaches:

1. Success rate: the relative number of delivery requests that is crowdshipped

2. Total last-mile delivery cost: the total costs of crowdshipping plus the dedicated transportation

Our simulation experiments also allow us to study the impact of different features on the performance
of a crowsourced system. That is, what critical mass of crowdshippers is required to make this
business model viable and which geographic characteristics are favorable to the success of such a
system? The likelihood of visiting a store may be inversely related to the distance for the store
customers but not for the online customers.
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Abstract

Same-day delivery for online purchases is offered by a variety of established online re-
tailers and tech companies including Amazon, eBay, and Google as well as a number of
recent internet startups. Where instant gratification was once the largest advantage of
brick-and-mortar stores over online retailers, same-day delivery now brings near instant
gratification to online shoppers. While same-day delivery is currently being driven by
companies looking to establish the market, Tom Allason, founder and chief executive of
Shutl, a UK-based same-day delivery service that expanded to the U.S. and was purchased
by eBay in 2013, predicts, “People dont need immediate delivery today, but they will need
it tomorrow, because as soon as you know its available, you start expecting it and you
start demanding it” (Clifford and Cain Miller 2013).

Same-day delivery is characterized by a fleet of vehicles that over the course of the day
serve delivery requests. The requests arrive dynamically during the day, and the only
information known about them before they are realized is probabilistic. Each request is
associated with a unique order and a time constraint on the orders delivery. Requests can
be served only by a vehicle first visiting a central depot (either a warehouse or brick-and-
mortar store) where the order is loaded. A vehicle can carry more than one customer’s
order at a time. However, we assume that any loaded order must be delivered within its
time constraint. Our objective is to maximize the number of orders that can be feasibly
delivered. We call this problem the same-day delivery problem (SDDP).

While same-day delivery is focused in urban areas where there is sufficient customer
density to support it, same-day delivery is a logistically complicated and expensive service
to operate. With the expansion of same-day delivery services, there is a need for efficient
routing strategies. In this talk, we will discuss a sample-scenario planning approach for the
SDDP. While sample-scenario planning was first introduced by Bent and Van Hentenryck
(2004), we introduce a new consensus function. The consensus function determines how
sampled information is used to construct a near-term solution. Importantly, our consensus
function allows for packages to be left at the depot in anticipation of future requests that
allow for more efficient delivery of the packages left at the depot. We also introduce an
analytical results that determines how long a vehicle can wait at the depot without im-
pacting solution quality. We test our approach on a large set of instances characterized by
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differing geographies and by a variety of schemes for setting the delivery time constraints.
We compare the solution approach to a myopic approach and also examine the computa-
tional trade-off between solution quality and runtime due to the number of samples and
sampling-horizon length.

The talk will present the broad range of computational results. In summary, the results
show that, for an eight-hour day, it is not necessary to sample the future all the way to the
end of the day. Sampling only 30 minutes into the future improves solution quality over
no sampling or a shorter horizon an performs well relative to longer horizons. In addition,
10 samples provides a good trade-off between computation time and solution quality.

From a managerial perspective, the results related to the time constraints are more in-
teresting. First, anticipating the future has value only when there is the time deadlines
offer sufficient flexibility in routing. Notably, for cases in which requests must be honored
with two hours or in within a one-hour time window that begins one hour from the time
of request, anticipating the future via sampling offers very little benefit (about 2%). This
occurs because, in such situations, the vehicles must load requests and immediately leave
the depot upon arrival back to the depot. The time constraints simply offer no opportu-
nity to wait even a short time to try to find more beneficial routing opportunities. It is
interesting to note that these results reflect an urban area in which travel to any particular
customer is relatively short. As greater flexibility in the time constraints is allowed, the
value of anticipating the future increases to around 10%.

Most similar to this work is the work of Azi et al. (2012) that addresses a same-day
delivery problem with time windows. However, the objective is to maximize expected
profits. Our objective is to maximize the number of requests served. Further, in Azi et
al. (2012), the length of route segments are controlled by a fixed parameter. We allow the
length to be determined explicitly through our consensus function while also determining
when it may be beneficial to wait at the depot. In addition, we examine the construction
of time windows and deadlines and the corresponding effects on the number of served
requests.

Also related to this research are pick-up and delivery problems. The SDDP differs from
most pick-up and delivery problems in two key ways. A majority of the pick-up and
delivery problems in the literature have unique pick-up and delivery locations for each load
(Sheridan et al. 2013, Ghiani et al. 2009, Vitoria and Laporte 2008).This is significant
because a vehicle can drop-off a load at one location and pick-up a new load at a near-by
location. In our problem, however, vehicles always have to make the return back to the
depot to pick-up a new load. This makes it costly to serve demand that is far from the
depot. Certain dial-a-ride problems in the literature do have a single location. An example
is a hospital where patients are shuttled between their homes and the hospital. In such a
situation, however, the priority is on patient satisfaction (Cordeau and Laporte 2007). In
most situations, it would not be appropriate to pick-up some patients from the hospital,
but leave others waiting for the next vehicle. In the same-day delivery problem, strategic
loading decisions may mean that some orders are loaded onto another vehicle at a later
time. Further, it is a non-trivial task to decide which orders should be loaded onto the
departing vehicle.

Session 3b – Urban Delivery – Monday, July 6th | TSL Workshop



47

2 BARRETT W. THOMAS, STACY VOCCIA, AND ANN M. CAMPBELL

differing geographies and by a variety of schemes for setting the delivery time constraints.
We compare the solution approach to a myopic approach and also examine the computa-
tional trade-off between solution quality and runtime due to the number of samples and
sampling-horizon length.

The talk will present the broad range of computational results. In summary, the results
show that, for an eight-hour day, it is not necessary to sample the future all the way to the
end of the day. Sampling only 30 minutes into the future improves solution quality over
no sampling or a shorter horizon an performs well relative to longer horizons. In addition,
10 samples provides a good trade-off between computation time and solution quality.

From a managerial perspective, the results related to the time constraints are more in-
teresting. First, anticipating the future has value only when there is the time deadlines
offer sufficient flexibility in routing. Notably, for cases in which requests must be honored
with two hours or in within a one-hour time window that begins one hour from the time
of request, anticipating the future via sampling offers very little benefit (about 2%). This
occurs because, in such situations, the vehicles must load requests and immediately leave
the depot upon arrival back to the depot. The time constraints simply offer no opportu-
nity to wait even a short time to try to find more beneficial routing opportunities. It is
interesting to note that these results reflect an urban area in which travel to any particular
customer is relatively short. As greater flexibility in the time constraints is allowed, the
value of anticipating the future increases to around 10%.

Most similar to this work is the work of Azi et al. (2012) that addresses a same-day
delivery problem with time windows. However, the objective is to maximize expected
profits. Our objective is to maximize the number of requests served. Further, in Azi et
al. (2012), the length of route segments are controlled by a fixed parameter. We allow the
length to be determined explicitly through our consensus function while also determining
when it may be beneficial to wait at the depot. In addition, we examine the construction
of time windows and deadlines and the corresponding effects on the number of served
requests.

Also related to this research are pick-up and delivery problems. The SDDP differs from
most pick-up and delivery problems in two key ways. A majority of the pick-up and
delivery problems in the literature have unique pick-up and delivery locations for each load
(Sheridan et al. 2013, Ghiani et al. 2009, Vitoria and Laporte 2008).This is significant
because a vehicle can drop-off a load at one location and pick-up a new load at a near-by
location. In our problem, however, vehicles always have to make the return back to the
depot to pick-up a new load. This makes it costly to serve demand that is far from the
depot. Certain dial-a-ride problems in the literature do have a single location. An example
is a hospital where patients are shuttled between their homes and the hospital. In such a
situation, however, the priority is on patient satisfaction (Cordeau and Laporte 2007). In
most situations, it would not be appropriate to pick-up some patients from the hospital,
but leave others waiting for the next vehicle. In the same-day delivery problem, strategic
loading decisions may mean that some orders are loaded onto another vehicle at a later
time. Further, it is a non-trivial task to decide which orders should be loaded onto the
departing vehicle.

Session 3b – Urban Delivery – Monday, July 6th | TSL Workshop



48

SAME-DAY DELIVERY 3

References

N. Azi, M. Gendreau, and J.-Y. Potvin. A dynamic vehicle routing problem with multiple
delivery routesa. Annals of Operations Research, 199(1):103–112, 2012.

R. Bent and P. Van Hentenryck. cenario-based planning for partially dynamic vehicle
routing with stochastic customers. Operations Research, 39(4):601–615, 2004.

S. Clifford and C. Cain Miller. Instantly yours, for a fee. The New York Times, page B1,
December 28 2013.

J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algorithms. Annals
of Operations Research, 153(1):29–46, 2007.

G. Ghiani, E. Manni, A. Quaranta, and C. Triki. Anticipatory algorithms for same-day
courier dispatching. Transportation Research Part E: Logistics and Transportation Re-
view, 45(1):96–106, 2009.

P. K. Sheridan, E. Gluck, Q. Guan, T. Pickles, B. Balcioglu, and B. Benhabib. The
dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem.
Transportation Research Part A: Policy and Practice, 49:178–194, 2013.

P. Vitoria and G. Laporte. Waiting and buffering strategies for the dynamic pickup and
delivery problem with time windows. INFOR: Information Systems and Operational
Research, 46(3):165–176, 2008.

Session 3b – Urban Delivery – Monday, July 6th | TSL Workshop



Scientific Program – Tuesday, July 7th

Session 4a E-Mobility II   09:00 – 10:30, Hahn Hall

• Applying Floating Car Data to Aid the Transition to Electric Taxi Services Michal Maciejewski & Joschka Bischoff	
• Enabling Urban Parcel Pickup and Delivery Services using
   All-Electric Trucks  Nan Ding, Rajan Batta, Changhyun Kwon & June Dong

• Adaptive Routing and Recharging Policies for Electric Vehicles Irina Dolinskaya, Timothy M. Sweda & Diego Klabjan

Session 4b Public Transport I			 09:00 – 10:30, Laue Hall

• Time Choice Data for Public Transport Optimization Paul Bouman, Clint Pennings, Jan van Dalen & Leo Kroon

• A Column Generation Approach for Crew Rostering Problems in
Public Bus Transit Lin Xie, Natalia Kliewer & Leena Suhl

• On-Demand Public Transportation  M. Grazia Speranza, Claudi Archetti & Dennis Weyland

Session 5a Vehicle Routing	             11:00 – 12:00, Hahn Hall

• Value-Function-Approximation-Based Rollout Algorithms for a Vehicle Routing Problem
with Stochastic Customer Requests  Marlin W. Ulmer, Justin C. Goodson, Dirk C. Mattfeld & Marco Henning

• A Scenario-Based Planning for the Pickup and Delivery Problem with
Scheduled Lines and Stochastic Demands Tom van Woensel, Veaceslav Ghilas & Emrah Demir

Session 5b Public Transport II			 11:00 – 12:00, Laue Hall

• Robust Efficiency in Public Transport: Minimizing Delay Propagation
in Cost-Efficient Resource Schedules  Bastian Amberg, Boris Amberg & Natalia Kliewer

• Tariff Zone Planning for Public Transport Companies Sven Müller & Knut Haase

Scientific Program – Tuesday, July 7th | TSL Workshop

49

Session chairs are shown in bold.



50

Applying Floating Car Data to Aid 
the Transition to Electric Taxi Services

M. Maciejewskiab, J. Bischoffb

aDivision of Transport Systems, Poznan University of Technology 
 bDepartment of Transport System Planning and Telematics, TU Berlin 

Applying floating car data to aid the transition to electric taxi services

Michal Maciejewski
michal.maciejewski@put.poznan.pl, maciejewski@vsp.tu-berlin.de
Division of Transport Systems, Poznan University of Technology
Department of Transport System Planning and Telematics, TU Berlin

Joschka Bischoff
bischoff@vsp.tu-berlin.de
Department of Transport System Planning and Telematics, TU Berlin

Because of the ecological concerns related to urban transport, the idea of substituting taxis with an 
internal combustion engine, generating a high amount of emissions per passenger in cities, with 
electric ones seems very appealing and promising. There have been already several successful 
attempts to introduce electric taxis in different cities around the globe, such as Shenzhen (800+ 
taxis), Amsterdam (160+ taxis serving mainly the airport), Bogota (40+), Tallinn (40+), Tokyo, New 
York, Paris or Brussels. Out of them, only Shenzhen with its fleet of 800+ electric taxis may be 
considered a large-scale initiative. However, the scale and speed of introducing Shenzhen’s electric 
taxi fleet have resulted in a not adequately-developed charging infrastructure, which in turn, led to 
inefficient taxi dispatching and charging scheduling. To mitigate the risks related to launching 
electric taxi services on a large scale, a detailed design phase must be carried out to address many 
issues such as deployment of charging infrastructure, demand prediction, real-time taxi dispatching 
and scheduling of battery charging. This paper discusses the application of floating car data (FCD) 
collected by the taxi operator to aid in solving the problems mentioned above. 

There have been several studies showing potential applications of taxi GPS trajectories. They have 
been used for estimating spatiotemporal taxi demand, analysing and/or optimizing taxi drivers’ 
behaviour, calculating link travel times and shortest paths, analysing urban planning or determining 
land use. 

This paper is based on the research on introducing electric taxis in Germany’s capital city, Berlin, 
where FCD is collected by Taxi Berlin, the city’s largest taxi association. More than 5700 vehicles may 
be dispatched by them, and GPS tracks of roughly 3000 vehicles have been made available to the 
authors. These taxis not only send their current location in a flexible interval (roughly every minute) 
to the operator, but also the current occupation status. During one week, almost 200000 taxi trips 
on average are registered this way. The data is anonymised, making it impossible to track drivers 
over a longer period. 

There are numerous possible areas where FCD can be applied at different phases in the process of 
launching and operating a fleet of electric taxis. First of all, FCD is an invaluable source of 
information about patterns of taxi supply and demand, which, in general, tend to repeat over several 
weeks, with one demand peak on workday mornings around 9 o’clock and a second peak over a 
longer time but with a smaller absolute maximum of trips per hour in the afternoon. On weekends, 
the demand peaks shift towards the night. On the supply side, drivers seem to adapt to the demand 
peaks very efficiently, with fewer taxis being available at times of low demand, such as during 
middays. 

The knowledge about the spatiotemporal distribution of demand and supply allows for detailed
simulation of taxi services in order to assess the performance of online algorithms used for
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Because of the ecological concerns related to urban transport, the idea of substituting taxis with an
internal combustion engine, generating a high amount of emissions per passenger in cities, with
electric ones seems very appealing and promising. There have been already several successful
attempts to introduce electric taxis in different cities around the globe, such as Shenzhen (800+
taxis), Amsterdam (160+ taxis serving mainly the airport), Bogota (40+), Tallinn (40+), Tokyo, New
York, Paris or Brussels. Out of them, only Shenzhen with its fleet of 800+ electric taxis may be 
considered a large-scale initiative. However, the scale and speed of introducing Shenzhen’s electric
taxi fleet have resulted in a not adequately-developed charging infrastructure, which in turn, led to
inefficient taxi dispatching and charging scheduling. To mitigate the risks related to launching 
electric taxi services on a large scale, a detailed design phase must be carried out to address many
issues such as deployment of charging infrastructure, demand prediction, real-time taxi dispatching
and scheduling of battery charging. This paper discusses the application of floating car data (FCD)
collected by the taxi operator to aid in solving the problems mentioned above.

There have been several studies showing potential applications of taxi GPS trajectories. They have
been used for estimating spatiotemporal taxi demand, analysing and/or optimizing taxi drivers’
behaviour, calculating link travel times and shortest paths, analysing urban planning or determining
land use.

This paper is based on the research on introducing electric taxis in Germany’s capital city, Berlin,
where FCD is collected by Taxi Berlin, the city’s largest taxi association. More than 5700 vehicles may
be dispatched by them, and GPS tracks of roughly 3000 vehicles have been made available to the
authors. These taxis not only send their current location in a flexible interval (roughly every minute)
to the operator, but also the current occupation status. During one week, almost 200000 taxi trips
on average are registered this way. The data is anonymised, making it impossible to track drivers
over a longer period.

There are numerous possible areas where FCD can be applied at different phases in the process of
launching and operating a fleet of electric taxis. First of all, FCD is an invaluable source of
information about patterns of taxi supply and demand, which, in general, tend to repeat over several
weeks, with one demand peak on workday mornings around 9 o’clock and a second peak over a
longer time but with a smaller absolute maximum of trips per hour in the afternoon. On weekends,
the demand peaks shift towards the night. On the supply side, drivers seem to adapt to the demand
peaks very efficiently, with fewer taxis being available at times of low demand, such as during 
middays.

The knowledge about the spatiotemporal distribution of demand and supply allows for detailed 
simulation of taxi services in order to assess the performance of online algorithms used for 
managing the fleet of taxis. By combining the microscopic level of detail (disaggregated requests and 
taxi vehicles embedded into traffic flow simulation) with a large scale (the city with the surrounding 
region), one can obtain a realistic picture of the taxi service. To simulate taxi services in Berlin, the 
MATSim simulation platform extended with the DVRP module were used. Simulation experiments 
carried out for the typical weekday demand and the non-electric taxi fleet have proved that the 
dispatching strategy used by the taxi company, consisting in dispatching the nearest idle vehicle to 
the first awaiting request, performs well. However, under heavy load, such as on Wednesday 
15/10/2014, when Berlin’s public transport company went on strike and the afternoon demand 
doubled, the algorithm is unable to serve all customers in a timely manner. Further experiments 
showed that a modified strategy that sends an idle vehicle not to the longest waiting request but to 
the nearest one, can handle a doubled or even tripled demand. Concerning the electric taxis, a small-
scale simulation experiment was carried out for the city of Mielec, Poland, with about 50 taxis. 
Based on this research, a model of electric taxi services for Berlin is being developed at present. 
Here, dynamic optimization is not only about assigning taxis to requests but also about scheduling of 
battery re-charging. The analysis of FCD allows for spatiotemporal predictions of future demand, 
which is necessary for proactive movement of empty vehicles towards more attractive locations and 
spatiotemporal balancing of the charging infrastructure usage. 

Apart from optimizing dynamically the usage of the existing charging stations, FCD may be exploited 
for the design of the charging infrastructure. In the ongoing research carried out for Taxi Berlin, the 
necessary amount of fast chargers is determined by taking the fleet’s occupation (derived from the 
floating car data), the city’s climate conditions and the general constraints of the Berlin taxi business 
into account. Next, using the floating car data, the demand for placing chargers, measured in 
vehicle-hours spent by idle vehicles, is calculated for each zone (the pickup and/or dropoff location 
statistics could serve as an alternative zone attractiveness measure). It is assumed that the more idle 
vehicles (both staying and cruising) are in the zone, the more attractive the zone is for placing a 
charger there. 

To conclude, setting up efficient electric taxi services is a challenging, complex, multi-step problem 
that more and more cities and taxi companies are undertaking or will undertake in the near future. 
The experiences arising from the research on electrifying Taxi Berlin’s fleet shows that in-depth 
analysis and processing of FCD collected by the existing non-electric taxis is an invaluable source of 
information to rely on when launching and running an electric taxi fleet. 

Keywords:

taxi, electric vehicles, BEV, floating car data, charging stations, taxi dispatching, battery charging 
scheduling
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Enabling	
  Urban	
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  Pickup	
  and	
  Delivery	
  Services	
  using	
  All-­‐Electric	
  Trucks	
  
	
  
Abstract:	
  
	
  
With	
  the	
  increasing	
  interest	
  of	
  green	
  logistics	
  strategies	
  and	
  operations,	
  all-­‐electric	
  
truck	
  adoption	
  becomes	
  one	
  of	
  the	
  main	
  addressees	
  of	
  green	
  logistic	
  activities,	
  
especially	
  for	
  urban	
  parcel	
  delivery,	
  because	
  of	
  its	
  positive	
  effects	
  on	
  reducing	
  
greenhouse	
  gas	
  emission	
  and	
  promoting	
  urban	
  sustainability.	
  Both	
  the	
  limited	
  
driving	
  range	
  of	
  all-­‐electric	
  trucks	
  which	
  necessitates	
  visits	
  to	
  charging	
  stations	
  and	
  
long	
  charging	
  time	
  of	
  these	
  trucks	
  which	
  causes	
  congestion	
  and	
  waiting	
  at	
  the	
  
charging	
  station	
  become	
  the	
  challenges	
  to	
  route	
  these	
  trucks.	
  This	
  research	
  tackles	
  
the	
  challenges	
  by	
  developing	
  a	
  mathematical	
  optimization	
  model	
  with	
  consideration	
  
of	
  location	
  and	
  capacity	
  of	
  charging	
  stations,	
  electric	
  vehicle	
  routing,	
  time	
  window,	
  
and	
  charging	
  time.	
  
	
  
This	
  research	
  has	
  two	
  closely	
  related	
  decision	
  problems	
  and	
  corresponding	
  
objectives.	
  One	
  is	
  a	
  strategic	
  decision	
  problem	
  that	
  aims	
  to	
  determine	
  the	
  optimal	
  
charging-­‐station	
  locations	
  and	
  capacity	
  with	
  estimate	
  of	
  regular	
  customers’	
  
locations.	
  The	
  other	
  is	
  an	
  operational	
  decision	
  problem	
  that	
  focuses	
  on	
  daily	
  routing	
  
schedules	
  of	
  all-­‐electric	
  delivery	
  trucks	
  with	
  actual	
  dynamic	
  delivery	
  locations	
  but	
  
fixed	
  charging	
  stations.	
  
The	
  methodology	
  of	
  this	
  project	
  consists	
  of	
  following	
  parts.	
  The	
  first	
  is	
  to	
  consider	
  a	
  
new	
  Electric	
  Vehicle	
  Routing	
  Problem	
  (E-­‐VRP)	
  with	
  incorporation	
  of	
  capacity	
  of	
  
charging	
  stations.	
  The	
  second	
  is	
  to	
  formulate	
  a	
  strategic	
  Location-­‐Capacity-­‐Routing	
  
problem	
  and	
  an	
  operational	
  vehicle	
  routing	
  problem	
  based	
  on	
  E-­‐VRP.	
  	
  We	
  also	
  
develop	
  a	
  computational	
  method	
  to	
  solve	
  the	
  problems	
  and	
  perform	
  test	
  using	
  real	
  
data	
  in	
  the	
  Buffalo	
  metropolitan	
  area.	
  
	
  
We	
  note	
  that	
  the	
  current	
  literature	
  lacks	
  this	
  challenging	
  issue	
  of	
  determining	
  
locations	
  and	
  capacities	
  of	
  charging	
  stations	
  for	
  all-­‐electric	
  parcel	
  delivery	
  trucks.	
  
Depending	
  on	
  technology	
  used,	
  a	
  full	
  charging	
  can	
  take	
  from	
  20	
  minutes	
  to	
  several	
  
hours.	
  In	
  a	
  small	
  scenario	
  with	
  100	
  trucks	
  and	
  5	
  dedicated	
  charging	
  stations,	
  about	
  
20	
  trucks	
  will	
  try	
  to	
  use	
  the	
  same	
  charging	
  station	
  about	
  the	
  same	
  time	
  (in	
  the	
  
middle	
  of	
  the	
  day).	
  This	
  congestion	
  and	
  waiting	
  at	
  the	
  charging	
  station	
  make	
  vehicle	
  
routing	
  very	
  challenging.	
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Adaptive Routing and Recharging 
Policies for Electric Vehicles

T. M. Swedaa, I. S. Dolinskayab, D. KlabjanbAdaptive Routing and Recharging Policies for Electric

Vehicles

Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan

Battery operated electric vehicles (EVs) have become a practical and affordable alternative to

conventional gasoline-powered vehicles. EVs are powered solely by electricity and connect directly

to the electrical grid to recharge their batteries. There are a number of benefits associated with an

electrical vehicle such as lower fuel costs, fewer greenhouse gas emissions, reduced dependence on

foreign oil, and improved power systems management (e.g., vehicle-to-grid). Nevertheless, one of

the main obstacles to mass adoption is range anxiety since the maximum range of an EV remains

smaller than that of a traditional gasoline-powered vehicle. In addition, EV charging stations

are scarce, and roadside assistance for EVs when they run out of charge is practically nonexistent.

Planning a trip with an electric vehicle therefore requires consideration of the availability of charging

infrastructure, and also of battery dynamics, which are unique to EVs. Recharging costs for an

electric vehicle increase as the battery’s charge level increases, and battery longevity is prolonged

by recharging less frequently, at slower rates, and not too close to its maximum capacity. In the

presented work, we study optimal recharging policies for an electric vehicle along a given path,

and optimal adaptive routing and recharging policies for an electric vehicle in a network capturing

charging stations uncertain availability. We develop and analyze a variety of models and solution

methods that consider the amount and timing of information available to the EV driver while

traveling.

An important aspect of our work is the inclusion of a realistic recharging model for electric

vehicles. While most of the literature on vehicle refueling policies has focused primarily on the

limited range of the vehicles, we show that the costs associated with battery overcharging can sig-

nificantly influence recharging decisions, and thus, they should be taken into consideration when

determining recharging policies for EVs. The simpler models of vehicle refueling used for conven-

tional gasoline-powered vehicles are not suitable for EVs and require major enhancements before

they can be used to improve our understanding of the various influences that battery dynamics

have on EV recharging decisions.

Our work is the first to optimize recharging behavior specifically for EVs. We begin by identifying

several properties of optimal recharging policies along a fixed path with deterministic travel costs

and homogeneous charging stations. Using these properties, we develop efficient algorithms for

finding an optimal recharging policy in the general case and in two specialized cases: when the

vehicle can stop to recharge anywhere along the path (not just at prespecified nodes), and when

1
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the nodes with charging stations along the path are equidistant. We also describe two heuristic

methods based on the properties of optimal paths that we use to obtain reasonable policies quickly,

and we derive bounds on the quality of their solutions. To demonstrate the performance of these

heuristics in practice, we implement them for highway and urban routes and conduct a numerical

study to compare their solutions with those of optimal recharging policies. In addition, we formulate

models that include stochastic travel costs and nonhomogeneous charging stations, and we provide

detailed analyses and numerical experiments to illustrate how the solution approaches are affected.

The main contributions of this part of our work are: (i) an efficient algorithm for obtaining an

optimal recharging policy; (ii) closed-form optimal policies for instances in which either charging

capability is available continuously along the path or charging stations are equidistantly spaced;

(iii) two efficient and easy to implement heuristic methods, along with bounds on their solution

quality.

The viability of any route requiring recharging is sensitive to the availability of charging stations

along the way. Since each charging station can usually only recharge one or two vehicles at a time,

and charge times can be on the order of hours, a driver who arrives at a fully occupied station

may incur significant inconvenience (e.g., a long wait time) if no other nearby charging station

is available. EV drivers therefore can benefit greatly from taking into account charging station

availability and anticipating wait times at the stations while planning their routes. Thus, we also

study the problem of finding an optimal adaptive routing and recharging policy for an electric

vehicle in a grid network. The uncertainty of charging station availability and wait times within

the network as well as the driver’s ability to adaptively make routing and recharging decisions are

unique and critical features of our problem. Furthermore, since the availability of each station

may differ, the selection of stopping locations must be part of the routing decision. Our goal is

to determine an adaptive routing and recharging policy that minimizes the sum of all traveling,

waiting, and recharging costs. We assume that whenever the vehicle stops to recharge, it incurs

a fixed stopping cost, a charging cost based on the total amount it recharges, and an additional

cost when the battery becomes overcharged. Our work is the first in the literature to consider

adaptive routing and recharging (or refueling) for range-constrained vehicles. It is also the first to

implement two features together that are unique to EVs: overcharging costs and uncertain charging

station availability. Thus, our main contributions here are: (i) properties of optimal adaptive and

a priori recharging policies that consider EV overcharging characteristics and uncertain charging

station availability; (ii) efficient solution procedures for obtaining a priori and adaptive routing

and recharging policies in a grid network; and (iii) models capturing and analyzing various levels

of adaptive decision making and information timing.

2
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Introduction

As urbanization increases and working habits become more flexible, it is feared that demand for
public transport becomes more difficult to model. Vehicle utilization is a complex issue to deal with
for operators: having enough passengers in a vehicle makes a service profitable, but the resources
necessary to cover the peak demand are typically not fully used outside the peak hours. Crowded
vehicles clearly cause some discomfort for passengers, but it is not well understood at which point
passengers will change their travel behavior in response to crowded vehicles. One way in which
operators can deal with crowded situations is clever assignment of different vehicle types to optimize
capacities. Another way is to adapt the frequency in which services are operated. In addition to
scheduling based approaches, pricing incentives can seduce passengers to travel outside the peak
hours. An even different angle is to provide information about the expected crowding level of each
train service, e.g. via a smart-phone application, so passengers can replan their time of travel.

The difficulty with these approaches is that they will influence the behavior of passengers once
implemented. Such a change in behavior will be observed by the operator, which may react by
adapting one of the aforementioned measures. This can cause new changes in passenger behavior,
and so forth. Ideally, such interaction effects should be taken into account by the operator during
service design, but current demand and scheduling models do not take these effects into account.
With the advent of smart card ticketing technologies, public transport operators have obtained a large
amount of microscopic data on passenger journeys. It is tempting to think that one simply has to
analyze this data to learn everything there is to know about passenger behavior and incorporate this
knowledge into optimization models. Unfortunately, the smart card data misses important aspects
of passenger behavior, such as any alternative options that have been considered by the passenger
and the decisions that would have been made if different alternatives had been available.

In order to overcome this problem, we have conducted a survey experiment where we simulated a
typical commuting scenario as it might occur within the public transport network of Dutch Railways.
The collected data consists of time choice data, which can similarly be extracted from smart card
datasets in a real life case study. In addition the data contains the satisfaction with the outcome of the
selected choice, personality traits of the respondent and personal experience with public transport.
Due to these additional observations, our dataset has a number of advantages over pure smart card
data in the development of methodologies that take passenger behavior into account during public
transport optimization. An example of an experiment where congestion dynamics were measured in
road traffic is [5], but it is hard to make policy recommendations for public transport based on this
study due to the different nature of road traffic.
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Survey Experiment

We have conducted an experiment among more than 500 second year bachelor students, a relevant
group in the Netherlands as they make intensive use of public transport. In this experiment, the
respondents filled out a survey in which they were asked to choose a mode (train or car) and in
case of the train a time of travel, all within a typical commuting scenario. These questions were
repeated for two phases of twenty rounds each. After each choice, the students received feedback on
their arrival time and the level of crowding in case of a journey by train. They were then asked how
satisfied they were with the outcome. During the second phase of twenty rounds, the respondents
were presented with crowding indicators, representing the predicted crowding of each train choice.

We applied three experimental manipulations, which yields a total of 23 = 8 respondent groups.
The first manipulation consists of the occurence of large disruptions. One group of respondents
were incidentally confronted with a large disruption and the others only faced small delays. The
second manipulation consists the quality of information during the second phase of the experiment.
One group received accurate crowding level information and the others received random information.
The third manipulation consists of the relation between the crowding level and the prior choice. One
group experienced a purely random crowding level and for the others the crowding level was partly
dependent on the previous choice.

The students were incentivized by the fact that the collected data would be part of an important
assignment within the bachelor course. Furthermore, the students who took care in completing the
survey could partake in a lottery where they could win a gift coupon that can be exchanged in many
shops. The outcome of the lottery was not related to the answers given in the survey.

From Data to Optimization

Using the collected data, we aim to develop a microscopic behavioral model that can be used for
the simulation of the interaction effects between passengers and the operator. We then propose to
use this model in a simulation of the public transport system, in such a way that these complex
interactions can be evaluated. Finally, we can let this model interact with the optimization models
used by public transport operators.

We are particularly interested in including such a behavioral model within a simulation that
resembles a repeated, interactive game. We have developed a stylized model [2] which captures the
dynamics of the public transport system, by combining ideas from Congestion Games [4] and Minority
Games (the El-Farol Bar Game [1] in particular). Our model can interact with an optimization model
for rolling stock allocation [3], by using the output of the simulation model as demand data in the
optimization model.

Conclusion

We propose that the development of behavioral models for the optimization of public transport is
not a matter of simply plugging smart card data into optimization models. We have conducted an
experiment, in which the collected data resembles smart card data, but also include many additional
aspects relevant to behavioral modeling. Our preliminary results already provide promising first
insights into switching behavior and we aim to extend our results to construct microscopic behavioral
models for use in a simulation/optimization framework.
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This paper presents a method for optimally solving the problem of constructing monthly, individ-

ual work schedules for each driver or for each group of drivers in public transportation companies.

The generated work schedules are called rosters. In this problem, known as crew rostering, monthly

crew schedules must be constructed by assigning duties, days off, and other activities to drivers,

while taking the complex law and labor union rules into account, such as the minimum rest period

between two duties or the maximum number of consecutive working days. A duty is a sequence

of tasks within one day that is performed by a driver who leaves and returns to the same depot

in accordance with the work regulations. Work regulations include maximum duration of a duty,

minimal break times during a duty. Such duties are generated in the crew scheduling problem,

which is the previous step of the crew rostering problem. Both problems are important and diffi-

cult problems for bus companies, since the expenses for the drivers and other personal represent

a significant portion of bus operators’ budgets (more than 50%). Moreover, complex regulations

should be considered during the optimization. Therefore, it is common in the public bus transit

literature to solve both problems one after the other, i.e., the crew rostering problem uses duties

generated in the crew scheduling problem as input.

Compared to the crew scheduling problem, the crew rostering problem has received much less

attention in academic literature, since most of the cost benefit can be achieved by minimizing
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the needed duties in the crew scheduling problem. However, the minimization of costs is still

important in the crew rostering problem, and the preferences of drivers are considered during the

optimization as well. The rosters which are generated by considering desires of drivers bring higher

acceptance than rosters that ignore individual wishes (see Hanne et al. (2009)), which might cause

less exchanges and less absence in operational days. Therefore, less recovery activities are expected,

which implies lower operational costs, and better services are expected.

Because the crew rostering problem is complex, most methods proposed in the literature for

solving the rostering problem rely on heuristics or metaheuristics, such as in Caprara et al. (1997),

Caprara et al. (1999), Monfroglio (1996), Ernst et al. (1998), Lučić and Teodorović (1999), Hanne

et al. (2009), El Moudani et al. (2001), Lee and Chen (2003), Lučić and Teodorović (2007), Maen-

hout and Vanhoucke (2010), Moz et al. (2009), Resṕıcio et al. (2007), and Xie et al. (2013). Besides

that, a column generation approach is applied for solving set partitioning/covering-based roster-

ing models in Gamache and Soumis (1998), Gamache et al. (1999), Medard and Sawhney (2007),

Catanas and Paixão (1995), Pedrosa and Constantino (2001) in airline and railway sectors. Fewer

publications discuss the application of column generation for solving the crew rostering problem

in public bus transit, except in Yunes et al. (2005). Based on the multi-commodity network as

well as mathematical models presented in Xie and Suhl (2015), this paper proposes a new solution

approach, column generation, for solving the cyclic and non-cyclic crew rostering problems in pub-

lic bus transit. The main differences between column generation implemented in this paper and

the existing one in Yunes et al. (2005).

• We formulate the crew rostering problem as a multi-commodity flow network problem instead

of a classic set-partitioning problem.

• We solve both CCR and NCCR problems with same column generation approach.

• We consider a more complex crew rostering problem, including components like multiple objec-

tives, balanced workloads, feasibility checks from the previous period to the current one, fixed

activities in the current planning period, personal requirements (not only the need for days off,

but also considering the daily desired activities including a day off on each calendar day, etc.).

• We generate in each pricing problem a roster with the smallest negative reduce cost. The

problem is formulated as an integer program instead of as a constraint satisfaction problem.

The tests for the proposed approach were conducted on problems from German bus companies.

The results experimentally prove to outperform the exact solution approach in Xie and Suhl (2015),

as well as different meta heuristics shown in Xie et al. (2013) in terms of solution quality.
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the needed duties in the crew scheduling problem. However, the minimization of costs is still

important in the crew rostering problem, and the preferences of drivers are considered during the

optimization as well. The rosters which are generated by considering desires of drivers bring higher

acceptance than rosters that ignore individual wishes (see Hanne et al. (2009)), which might cause

less exchanges and less absence in operational days. Therefore, less recovery activities are expected,

which implies lower operational costs, and better services are expected.

Because the crew rostering problem is complex, most methods proposed in the literature for

solving the rostering problem rely on heuristics or metaheuristics, such as in Caprara et al. (1997),

Caprara et al. (1999), Monfroglio (1996), Ernst et al. (1998), Lučić and Teodorović (1999), Hanne

et al. (2009), El Moudani et al. (2001), Lee and Chen (2003), Lučić and Teodorović (2007), Maen-

hout and Vanhoucke (2010), Moz et al. (2009), Resṕıcio et al. (2007), and Xie et al. (2013). Besides

that, a column generation approach is applied for solving set partitioning/covering-based roster-

ing models in Gamache and Soumis (1998), Gamache et al. (1999), Medard and Sawhney (2007),

Catanas and Paixão (1995), Pedrosa and Constantino (2001) in airline and railway sectors. Fewer

publications discuss the application of column generation for solving the crew rostering problem

in public bus transit, except in Yunes et al. (2005). Based on the multi-commodity network as

well as mathematical models presented in Xie and Suhl (2015), this paper proposes a new solution

approach, column generation, for solving the cyclic and non-cyclic crew rostering problems in pub-

lic bus transit. The main differences between column generation implemented in this paper and

the existing one in Yunes et al. (2005).

• We formulate the crew rostering problem as a multi-commodity flow network problem instead

of a classic set-partitioning problem.

• We solve both CCR and NCCR problems with same column generation approach.

• We consider a more complex crew rostering problem, including components like multiple objec-

tives, balanced workloads, feasibility checks from the previous period to the current one, fixed

activities in the current planning period, personal requirements (not only the need for days off,

but also considering the daily desired activities including a day off on each calendar day, etc.).

• We generate in each pricing problem a roster with the smallest negative reduce cost. The

problem is formulated as an integer program instead of as a constraint satisfaction problem.

The tests for the proposed approach were conducted on problems from German bus companies.

The results experimentally prove to outperform the exact solution approach in Xie and Suhl (2015),

as well as different meta heuristics shown in Xie et al. (2013) in terms of solution quality.
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On-Demand Public Transportation

M. G. Speranzaa, C. Archettia, D. Weylandb

A recent analysis on modal split of inland passenger transport has revealed that in Europe 15-20% 
of the passengers' moves are satisfied by public transportation (motor coaches, buses, trolley buses 
and trains), while 80-85% are made through cars. With a moving population of more than 80 % of 
the total, this data implies that on a daily basis the number of cars on the roads exceeds half of the 
population. 

Traffic congestion is a primary problem everywhere. The automobile has had a dramatic impact on 
the society during the last century. A crucial issue has become the sustainability of such a growing 
number of cars on the roads which has led to a renewed interest in alternative forms of 
transportation, especially in urban areas. This is witnessed by the wide diffusion of bicycle and car 
sharing systems, as well as car-pooling approaches. However, the main issue concerning the scarce 
use of public transportation means has not yet been properly addressed. Why is the public 
transportation system so unpopular? One of the main reasons that leads people to use their own 
private vehicle is the reduced flexibility of the public system. Mass mobility systems typically work 
on fixed schedules which in many situations cannot satisfy the dynamic demand of people who 
need to move. The frequency is often too low and the average travel time is higher than the one 
required by moving privately. A further issue related to the public transportation system is its 
inherent inefficiency: buses (or similar transportation vehicles) are too crowded during peak hours 
while they are almost empty in the remaining part of the day. This clearly has a high impact on the 
operational cost of the system, since it is impossible to operate almost empty buses in a sustainable 
way. Thus, there is the need to redesign the public transportation system in order to make it more 
suited to the users' needs and, also, to increase its efficiency in terms of operational costs. 

Demand Responsive Transit (DRT) systems (also called dial-a-ride systems) have emerged in the 
last decades as an attempt to satisfy the dynamic nature of customer demands. They rely on flexible 
services able to provide almost `door-to-door' transport in small vehicles, with the possibility of pre-
booking. DRT systems are nowadays mainly implemented as services for small groups (e.g. elderly 
or handicapped persons).  On-line on-demand services are far from being considered as a possibility 
or an alternative to the conventional public transportation system. The literature is very limited too. 
The  DRT systems can be classified as: 

- with fixed itineraries and stops, where users must pre-book the service; 
- with fixed itineraries and stops with possible detours; 
- with services with unspecified itineraries along predefined stops; 
- with unspecified itineraries and unspecified stops. 

The purpose of this study is to evaluate, through global performance measures, the impact of an
innovative large-scale on-demand service for the public transportation. The service we are 
proposing  is based on the use of minibuses with unspecified itineraries and unspecified stops, thus
fully flexible. It is an online service in the sense that users place their transportation requests and 
receive an answer in a very short time (within five minutes). The purpose is to keep travel time
within a flexibility threshold in order to guarantee a high service level to users. However, the 
system differs from the shared-taxi system for the following reasons. There are no revenues for the
drivers. This makes a big difference with respect to the shared-taxi system where typically one of
the objectives while assigning service requests to drivers is to keep revenues balanced among
drivers. Drivers are not traveling around the city looking for clients as it is typically done by taxi
drivers while they are empty. The vehicles are minibuses with a higher capacity. The objectives we
are interested in are different from the ones that are typically used to evaluate shared-taxi systems.
Performance measures of shared-taxi systems are based on fares paid by the clients and revenues
gained by the drivers. We are interested in the design of a public transport system that is able to
attract a large portion of the people that travel every day with their own car in urban areas. This in
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order to reduce congestion and pollution, on one side, and to improve the efficiency of the public 
transport system, on the other side. 

The goal of this paper is to present a preliminary simulation study of the on-demand public 
transport system. We will simulate the behavior of the system for different settings of the road 
network and of the customer requests. The purpose is to study the performance of the system in 
terms of average travel time of the customers, average distance traveled, fuel consumption and 
global system cost. The global system cost is measured as the sum of the cost for the drivers of the 
minibuses, cost for fuel and cost for the maintenance and insurance of vehicles (minibuses, buses 
and private cars). We do not include fares paid by the customers in this preliminary study and 
suppose that, if the service level provided by the public transport system satisfies the flexibility 
threshold of a customer, then the customer will use the public mean, otherwise  will turn to a private 
car. We will simulate different scenarios and compare the performance of the different 
transportation modes. The results show that, although simple heuristics are used for the routing of 
vehicles, the on-demand system is very promising. 

A recent analysis on modal split of inland passenger transport has revealed that in Europe 15-20% 
of the passengers' moves are satisfied by public transportation (motor coaches, buses, trolley buses 
and trains), while 80-85% are made through cars. With a moving population of more than 80 % of 
the total, this data implies that on a daily basis the number of cars on the roads exceeds half of the 
population. 

Traffic congestion is a primary problem everywhere. The automobile has had a dramatic impact on 
the society during the last century. A crucial issue has become the sustainability of such a growing 
number of cars on the roads which has led to a renewed interest in alternative forms of 
transportation, especially in urban areas. This is witnessed by the wide diffusion of bicycle and car 
sharing systems, as well as car-pooling approaches. However, the main issue concerning the scarce 
use of public transportation means has not yet been properly addressed. Why is the public 
transportation system so unpopular? One of the main reasons that leads people to use their own 
private vehicle is the reduced flexibility of the public system. Mass mobility systems typically work 
on fixed schedules which in many situations cannot satisfy the dynamic demand of people who 
need to move. The frequency is often too low and the average travel time is higher than the one 
required by moving privately. A further issue related to the public transportation system is its 
inherent inefficiency: buses (or similar transportation vehicles) are too crowded during peak hours 
while they are almost empty in the remaining part of the day. This clearly has a high impact on the 
operational cost of the system, since it is impossible to operate almost empty buses in a sustainable 
way. Thus, there is the need to redesign the public transportation system in order to make it more 
suited to the users' needs and, also, to increase its efficiency in terms of operational costs. 

Demand Responsive Transit (DRT) systems (also called dial-a-ride systems) have emerged in the 
last decades as an attempt to satisfy the dynamic nature of customer demands. They rely on flexible 
services able to provide almost `door-to-door' transport in small vehicles, with the possibility of pre-
booking. DRT systems are nowadays mainly implemented as services for small groups (e.g. elderly 
or handicapped persons).  On-line on-demand services are far from being considered as a possibility 
or an alternative to the conventional public transportation system. The literature is very limited too. 
The  DRT systems can be classified as: 

- with fixed itineraries and stops, where users must pre-book the service; 
- with fixed itineraries and stops with possible detours; 
- with services with unspecified itineraries along predefined stops; 
- with unspecified itineraries and unspecified stops. 

The purpose of this study is to evaluate, through global performance measures, the impact of an 
innovative large-scale on-demand service for the public transportation. The service we are 
proposing  is based on the use of minibuses with unspecified itineraries and unspecified stops, thus  
fully flexible. It is an online service in the sense that users place their transportation requests and 
receive an answer in a very short time (within five minutes). The purpose is to keep travel time 
within a flexibility threshold in order to guarantee a high service level to users. However, the 
system differs from the shared-taxi system for the following reasons. There are no revenues for the 
drivers. This makes a big difference with respect to the shared-taxi system where typically one of 
the objectives while assigning service requests to drivers is to keep revenues balanced among 
drivers. Drivers are not traveling around the city looking for clients as it is typically done by taxi 
drivers while they are empty. The vehicles are minibuses with a higher capacity. The objectives we 
are interested in are different from the ones that are typically used to evaluate shared-taxi systems. 
Performance measures of shared-taxi systems are based on fares paid by the clients and revenues 
gained by the drivers. We are interested in the design of a public transport system that is able to 
attract a large portion of the people that travel every day with their own car in urban areas. This in 
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Vehicle routing problems with stochastic service requests underlie many operational 
challenges in logistics and supply chain management. These challenges are characterized by 
the need to design vehicle delivery routes to meet customer service requests arriving 
randomly over a given time horizon. For example, package express firms (e.g., local couriers 
and United Parcel Service) often begin a working day with a set of known service requests 
and may periodically adjust vehicle routes to accommodate additional service calls arriving 
throughout the day. 

Leveraging increasing amounts of customer transaction data to quantify the numbers and 
locations of potential service requests, the last decade of routing literature demonstrates the 
value of anticipating and dynamically responding to customer calls. Recently, the value 
function approximations (VFAs) of Ulmer et al. (2014) identify computationally tractable 
procedures to estimate the optimal reward-to-go from a given state, thus making it possible to 
construct high-quality dynamic routing schemes based only on the time and slack components 
of the state variable. In contrast to the functional approximations of Ulmer et al. (2014), 
Ulmer et al. (2015) approximate rewards-to-go via a greedy heuristic, applied iteratively in a 
post-decision rollout algorithm (Goodson et al., 2014). 

Our work seeks to improve upon existing dynamic routing methods by using rollout 
algorithms to enhance the performance of the VFAs of Ulmer et al. (2014). Specifically, we 
model as a Markov decision process the problem of dynamically routing a single vehicle 
across a finite time horizon with the objective of maximizing the expected number of 
confirmed service requests. At a decision epoch, we estimate the optimal reward-to-go from 
each post-decision state via the policy induced by the VFA. In each period, we dynamically 
accept or reject customer service requests by taking an action maximizing the sum of the 
current-period reward plus the corresponding estimate of the reward-to-go. 

Preliminary computational results are encouraging. Notably, we demonstrate the combination 
of VFA and rollout algorithms improves upon the performance of myopic methods by as 
much as 28 percent and upon the VFA scheme in isolation by as much as four percent. Our 
investigation indicates improvement over the functional approximations is due to the explicit 
consideration of vehicle location in the rollout algorithm -- the VFA makes only temporal 
considerations, ignoring the spatial dimension of the state variable. Beyond our contribution 
to the routing literature, our work points to the potential benefit of using two different
approximate dynamic programming techniques in tandem to enhance the performance of
either method by itself.

Keywords: Vehicle Routing, Stochastic Requests, Value Function Approximation, Rollout 
Algorithm, Approximate Dynamic Programming
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Vehicle routing problems with stochastic service requests underlie many operational 
challenges in logistics and supply chain management. These challenges are characterized by 
the need to design vehicle delivery routes to meet customer service requests arriving 
randomly over a given time horizon. For example, package express firms (e.g., local couriers 
and United Parcel Service) often begin a working day with a set of known service requests 
and may periodically adjust vehicle routes to accommodate additional service calls arriving 
throughout the day. 
 
Leveraging increasing amounts of customer transaction data to quantify the numbers and 
locations of potential service requests, the last decade of routing literature demonstrates the 
value of anticipating and dynamically responding to customer calls. Recently, the value 
function approximations (VFAs) of Ulmer et al. (2014) identify computationally tractable 
procedures to estimate the optimal reward-to-go from a given state, thus making it possible to 
construct high-quality dynamic routing schemes based only on the time and slack components 
of the state variable. In contrast to the functional approximations of Ulmer et al. (2014), 
Ulmer et al. (2015) approximate rewards-to-go via a greedy heuristic, applied iteratively in a 
post-decision rollout algorithm (Goodson et al., 2014). 
 
Our work seeks to improve upon existing dynamic routing methods by using rollout 
algorithms to enhance the performance of the VFAs of Ulmer et al. (2014). Specifically, we 
model as a Markov decision process the problem of dynamically routing a single vehicle 
across a finite time horizon with the objective of maximizing the expected number of 
confirmed service requests. At a decision epoch, we estimate the optimal reward-to-go from 
each post-decision state via the policy induced by the VFA. In each period, we dynamically 
accept or reject customer service requests by taking an action maximizing the sum of the 
current-period reward plus the corresponding estimate of the reward-to-go. 
 
Preliminary computational results are encouraging. Notably, we demonstrate the combination 
of VFA and rollout algorithms improves upon the performance of myopic methods by as 
much as 28 percent and upon the VFA scheme in isolation by as much as four percent. Our 
investigation indicates improvement over the functional approximations is due to the explicit 
consideration of vehicle location in the rollout algorithm -- the VFA makes only temporal 
considerations, ignoring the spatial dimension of the state variable. Beyond our contribution 
to the routing literature, our work points to the potential benefit of using two different 
approximate dynamic programming techniques in tandem to enhance the performance of 
either method by itself. 
 
Keywords: Vehicle Routing, Stochastic Requests, Value Function Approximation, Rollout 
Algorithm, Approximate Dynamic Programming 
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1 Introduction

In the pickup and delivery problem with scheduled lines and stochastic demands (PDP-SLSD) a set of geo-
graphically spread requests need to be transported from origin to destination using a fleet of heterogeneous,
limited-capacity pickup and delivery (PD) vehicles. Moreover, capacitated scheduled lined (SL) services,
such as bus, train, etc., may be used as a part of the requests’ journey. A characteristic of the problem is that
every request may be transferred to an SL (i.e., picked up and dropped off twice by two PD vehicles). As
a consequence, routing decisions become more complex due to possibility of inter-dependent PD-vehicle
routes. In addition, the exact quantities demanded by each request are only learned upon the vehicle’s arrival
at the corresponding pickup locations. However, each request’s demand is assumed to follow a known prob-
ability distribution. Demand uncertainty may impact the feasibility of the solution (PD and SL vehicles’
capacity constraints) and therefore lead to the need of recourse actions that incur extra cost.

In this paper, a sample average aproximation (SAA) method is used to solve PDP-SLSD. The SAA is a
scenario-based framework to solve stochastic discrete optimization problems ([1]). The basic idea of the
method is as follows: (i) solve the sample average approximation problem given a restricted set of scenarios
(a subset of a larger set of scenarios), (ii) evaluate the solution on a larger set of scenarios and approximate
the expected value function by the sample average function, and (iii) iterate until stopping criteria is met.

Note that exact as well as heuristic algorithms can be used to solve the sample average approximation
problem (step (i) in SAA). In this paper, we propose an enhanced adaptive large neighborhood search
(ALNS) heuristic algorithm to solve PDP-SLSD for a given set of scenarios. Adapted and existing-in-the-
literature destroy and insertion operators are described. Complex aspects such as the fixed lines’ schedules
and synchronization constraints are efficiently considered in the proposed algorithm.

The contributions of the paper are three-fold: (i) we describe the use of SAA framework to solve PDP-
SLSD, (ii) we adapt the classical ALNS heuristic algorithm to solve PDP-SLSD, and (iii) we efficiently
handle complex constraints (synchronization, schedules) within the proposed ALNS framework.

2 Problem description

The PDP-SLSD consists of routing and scheduling a set of heterogeneous (w.r.t. capacity) vehicles to
transport a set of geographically spread requests from the corresponding origins to destinations. In addition,
a set of capacity-limited scheduled lines operate according to pre-defined routes and schedules and each
request may use them as a part of its journey. In other words, any request may be collected by one PD
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vehicle, transferred to a scheduled line and afterwards, delivered to its destination point after being re-
collected by another PD vehicle. Furthermore, each request has to be served within its corresponding time
windows.

In addition, the demand of each request is not known by the time of planning. The exact quantities de-
manded by each request are only learned upon the vehicle’s arrival at the corresponding pickup locations.
However, the demand of each request is assumed to follow a known distribution. The objective represents
the minimization of the operating costs, such as routing (η) and SL costs (θ) and the recourse costs that are
described below.

Due to aforementioned source of uncertainty, capacity constraints may be violated at any time, given an a
priori route. More specifically, two types of capacity violations may happen. First, at a pickup or a transfer
node, there may be insufficient capacity on the PD vehicle. In this case, we assume that the to-be-picked-up
request will be serviced by an outsourced service at a cost (P1) dependent on the direct distance from the
point of failure to its destination. Second, there may be insufficient capacity on the scheduled line. In such
case, it is assumed that scheduled line service provider is able to provide extra capacity (e.g., a towing)
at a cost (P2) per unit to be transported. Thus, such corrective actions are considered in order to recover
feasibility.

2.1 Problem definition

We give a formal description of the PDP-SLSD. A solution to the problem is a routing plan for the PD
vehicles, such that all requests are served. We now briefly describe the important features and assumptions
of the PDP-SLSD.

• Request. A request r has an origin, or, and a destination, dr. Each request is associated with two
desired time windows, one for the origin ([lor , uor ]), and one for the delivery point ([ldr , udr ]). The set
of all requests is given as P, such that request r, has destination node (or +n), where n shows the total
number of requests. Furthermore, demand quantity hr is represented by a probability distribution.
• Vehicle. A set of vehicles is given by V. In addition, each vehicle v has the information of carrying

capacity ev and its origin gv.
• Time. Travel and service times are known in advance and remain unchanged during the planning hori-

zon. The travel time between nodes i and j is denoted by ci j and service time at node i is represented
as si.
• Fixed line. A set of all scheduled lines is given as E, which is defined by the arc between start and

end of the line (i, j). In addition, each scheduled line has a set of departure times K i j from i (i.e., the
start of scheduled line), such that the departure is given as pw

i j, ∀ w ∈ K i j, (i, j) ∈ E. Note that each
SL may have different frequencies than other lines, thus the size of the K i j may differ. Furthermore,
it is assumed that scheduled lined (SL) vehicles are designed to carry a limited amount of packages,
thus implying a finite carrying capacity ki j, ∀ (i, j) ∈ E.

We define a digraph G = (N , A), where N represents a set of nodes and A represents a set of arcs. Each
physical station-hub is replicated n times (n - the number of requests) as in Hall2009 and each replicated
scheduled line is assigned a request. In particular, only the assigned request can use its corresponding
replicated scheduled line. In addition, the following notations are used in the model formulation: d is the
number of depots, τ - the number of replicated station-hubs. Moreover, a parameter f r

i is equal to 1 if node
i is the origin node of request r, to 0 if the node is intermediate node and finally to -1 if i is the destination
of r. Furthermore, parameters θ is the weight in the objective function of PD routes, and η is the cost of
shipping one package on a scheduled line, respectively.

The decision variables used to handle the routing of the PD vehicles are denoted as xv
i j, which are binary

variables equal to 1 if arc (i, j) is used by a PD vehicle v, 0 otherwise, ∀ (i, j) ∈ A, v ∈ V. The scheduling
of the PD vehicles is shown with αv, continuous variables which indicate the time at which vehicle v returns
to its depot, ∀ v ∈ V and continuous variables βi which indicate the departure time of a PD vehicle from

PDP with scheduled lines and stochastic demands

node i, ∀ i ∈ N . The flow of the requests is given as yr
i j, which are binary variables equal to 1 if arc (i, j)

is used by request r, 0 otherwise, ∀ i, j ∈ R3, r ∈ P. The schedules of the requests are represented by the
continuous variable γr

i that shows the time that request r departs from node i, ∀ i ∈ R3, r ∈ P. Fixed line
decisions are shown by qrw

i j , that are binary variables equal to 1 if replicated scheduled line (i, j) is used by

request r and departs from i at time pw
i j, 0 otherwise, ∀ r ∈ P, (i, j) ∈ F r, w ∈ Zi j.

The PDP-SLSD can be formulated as the following two-stage stochastic mixed-integer program.

2.2 Second-stage decisions

There is no simple way to formulate the computation of E[Q(x, ξ)] in terms of decision variables and linear
constraints. However, given an a priori routing solution x, the expected cost E[Q(x, ξ)] can be computed in
two steps. In Step 1, capacity violation of the PD vehicles is evaluated. As a consequence, some requests
(including transferable ones) may not be served due to given demand realizations and PD-vehicle capacity
restrictions. Hence extra costs are incurred for outsourcing. Further in Step 2, given a restricted set of
served requests, scheduled lines’ capacity violations is verified.

3 Solution methodology

We provide details on the solution methodology used to solve the PDP-SLSD. As aforementioned, this
method consists of a scenario-based framework combined with an ALNS algorithm. First, we describe
the adaptations to the sampling method (SAA) used to reach good-quality stochastic solutions. Then we
provide details on the ALNS to solve a scenario-based stochastic routing problem.

4 Results

Full results will be presented in the conference.

References
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(including transferable ones) may not be served due to given demand realizations and PD-vehicle capacity
restrictions. Hence extra costs are incurred for outsourcing. Further in Step 2, given a restricted set of
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3 Solution methodology

We provide details on the solution methodology used to solve the PDP-SLSD. As aforementioned, this
method consists of a scenario-based framework combined with an ALNS algorithm. First, we describe
the adaptations to the sampling method (SAA) used to reach good-quality stochastic solutions. Then we
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Introduction 

In public bus transport disruptions and -in consequence- delays are unavoidable during 
execution of vehicle and crew schedules. As cost-efficient resource scheduling, including vehicle 
and driver scheduling, has become a highly relevant economic factor for public transportation 
companies, the scheduling process is increasingly supported by software tools, containing state-of-
the-art optimization methods. However, using optimization methods to compute cost-optimal 
schedules usually results in tense schedules for both vehicles and crews without much idle or 
waiting time. As a consequence, delays cannot be absorbed and can propagate through the whole 
schedule. Delayed busses not only affect the vehicle schedule but also the associated crew 
schedule. Delayed drivers cause similar effects the other way round. As a result, planned schedules 
can become infeasible and the operations control has to initiate expensive recovery actions, thus 
making the previous schedule optimization useless. 

 In order to deal with disruptions, possible delays should already be considered offline in the 
planning phase. Schedules can be created that way that (minor) disruptions can be absorbed and 
delay propagation can be controlled, e.g. by inserting buffer times. However, the question is how 
to distribute buffer times appropriately between the scheduled tasks and how to connect the tasks 
of vehicles and crews efficiently such that the computed schedules minimize delay propagation 
and still remain cost-efficient? 

Contributions 

Firstly, in this work we examine the influence of different scheduling methods on robustness 
(delay-tolerance) and efficiency of vehicle and crew schedules. We propose approaches for 
sequential, partial-integrated and integrated scheduling which are able to consider the propagation 
of possible delays. In addition, the proposed approaches allow us to scale between robustness and 
cost-efficiency. 

Secondly, by analyzing the computed schedules we investigate which of the following two 
factors exerts the stronger influence on delay propagation: compressing tasks which a driver has to 
serve consecutively on the same vehicle, or connecting different resources by scheduled vehicle 
changeovers of drivers. 

Problem Definition

For a given set of timetabled trips the vehicle scheduling problem (VSP) can be stated as 
follows: Find an assignment of trips to vehicles such that each trip is assigned exactly once, each
vehicle performs a feasible sequence of trips (called vehicle block), each sequence starts and ends
at the same depot, constraints on the number/types of vehicles are satisfied, and the fleet size and
operational costs are minimized.

Each vehicle activity corresponds to at least one task (a portion of work between two
consecutive relief points) in the crew schedule. For a given set of tasks the crew scheduling
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Introduction

In public bus transport disruptions and -in consequence- delays are unavoidable during 
execution of vehicle and crew schedules. As cost-efficient resource scheduling, including vehicle
and driver scheduling, has become a highly relevant economic factor for public transportation
companies, the scheduling process is increasingly supported by software tools, containing state-of-
the-art optimization methods. However, using optimization methods to compute cost-optimal
schedules usually results in tense schedules for both vehicles and crews without much idle or
waiting time. As a consequence, delays cannot be absorbed and can propagate through the whole
schedule. Delayed busses not only affect the vehicle schedule but also the associated crew
schedule. Delayed drivers cause similar effects the other way round. As a result, planned schedules
can become infeasible and the operations control has to initiate expensive recovery actions, thus
making the previous schedule optimization useless.

In order to deal with disruptions, possible delays should already be considered offline in the
planning phase. Schedules can be created that way that (minor) disruptions can be absorbed and
delay propagation can be controlled, e.g. by inserting buffer times. However, the question is how 
to distribute buffer times appropriately between the scheduled tasks and how to connect the tasks
of vehicles and crews efficiently such that the computed schedules minimize delay propagation
and still remain cost-efficient?

Contributions

Firstly, in this work we examine the influence of different scheduling methods on robustness
(delay-tolerance) and efficiency of vehicle and crew schedules. We propose approaches for
sequential, partial-integrated and integrated scheduling which are able to consider the propagation
of possible delays. In addition, the proposed approaches allow us to scale between robustness and
cost-efficiency.

Secondly, by analyzing the computed schedules we investigate which of the following two
factors exerts the stronger influence on delay propagation: compressing tasks which a driver has to
serve consecutively on the same vehicle, or connecting different resources by scheduled vehicle
changeovers of drivers.

Problem Definition 

For a given set of timetabled trips the vehicle scheduling problem (VSP) can be stated as 
follows: Find an assignment of trips to vehicles such that each trip is assigned exactly once, each 
vehicle performs a feasible sequence of trips (called vehicle block), each sequence starts and ends 
at the same depot, constraints on the number/types of vehicles are satisfied, and the fleet size and 
operational costs are minimized. 

Each vehicle activity corresponds to at least one task (a portion of work between two 
consecutive relief points) in the crew schedule. For a given set of tasks the crew scheduling 
problem (CSP) is defined as: Find a set of crew duties such that each task is covered by a duty, 
each duty satisfies constraints concerning federal laws and in-house agreements (e.g. break rules), 
and labor costs are minimized. 

The vehicle and crew scheduling problem (VCSP) combines VSP and CSP: For a given set of 
timetabled trips, depots, and relief points, minimum costs sets of vehicle blocks and crew duties 
have to be found such that vehicle schedule and crew schedule are feasible and mutually 
compatible. Vehicle and crew schedules are compatible if each task derived from the vehicle 
schedule is covered by exactly one duty while all tasks not contained in the vehicle schedule are 
not part of any duty. 

Schedules are called robust when effects of disruptions are less likely to be propagated into the 
future. There are different ways to measure robustness. Within this work we concentrate on the 
delay-tolerance of a schedule. The goal of increasing delay-tolerance within a schedule is to 
minimize the expected propagation of delays through the schedule. 

Basic time-space-network model 

In this work we use models for vehicle scheduling based on an aggregated time-space network 
(TSN) from Kliewer et al. (2006). The multi-depot vehicle scheduling problem is modeled as 
multi-commodity minimum-cost-flow problem in a TSN with one network layer for each depot-
vehicle type combination. Each layer contains possible vehicle activities modeled as arcs between 
time-space nodes. The time-space nodes correspond to possible arrivals and departures at one 
station/depot. This modeling approach is adapted to the VCSP by constructing time-space 
networks also for duty generation (cf. Steinzen et al. (2010)). Due to the aggregated time-space 
network structure an optimal network flow solution represents a bundle of feasible, cost-optimal 
vehicle schedules. 

Solution Approaches 

In general, our proposed solution approaches are based on the approaches for vehicle and crew 
scheduling proposed by Gintner et al. (2008) and Steinzen et al. (2010). However, we extend the 
solution schemes in order to scale between cost-efficiency and robustness (delay-tolerance). We 
combine the network flow based formulation described above with path-based formulations. Cost-
efficient and delay-tolerant resource schedules are computed by solving the corresponding models 
with column generation in combination with Lagrangian relaxation. The path-based formulations 
enable us to consider the possible propagation of delays between tasks correctly. In addition, we 
benefit from the underlying network model, as we obtain a bundle of feasible vehicle schedules, 
implicitly given by the solution flow. Depending on the scheduling method, the solution flow can 
be decomposed taking delay propagation and/or feasible crew duties into account. Thus, from a 
bundle of cost-efficient vehicle schedules we can obtain the one with the highest delay tolerances 
(in interaction with the crew schedule). In order to incorporate information about initial delays we 
use a set of different delay scenarios for each task during scheduling. The scenarios are derived 
from real world data or sampled from common delay distributions. 

Evaluation and General Results

The proposed approaches are tested and compared on real-world instances from public transport 
companies in Germany. We use a delay propagation model for vehicle and crew tasks in
combination with a Monte Carlo method to evaluate the expected delay propagation of the
computed schedules.

Our results stress the relevance of incorporating the computation of possible delay propagation
into scheduling. The expected delay propagation can be decreased drastically in resource schedules
without additional costs compared to pure cost-efficient scheduling.
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problem (CSP) is defined as: Find a set of crew duties such that each task is covered by a duty,
each duty satisfies constraints concerning federal laws and in-house agreements (e.g. break rules),
and labor costs are minimized.

The vehicle and crew scheduling problem (VCSP) combines VSP and CSP: For a given set of
timetabled trips, depots, and relief points, minimum costs sets of vehicle blocks and crew duties
have to be found such that vehicle schedule and crew schedule are feasible and mutually
compatible. Vehicle and crew schedules are compatible if each task derived from the vehicle 
schedule is covered by exactly one duty while all tasks not contained in the vehicle schedule are 
not part of any duty.

Schedules are called robust when effects of disruptions are less likely to be propagated into the
future. There are different ways to measure robustness. Within this work we concentrate on the
delay-tolerance of a schedule. The goal of increasing delay-tolerance within a schedule is to
minimize the expected propagation of delays through the schedule.

Basic time-space-network model

In this work we use models for vehicle scheduling based on an aggregated time-space network 
(TSN) from Kliewer et al. (2006). The multi-depot vehicle scheduling problem is modeled as
multi-commodity minimum-cost-flow problem in a TSN with one network layer for each depot-
vehicle type combination. Each layer contains possible vehicle activities modeled as arcs between
time-space nodes. The time-space nodes correspond to possible arrivals and departures at one 
station/depot. This modeling approach is adapted to the VCSP by constructing time-space 
networks also for duty generation (cf. Steinzen et al. (2010)). Due to the aggregated time-space
network structure an optimal network flow solution represents a bundle of feasible, cost-optimal 
vehicle schedules.

Solution Approaches

In general, our proposed solution approaches are based on the approaches for vehicle and crew
scheduling proposed by Gintner et al. (2008) and Steinzen et al. (2010). However, we extend the
solution schemes in order to scale between cost-efficiency and robustness (delay-tolerance). We 
combine the network flow based formulation described above with path-based formulations. Cost-
efficient and delay-tolerant resource schedules are computed by solving the corresponding models
with column generation in combination with Lagrangian relaxation. The path-based formulations
enable us to consider the possible propagation of delays between tasks correctly. In addition, we
benefit from the underlying network model, as we obtain a bundle of feasible vehicle schedules,
implicitly given by the solution flow. Depending on the scheduling method, the solution flow can 
be decomposed taking delay propagation and/or feasible crew duties into account. Thus, from a
bundle of cost-efficient vehicle schedules we can obtain the one with the highest delay tolerances
(in interaction with the crew schedule). In order to incorporate information about initial delays we
use a set of different delay scenarios for each task during scheduling. The scenarios are derived
from real world data or sampled from common delay distributions.

Evaluation and General Results 

The proposed approaches are tested and compared on real-world instances from public transport 
companies in Germany. We use a delay propagation model for vehicle and crew tasks in 
combination with a Monte Carlo method to evaluate the expected delay propagation of the 
computed schedules. 

Our results stress the relevance of incorporating the computation of possible delay propagation 
into scheduling. The expected delay propagation can be decreased drastically in resource schedules 
without additional costs compared to pure cost-efficient scheduling. 
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In contrast to the representation in scientific literature we find the (spatial) design of tariff systems in 

public transportation to be very important in terms of managerial relevance: by appropriate design of the 

tariff system a public transport company is expected to increase its revenue remarkably (Borndörfer et al., 

2012). The counting zones tariff system is the prevailing system in metropolitan areas, such as London, 

Boston, and Perth. For the counting zones tariff system, the corresponding tariff is determined by the 

product of the number of zones passed on the trip from origin to destination and the price per zone. The 

price per zone – denoted as fare – might be decreasing in the number of zones passed. Hamacher and 

Schöbel (2004) propose an approach to convert any given tariff system into a counting zone tariff. First, the 

fare is optimized given an exogenous zone partition. The objective function of the fare problem is to 

minimize the deviation from a given reference price. Second, they partition a given graph into as many 

node sets as given zones. Heuristic solution approaches are applied and evaluated. They assume an 

exogenously given, static customer demand with customers choosing the cheapest-path from origin to 

destination. Gattuso and Musolino (2007) present an approach for modeling an integrated fare and tariff 

zone system. The objective function is to minimize the increase of the fare compared to a reference price 

and hence to minimize expected revenue decline. They propose a system of simulation models to estimate 

the effects on users and on transit companies. Demand is assumed to be elastic with respect to the fare at 

modal and path choice dimensions. In this paper, we contribute to the scant literature on public transport 

tariff zone design by a new model for the tariff zone design problem. The objective is to maximize the 

expected total revenue (demand x tariff) taking into account contiguous tariff zones and discrete fare 

levels. The literature on public transport demand provides strong evidence that public transport customers 

are price sensitive. Demand – as a function of tariff (i.e., demand depends on the tariff to be paid) - is 

measured as the number of public transport trips between origin and destination. Customers are assumed to 

choose the time-shortest-path (which is confirmed by numerous empirical studies). For a given fare we 

compute the expected revenue for each origin-destination pair and the number of tariff zones passed. As a 

consequence we are able to model the original non-linear problem as a MIP. The problem has to be solved 

for each fare level separately. Contiguity is a complex task in spatial optimization. Here, contiguity is 

achieved by using primal and dual graph information. Therefore, we consider flow conservation constraints 

using the dual graph of the public transport graph. Our approach is general in the vein that demand can be 

determined by any arbitrarily chosen demand model (i.e., no assumptions about the functional form have to 

be made). We perform a series of numerical investigations using GAMS/CPLEX and artificial data to show 

the applicability of our approach. Further, we employ our approach to the San Francisco Bay Area, 

California using a simple version of the MTC Travel Model One as our demand model. 
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Retail inside large cities is characterized by low storage and high locality. Major retailers consol-
idate a huge variety of goods close to the city for often more than daily deliveries to the stores.
The resulting logistics networks from suppliers via several hub layers to stores are extremely
large in practice. For such logistics networks, we study two approaches to select a set of hubs of
fixed cardinality to minimize routing cost.

In the experience of our industry partner 4flow AG—a leading logistics software and consul-
tancy company—some of these networks cannot even be loaded into standard planning software.
For some of our case studies, even loading the raw network data consumes the majority of
RAM on a standard laptop of, e.g., 8 GB RAM, thus leaving very little slack for advanced data
structures and algorithms. Nevertheless, reducing cost is paramount in these networks. The cost
crucially depends on a non-trivial consolidation effect. We seek a method applicable to such
very large scale instances that can choose a set of hubs to rent, which allows for routing at low
cost. In Europe rental contracts for hubs usually feature no fixed cost or opening cost. Still, the
organizational overhead limits the number of hubs in practice. The final decision is best taken
by an expert planner based on optimized solutions for different bounds on the number of hubs.

An additional planning aspect is the adaptivity of a solution. The realization of a priory
uncertain demand data may require a different number of open hubs than initially planned.
Planners in practice prefer to choose a set of hubs that can be adapted to a good solution with
a smaller or larger hub number in case of decreasing or increasing demand values, respectively.
A question we address in this context is about the price that we have to pay in order to have an
adaptable hub set compared to a set of hubs which was optimized for a particular hub bound.

For optimizing for a particular hub bound, we design an involved Mixed Integer Linear
Programming formulation based on column generation. In the adaptive setting, we propose a
greedy framework that calls a black box routing routine. While the former approach is currently
not able to handle very large instances, the latter approach is suitable for all instances for which
fast routing algorithms exist. We evaluate our algorithms on anonymized real-world case studies
which were provided by our project partner 4flow AG.

The model. We consider a logistics network which consists of source and sink nodes, potential
hub nodes and transport relations. Moreover, there is set of commodities, each defined by its
source and a sink node, and its properties—typically weight, volume and loading meter. Each
commodity needs to be routed on a single path through the network.

Cost driver. The crucial optimization potential stems from the consolidation of different com-
modities with respect to different properties. Typical rates offered by European transportation
companies depend on several properties. In our case studies, routing small heavy commodities
together with bulky light-weight ones makes the difference between good and bad routings.

In this model, different tariff rates t—e.g., Full Truck Load (FTL) and Less Than Full Truck
Load (LTL)—that may be available on edge e are modeled by affine linear functions that differ
in their fix cost ot (the initial jump point of the function) and in their cost rates mtp for usage of
property p. For a fixed multi-commodity flow f let α(fe) be the corresponding property vector,
its components αp(f

e) specifying the usage of the respective property p of commodity flow fe

induced on e. The transportation cost on edge e is then given as

min
t

{
ot + max

p
mtp · αp(f

e)
}
.

Session 6a – City Logistics I – Wednesday, July 8th | TSL Workshop



74

Static MILP solutions and adaptive solutions for hub
decisions in very large scale logistics networks
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idate a huge variety of goods close to the city for often more than daily deliveries to the stores.
The resulting logistics networks from suppliers via several hub layers to stores are extremely
large in practice. For such logistics networks, we study two approaches to select a set of hubs of
fixed cardinality to minimize routing cost.

In the experience of our industry partner 4flow AG—a leading logistics software and consul-
tancy company—some of these networks cannot even be loaded into standard planning software.
For some of our case studies, even loading the raw network data consumes the majority of
RAM on a standard laptop of, e.g., 8 GB RAM, thus leaving very little slack for advanced data
structures and algorithms. Nevertheless, reducing cost is paramount in these networks. The cost
crucially depends on a non-trivial consolidation effect. We seek a method applicable to such
very large scale instances that can choose a set of hubs to rent, which allows for routing at low
cost. In Europe rental contracts for hubs usually feature no fixed cost or opening cost. Still, the
organizational overhead limits the number of hubs in practice. The final decision is best taken
by an expert planner based on optimized solutions for different bounds on the number of hubs.

An additional planning aspect is the adaptivity of a solution. The realization of a priory
uncertain demand data may require a different number of open hubs than initially planned.
Planners in practice prefer to choose a set of hubs that can be adapted to a good solution with
a smaller or larger hub number in case of decreasing or increasing demand values, respectively.
A question we address in this context is about the price that we have to pay in order to have an
adaptable hub set compared to a set of hubs which was optimized for a particular hub bound.

For optimizing for a particular hub bound, we design an involved Mixed Integer Linear
Programming formulation based on column generation. In the adaptive setting, we propose a
greedy framework that calls a black box routing routine. While the former approach is currently
not able to handle very large instances, the latter approach is suitable for all instances for which
fast routing algorithms exist. We evaluate our algorithms on anonymized real-world case studies
which were provided by our project partner 4flow AG.

The model. We consider a logistics network which consists of source and sink nodes, potential
hub nodes and transport relations. Moreover, there is set of commodities, each defined by its
source and a sink node, and its properties—typically weight, volume and loading meter. Each
commodity needs to be routed on a single path through the network.

Cost driver. The crucial optimization potential stems from the consolidation of different com-
modities with respect to different properties. Typical rates offered by European transportation
companies depend on several properties. In our case studies, routing small heavy commodities
together with bulky light-weight ones makes the difference between good and bad routings.

In this model, different tariff rates t—e.g., Full Truck Load (FTL) and Less Than Full Truck
Load (LTL)—that may be available on edge e are modeled by affine linear functions that differ
in their fix cost ot (the initial jump point of the function) and in their cost rates mtp for usage of
property p. For a fixed multi-commodity flow f let α(fe) be the corresponding property vector,
its components αp(f

e) specifying the usage of the respective property p of commodity flow fe

induced on e. The transportation cost on edge e is then given as

min
t

{
ot + max

p
mtp · αp(f

e)
}
.

Network structure. Consolidation of commodity flow is only possible at hub nodes. Their usage
incurs renting cost, depending on a hub’s throughput but also organizational overhead faced by
the trading company. Clearly a larger number of hubs allows more cost efficient consolidation.
Optimizing the network structure is subject to finding a most cost efficient consolidation for an
upper bound of hubs to open. As organizational overhead cannot be quantified adequately, we
seek solutions for different hub bounds, and leave a final decision to the logistics expert.

Incremental hub solutions. In order to be robust against varying demands, so called incremental
hub solutions are preferred in practice. Instead of independently deciding for each number of
hubs which hubs to open—possibly resulting in completely different hub sets—one requires that
the hub set chosen for k < � hubs is contained in the hub set for bound �. These nested hub
sets imply a ranking of the hubs, and in case of k hubs to be opened, we choose the k hubs with
highest rank. In practice, solutions of this kind allow to easily adapt to varying demands: One
simply opens or closes the respective hubs according to the ranking.

Our Mix Integer Programming approach (MILP). This heuristic combines the solution of
a suitable MILP with local search techniques. The MILP is based on a path formulation for the
multi-commodity flow problem on the underlying graph. Transportation cost is modeled on each
edge with binary variables deciding, which tariff rate applies to this edge. The tariff variables
are thus linked to the binary path decision variables of commodity paths that contain this edge.

As the number of possible commodity paths grows exponentially with the network size, we
use a column generation technique, which, given a solution to a restricted set of possible paths,
finds new alternative paths for commodities, that reduce the cost of the current solution. The
given network size also prohibits to include all tariff rates in the initial model. When carefully
choosing the set of possible hub nodes that may be used by new paths, the pricing problem can
be formulated as a linear program of solvable size.

We use this technique to solve the linear relaxation of the MILP and then branch on binary
decision variables. We can observe that the linear formulation is strong and already yields near
integral solutions. Finally, we apply a path-based local search to improve the multi-commodity
flow of the solution, with the obtained hub set considered as fixed.

Our incremental greedy approach. We propose a generic framework for the incremental
hub selection problem which is based on a black box routing algorithm and a hub evaluation
function. Given a routing solution for all commodities, this function assigns a value to each hub;
e.g., the total weight or volume shipped via the hub. The algorithm computes an incremental
hub solution for a given list of hub numbers k1 < k2 < · · · < k� as follows: Firstly, it computes
a routing for the network in which all hubs are open, and it assesses the hubs according to the
evaluation function. Next, all but the k� highest evaluated hubs are closed, and the routing is
recomputed. We continue analogously for the next smaller hub number until we finally construct
a solution for k1 hubs.

In our computational study, we investigate different hub evaluation functions and different
hub steps ki+1 − ki. Currently, the routing is obtained by successively sending the commodities
along a shortest path with respect to marginal transportation costs.

First results. We present preliminary experiments on real-world instances with approximately
400 sources, 20 sinks, 10000 commodities, and 85 possible hub locations and compare the incre-
mental solution obtained by the greedy heuristic with the MILP heuristic for each hub bound.
We observe that the incremental solutions incur only slightly higher cost (up to 1.5%) for small
bounds of used hubs (e.g., 3 – 6). For larger numbers it is competitive with the non-incremental
solution sometimes obtaining slightly better solutions. Our results suggest that the incremental
greedy heuristic is a promising technique to be applied to even larger networks, where the MILP
heuristic faces runtime and memory limitations. Currently, we have computed first incremental
solutions for very large instances with roughly 300 sources, 14000 sinks, 48000 commodities, and
100 possible hub locations

Network structure. Consolidation of commodity flow is only possible at hub nodes. Their usage
incurs renting cost, depending on a hub’s throughput but also organizational overhead faced by
the trading company. Clearly a larger number of hubs allows more cost efficient consolidation.
Optimizing the network structure is subject to finding a most cost efficient consolidation for an
upper bound of hubs to open. As organizational overhead cannot be quantified adequately, we
seek solutions for different hub bounds, and leave a final decision to the logistics expert.

Incremental hub solutions. In order to be robust against varying demands, so called incremental
hub solutions are preferred in practice. Instead of independently deciding for each number of
hubs which hubs to open—possibly resulting in completely different hub sets—one requires that
the hub set chosen for k < � hubs is contained in the hub set for bound �. These nested hub
sets imply a ranking of the hubs, and in case of k hubs to be opened, we choose the k hubs with
highest rank. In practice, solutions of this kind allow to easily adapt to varying demands: One
simply opens or closes the respective hubs according to the ranking.

Our Mix Integer Programming approach (MILP). This heuristic combines the solution of
a suitable MILP with local search techniques. The MILP is based on a path formulation for the
multi-commodity flow problem on the underlying graph. Transportation cost is modeled on each
edge with binary variables deciding, which tariff rate applies to this edge. The tariff variables
are thus linked to the binary path decision variables of commodity paths that contain this edge.

As the number of possible commodity paths grows exponentially with the network size, we
use a column generation technique, which, given a solution to a restricted set of possible paths,
finds new alternative paths for commodities, that reduce the cost of the current solution. The
given network size also prohibits to include all tariff rates in the initial model. When carefully
choosing the set of possible hub nodes that may be used by new paths, the pricing problem can
be formulated as a linear program of solvable size.

We use this technique to solve the linear relaxation of the MILP and then branch on binary
decision variables. We can observe that the linear formulation is strong and already yields near
integral solutions. Finally, we apply a path-based local search to improve the multi-commodity
flow of the solution, with the obtained hub set considered as fixed.

Our incremental greedy approach. We propose a generic framework for the incremental
hub selection problem which is based on a black box routing algorithm and a hub evaluation
function. Given a routing solution for all commodities, this function assigns a value to each hub;
e.g., the total weight or volume shipped via the hub. The algorithm computes an incremental
hub solution for a given list of hub numbers k1 < k2 < · · · < k� as follows: Firstly, it computes
a routing for the network in which all hubs are open, and it assesses the hubs according to the
evaluation function. Next, all but the k� highest evaluated hubs are closed, and the routing is
recomputed. We continue analogously for the next smaller hub number until we finally construct
a solution for k1 hubs.

In our computational study, we investigate different hub evaluation functions and different
hub steps ki+1 − ki. Currently, the routing is obtained by successively sending the commodities
along a shortest path with respect to marginal transportation costs.

First results. We present preliminary experiments on real-world instances with approximately
400 sources, 20 sinks, 10000 commodities, and 85 possible hub locations and compare the incre-
mental solution obtained by the greedy heuristic with the MILP heuristic for each hub bound.
We observe that the incremental solutions incur only slightly higher cost (up to 1.5%) for small
bounds of used hubs (e.g., 3 – 6). For larger numbers it is competitive with the non-incremental
solution sometimes obtaining slightly better solutions. Our results suggest that the incremental
greedy heuristic is a promising technique to be applied to even larger networks, where the MILP
heuristic faces runtime and memory limitations. Currently, we have computed first incremental
solutions for very large instances with roughly 300 sources, 14000 sinks, 48000 commodities, and
100 possible hub locations
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Network structure. Consolidation of commodity flow is only possible at hub nodes. Their usage
incurs renting cost, depending on a hub’s throughput but also organizational overhead faced by
the trading company. Clearly a larger number of hubs allows more cost efficient consolidation.
Optimizing the network structure is subject to finding a most cost efficient consolidation for an
upper bound of hubs to open. As organizational overhead cannot be quantified adequately, we
seek solutions for different hub bounds, and leave a final decision to the logistics expert.

Incremental hub solutions. In order to be robust against varying demands, so called incremental
hub solutions are preferred in practice. Instead of independently deciding for each number of
hubs which hubs to open—possibly resulting in completely different hub sets—one requires that
the hub set chosen for k < � hubs is contained in the hub set for bound �. These nested hub
sets imply a ranking of the hubs, and in case of k hubs to be opened, we choose the k hubs with
highest rank. In practice, solutions of this kind allow to easily adapt to varying demands: One
simply opens or closes the respective hubs according to the ranking.

Our Mix Integer Programming approach (MILP). This heuristic combines the solution of
a suitable MILP with local search techniques. The MILP is based on a path formulation for the
multi-commodity flow problem on the underlying graph. Transportation cost is modeled on each
edge with binary variables deciding, which tariff rate applies to this edge. The tariff variables
are thus linked to the binary path decision variables of commodity paths that contain this edge.

As the number of possible commodity paths grows exponentially with the network size, we
use a column generation technique, which, given a solution to a restricted set of possible paths,
finds new alternative paths for commodities, that reduce the cost of the current solution. The
given network size also prohibits to include all tariff rates in the initial model. When carefully
choosing the set of possible hub nodes that may be used by new paths, the pricing problem can
be formulated as a linear program of solvable size.

We use this technique to solve the linear relaxation of the MILP and then branch on binary
decision variables. We can observe that the linear formulation is strong and already yields near
integral solutions. Finally, we apply a path-based local search to improve the multi-commodity
flow of the solution, with the obtained hub set considered as fixed.

Our incremental greedy approach. We propose a generic framework for the incremental
hub selection problem which is based on a black box routing algorithm and a hub evaluation
function. Given a routing solution for all commodities, this function assigns a value to each hub;
e.g., the total weight or volume shipped via the hub. The algorithm computes an incremental
hub solution for a given list of hub numbers k1 < k2 < · · · < k� as follows: Firstly, it computes
a routing for the network in which all hubs are open, and it assesses the hubs according to the
evaluation function. Next, all but the k� highest evaluated hubs are closed, and the routing is
recomputed. We continue analogously for the next smaller hub number until we finally construct
a solution for k1 hubs.

In our computational study, we investigate different hub evaluation functions and different
hub steps ki+1 − ki. Currently, the routing is obtained by successively sending the commodities
along a shortest path with respect to marginal transportation costs.

First results. We present preliminary experiments on real-world instances with approximately
400 sources, 20 sinks, 10000 commodities, and 85 possible hub locations and compare the incre-
mental solution obtained by the greedy heuristic with the MILP heuristic for each hub bound.
We observe that the incremental solutions incur only slightly higher cost (up to 1.5%) for small
bounds of used hubs (e.g., 3 – 6). For larger numbers it is competitive with the non-incremental
solution sometimes obtaining slightly better solutions. Our results suggest that the incremental
greedy heuristic is a promising technique to be applied to even larger networks, where the MILP
heuristic faces runtime and memory limitations. Currently, we have computed first incremental
solutions for very large instances with roughly 300 sources, 14000 sinks, 48000 commodities, and
100 possible hub locations
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1 Introduction

In an effort to provide shorter delivery lead-times for goods ordered online, companies are looking
for new technologies to bridge the last-mile to their customers. One technology-driven opportunity
that has recently received much attention is the deployment of unmanned aerial vehicles or drones
to support package delivery. An important advantage of a drone as compared to a regular delivery
vehicle is that it can fly over congested roads without delay.

Several companies, including Amazon, Google, DHL, UPS en Fedex, are currently investigating
the use of drones for deliveries [2]. Many of the recent tests involve multi-propeller drones that can
carry packages of approximately 2 kilograms over a range of 20 kilometers. DHL Parcel recently
announced a regular drone delivery service to deliver medications and other urgently needed goods
to one of Germany’s North Sea islands [1]. In this example, the drone flies automated but still has to
be continuously monitored. Aeronautics experts expect that drones will be able to fly autonomously
and safely in urban environments within the next few years, based on rapid advances in obstacle
detection and avoidance technology.

While a drone is fast and relatively inexpensive in terms of costs per mile, there are also some
inherent limitations to its use. The size of the drone puts an upper limit on the size of the packages
it can carry. Since it is battery-powered, the range is likely to remain limited as compared to a
regular (fuel-based) delivery vehicle. This means that a drone has to return to the depot after each
delivery, which is not very efficient. One way to extend the effective range and capacity of a drone
is to let it collaborate with a delivery vehicle. AMP Electric Vehicles is working with the University
of Cincinnati Department of Aerospace Engineering on a drone that would be mounted on the top
of its electric-powered trucks to help the truck driver with the deliveries [3].

In this setting, the delivery truck and the drone collaboratively serve all customers. While the
delivery truck moves between different customers to make deliveries, the drone simultaneously serves
another set of customers, one by one, returning to the truck after each delivery to pickup another
package. The objective is to serve all customers while minimizing total costs, in which labor costs
(i.e. time) is the most relevant cost factor. Even if we consider only one single truck, this problem
involves both assignment decisions and routing decisions. Assignment decisions to determine which
vehicle, drone or truck, will serve which customers, and routing decisions to determine in which

Drone Delivery Problem

sequence the customers on each vehicle are visited. Conceptually, the problem is related to the close
enough traveling salesman problem [4] and falls in the class of vehicle routing problems that require
synchronization between vehicles [5].

More formally, we model our depot and our customers as nodes in a graph G = (V, E). Node v0
represents the depot, the other nodes v1, . . . , vN represent the customers. The edges e = {vi, vj}
represent road connections between the nodes and the c(e) = c(vi, vj) stands for the driving time
that the truck needs to drive from vi to vj or vice versa. We assume that the drone is only allowed
to fly above roads. It is faster than the truck by a factor 1

α , i.e., the time that the drone needs to
fly from vi to vj is α · c(vi, vj) for all vi, vj ∈ V . Note that the drone can transport one package at
most. We make the simplifying assumption that recharging of the drone (if necessary) and pickup
and delivery of packages is done instantaneously, i.e., it does not take time. Furthermore, we assume
that the drone’s battery power is sufficient to cover all involved distances and that the pickup of
packages from the truck can only take place at nodes.

A solution to this problem is hence a truck route R = (r1 = v0, r2, . . . , rn = v0) from v0 to v0
together with a drone route D = (d1 = v0, d2, . . . , dm = v0). Note that the drone route describes
the full path of the drone, i.e., not only the customers which are served by the drone but also all
customers which are visited by both truck and drone. We will slightly abuse notation and identify
the sequences R and D with the corresponding node sets, when convenient.

Since the drone has unit-capacity, it always has to return to a node visited by the truck before it
can serve another customer. This means that D is a feasible drone route with respect to R if for
each

di /∈ R implies ∃j1 ≤ j2 s.t. di−1 = rj1 , di+1 = rj2 .

Note that this does not imply that the drone and the truck always meet up at the next node that
is visited by the truck after the drone left. It could happen that the truck visits several customers
before the drone catches up with it. Furthermore, we require that all nodes need to be visited either
by the truck or by the drone, i.e. R ∪ D = V .

Since the truck driver’s wage is the most relevant cost factor, our objective is to minimize the total
time t(R, D) needed to serve all customers. Since we allow waiting times for both the truck and the
drone, this time is not simply the sum of the travel times of the truck and/ or drone. To compute
the time, it is useful to consider the subsequence of nodes which is visited by both truck and drone.
Let ik and jk for k = 0, . . . , l be the corresponding indices, i.e. R ∩ D = (ri1 = v0, ri2 , . . . , ril

= v0) =
(dj1 = v0, dj2 , . . . , djl

= v0). The time it takes for the drone and the truck to arrive both at a node
rik+1 = dik+1 after they have departed (at the same time) from node rik

= dik
depends on the routes

of both the truck and drone to the meeting node. More precisely, it is given as

t(rik
, rik+1) := max{

a=ik+1−1∑
a=ik

c(ra, ra+1), α ·
b=jk+1−1∑

b=jk

c(db, db+1)}.

Hence, the overall time needed to distribute the packages is

t(R, D) :=
k−1∑
l=1

t(rik
, rik+1).

In this paper, we aim to contribute to the development of the truck and drone delivery concept
by developing exact and heuristic solution approaches to the corresponding routing problem. We
give quality bounds and conduct numerical experiments to investigate the efficiency of truck-paired
drone deliveries for different realistic demand instances. In particular, we compare the costs of the
truck-only solution to the solutions of the truck and drone problem under different cost assumptions.
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sequence the customers on each vehicle are visited. Conceptually, the problem is related to the close
enough traveling salesman problem [4] and falls in the class of vehicle routing problems that require
synchronization between vehicles [5].

More formally, we model our depot and our customers as nodes in a graph G = (V, E). Node v0
represents the depot, the other nodes v1, . . . , vN represent the customers. The edges e = {vi, vj}
represent road connections between the nodes and the c(e) = c(vi, vj) stands for the driving time
that the truck needs to drive from vi to vj or vice versa. We assume that the drone is only allowed
to fly above roads. It is faster than the truck by a factor 1

α , i.e., the time that the drone needs to
fly from vi to vj is α · c(vi, vj) for all vi, vj ∈ V . Note that the drone can transport one package at
most. We make the simplifying assumption that recharging of the drone (if necessary) and pickup
and delivery of packages is done instantaneously, i.e., it does not take time. Furthermore, we assume
that the drone’s battery power is sufficient to cover all involved distances and that the pickup of
packages from the truck can only take place at nodes.

A solution to this problem is hence a truck route R = (r1 = v0, r2, . . . , rn = v0) from v0 to v0
together with a drone route D = (d1 = v0, d2, . . . , dm = v0). Note that the drone route describes
the full path of the drone, i.e., not only the customers which are served by the drone but also all
customers which are visited by both truck and drone. We will slightly abuse notation and identify
the sequences R and D with the corresponding node sets, when convenient.

Since the drone has unit-capacity, it always has to return to a node visited by the truck before it
can serve another customer. This means that D is a feasible drone route with respect to R if for
each

di /∈ R implies ∃j1 ≤ j2 s.t. di−1 = rj1 , di+1 = rj2 .

Note that this does not imply that the drone and the truck always meet up at the next node that
is visited by the truck after the drone left. It could happen that the truck visits several customers
before the drone catches up with it. Furthermore, we require that all nodes need to be visited either
by the truck or by the drone, i.e. R ∪ D = V .

Since the truck driver’s wage is the most relevant cost factor, our objective is to minimize the total
time t(R, D) needed to serve all customers. Since we allow waiting times for both the truck and the
drone, this time is not simply the sum of the travel times of the truck and/ or drone. To compute
the time, it is useful to consider the subsequence of nodes which is visited by both truck and drone.
Let ik and jk for k = 0, . . . , l be the corresponding indices, i.e. R ∩ D = (ri1 = v0, ri2 , . . . , ril

= v0) =
(dj1 = v0, dj2 , . . . , djl

= v0). The time it takes for the drone and the truck to arrive both at a node
rik+1 = dik+1 after they have departed (at the same time) from node rik

= dik
depends on the routes

of both the truck and drone to the meeting node. More precisely, it is given as

t(rik
, rik+1) := max{

a=ik+1−1∑
a=ik

c(ra, ra+1), α ·
b=jk+1−1∑

b=jk

c(db, db+1)}.

Hence, the overall time needed to distribute the packages is

t(R, D) :=
k−1∑
l=1

t(rik
, rik+1).

In this paper, we aim to contribute to the development of the truck and drone delivery concept
by developing exact and heuristic solution approaches to the corresponding routing problem. We
give quality bounds and conduct numerical experiments to investigate the efficiency of truck-paired
drone deliveries for different realistic demand instances. In particular, we compare the costs of the
truck-only solution to the solutions of the truck and drone problem under different cost assumptions.
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Abstract

A variety of freight handling operations along the logistics chain is faced with fluctuating
truck arrivals and consequently with long queues during peak times. In particular in urban
areas, space for truck queues is very limited and emissions of idling truck engines are a major
threat for air quality. Demand management mechanisms such as truck appointment systems
aim at smoothing demand by shifting truck arrivals from peak to off-peak periods in order to
improve the system’s operational performance.

We provide a general, reliable, and fast methodology to evaluate and optimize the arrival
pattern for the time-dependent queueing system of truck handling operations. Our optimiza-
tion approach is based on the stationary backlog-carryover approach to analyze the system’s
performance. The time-dependent arrival rates serve as decision variables, i.e., changes in
the original demand pattern are allowed and intentional. The objective of this non-linear op-
timization model is to minimize total waiting times while the corresponding change in the
arrival pattern is limited. A numerical study compares the performance measures of original
and optimized arrival patterns for truck handling operations of a distribution center. It shows
that a significant reduction in waiting times can be reached even with minor shifts in time-
dependent arrival rates.

Key words: Demand management, truck arrival management, time-dependent queueing mo-
del, stationary backlog-carryover approach, integrated optimization approach
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In this paper, we elaborate, in the context of local public transport services, on the design
and the development of optimization algorithms that can assist the operators in facing different
types of disruptions with the ultimate objective of increasing the quality of service of public
transportation or, at least, to limit the perception of inconvenience on passengers. As a case
study, we will analyze the urban management of surface lines (buses, trolleybuses and trams) of
Azienda Trasporti Milanese (ATM) of Milan.

After discussing about the various types of disruptions [CLLR10] that can be considered,
we will focus on the way the regularity of the service can be assessed [BDFM13]. This is
one of the most critical points since, from the service provider point of view and, also, from
the municipality or the agency monitoring the service perspective, the regularity of the service
should be measured in the simplest and most intuitive way. However, the measure should be
also of help when actions, intended to recover the regularity or improve it in the presence of
disruptions, must be taken and their definition demanded to a decision support system. In
this regard, we present and analyze different types of functions that can be used to effectively
evaluate the regularity of the service in a real-time environment.

Furthermore, we discuss the necessity of a simulation based evaluation system to automat-
ically estimate the effect of detours and other changes on the regularity of the service. Such
system can help the operations central officers in quickly and objectively assessing the impact
of different alternative decisions taken to recover the regular service.

We analyze the mathematical aspects underlying the decision process required in defining
the optimal curse of action to promptly react to short-term disruptions. In particular, a detailed
description of the algorithms implemented to re-optimize on the fly both vehicles and drivers
scheduling is given. The results obtained on real world case studies provided by ATM are
reported and carefully analyzed.

Finally, we present a description of an integrated decision support system that includes in a
uniform environment both the simulation and optimization aspects of the problem.
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Abstract

Most studies in vehicle routing seek to minimize investment and operating costs, acknowledging only as side

issues customer service aspects. This work focuses on how to incorporate service reliability in routing plans.

It explores new models and solution frameworks for single-period problem settings with self-imposed time

windows and stochastic travel times. For example, a logistics provider may want to quote time windows

such that the expected costs incurred after routing are minimized. Promising a precise service time can be

impossible or extremely costly to satisfy due to uncertainties. The goal is to generate robust vehicle routing

plans that guarantee stable and reliable service despite unforeseeable disruption events.

Despite the fact that many distribution networks deal with endogenous time windows, most of the

literature is devoted to the Vehicle Routing Problem with (exogenous) Time Windows, and the research on

problem settings for assigning time windows is very poor. Spliet and Gabor (2014) introduced the so-called

Time Window Assignment Vehicle Routing Problem (TWAVRP) with uncertain demand. The TWAVRP

consists of finding a single time window assignment (before demand is known) and a vehicle routing schedule

for each scenario (realization of the demand at each location) satisfying these time windows, such that the

expected costs are minimized. A similar problem, namely the Vehicle Routing Problem with Self-Imposed

Time Windows (VRP-SITW), is considered by Jabali et al. (2014). The main difference compared to the

TWAVRP is that the demand is known deterministically beforehand; however, the travel time is uncertain.

This work presents two scenario-based frameworks for setting customer’s time windows with stochastic

travel times. The first framework generalizes in a number of ways the earlier work of Jabali et al. (2014).

First, the length of the time windows can vary within a predefined lower and upper bound different for

each customer. Second, the objective function is enhanced and consists of four components: (a) the routing

cost; (b) the expected earliness and lateness penalty occurred at each customer for every possible disruption

scenario that may happen at a previously routed customer, and all scenarios are taken into account for

the disruption lengths at each disrupted customer; (c) the expected penalty caused if the maximum route

1

duration is violated; and (d) the total penalty paid for the time window length. Third, in effort to further

improve the robustness of the vehicle routing plans, a two-stage p-robust model formulation is also proposed.

At the first stage, time windows are endogenously imposed for each disruption realization, and we get the

minimum cost of imposing a set of time windows to customers given the fact that one disruption scenario has

occurred. In the second stage, the model takes into account all possible disruption scenarios, and imposes

the time windows minimizing the expected cost of delay at each customer and the depot.

The second framework seeks to incorporate service reliability aspects. The main objective is to minimize

the time window widths assigned to each customer, in the sense that the smaller the time windows, the

better is the perceived customer service level. Assuming that we have discrete random travel times for each

arc, a set of scenarios for all possible arrival times at customer’s locations can be determined a priori. To

that end, the goal is to find the time window for each customer, such that it is ensured that each customer

will be served at the assigned time window with a given probability. For this purpose, chance constraints

are added to guarantee a predefined level of service reliability.

A hierarchical solution approach has been developed for solving the above models. Initially, the master

vehicle routing problem is solved, without considering any time window restrictions, to optimize the routing

cost, and on this basis the subordinate time window assignment sub-problem is defined for every route, and

solved so as to assign the time windows to the customers. An Iterated Local Search algorithm is employed

for solving the master problem, while the time window assignment models are solved to optimality using

Gurobi Optimizer 6.0. Various computational experiments has been performed to assess the performance of

the proposed solution method as well as to value time window flexibility in a way that reflects the provider’s

tolerance for risk and ambiguity. Finally, the balance and the trade-off between robustness and routing cost

is also examined.
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that end, the goal is to find the time window for each customer, such that it is ensured that each customer
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1 Introduction
Home health care (HHC) services are of vital importance for today’s society. With services ranging
from qualified home nursing to assistance in leading the household and maintenance of social contacts,
they allow old and frail people a self-determined living in their familiar environment. The current
demographic and social developments induce a significant increase in demand for HHC services and
further rises must be expected in many countries. Furthermore, HHC service providers are exposed to
high cost pressure. Currently, the scheduling is usually done manually and because of its complexity,
suitable decision support systems are highly welcomed. Optimization in the field of HHC is a rather
young but quickly evolving research area. A recent comprehensive literature review on both daily
and periodic HHC scheduling can be found in Trautsamwieser and Hirsch (2014) or Matta et al
(2014).

We consider a real-world HHC problem, which is based on the demands of the Austrian Red Cross
(ARC), one of the leading HHC service providers in Austria. It has a daily planning horizon, focuses
on urban regions and can be summarized as follows: A certain number of heterogeneous nurses, with
different qualification levels and working times, have to visit a set of clients at least once during a day.
Various assignment constraints (e.g. language skills, declined nurses, etc.) and hard time windows of
these visits are considered. In addition, maximum working times and mandatory breaks have to be
observed. The objective is to minimize the total travel and waiting times of the nurses. In practice,
nurses use either cars or public transport, depending on the geographical region and the efficiency
of the public transport system. However, routing with public transport is still hardly considered in
literature and we are not aware of any published work in this field, taking time-dependent travel
times into account; with the exception of conference presentations of our working group (e.g. Rest
and Hirsch, 2013).

In addition, many real-world problems are subject to dynamic and/or stochastic processes. In
the case of HHC it may happen several times a day that the estimated service times for treating a
client are exceeded as they depend for example on the physical condition of the client or the on-site
situation. It may also happen that new clients show up who need last-minute services (e.g. due
to dehospitalization) and thus, have to be inserted into the existing schedules. To the best of our
knowledge, such aspects are still not taken into account in the routing of the nurses. Stochastic
programming has only been applied to the HHC assignment problem (e.g. Carello and Lanzarone,
2014). This type of problem has a mid- to long-term perspective and aims at assigning clients to
nurses based on their needs and skills. While the routing of the nurses is not considered, it usually
addresses aspects like continuity of care or workload balancing. An overview of scientific work on
stochastic and dynamic vehicle routing in general can be found in Pillac et al (2013).
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Robust scheduling of urban home health care services using time-dependent public transport

2 Solution approach
The presented work builds upon our previous time-dependent and multimodal routing of the nurses
and aims at computing robust schedules that are able to cope with small disturbances. In a first step
we only consider the stochastic aspects of the HHC problem. More precisely, the service times for
treating a client are assumed to follow a known probability distribution and to be independent from
each other. From a modeling point of view, the presented problem can be seen as a time-dependent
vehicle routing problem with stochastic service times and additional HHC-related constraints.

A discrete time approach has been chosen to model the the time-dependency. To efficiently compute
time-dependent travel time matrices out of the timetables from the public transport service providers,
a dynamic programming approach has been implemented. It considers walking to nearby stations as
well as waiting for later connections and complies with the first in - first out (FIFO) property. To
solve real-world sized instances within reasonable time a time-dependent Tabu Search (TS) based
solution approach has been developed and implemented in the programming language C++. The
algorithm is based on the ideas of the unified TS, as used in time-independent routing problems
by Cordeau et al (2001) or Hirsch (2011). Thus, infeasible solutions are temporarily allowed and a
dynamically adapted weighted objective function is used to guide the search process. To speed up
the search the developed TS dynamically changes the size of its neighborhood.

In order to incorporate the stochastic service times and to compute robust schedules, a penalty
formulation is used as in Mendoza et al (2013). Thus, the objective function is extended by the
expected costs for recursive actions. Recursive actions are needed in case a route gets infeasible
because of the prolonged service times. In such a case, HHC service providers send out floaters, who
step in and take over a certain number of clients in order to sustain the services of the subsequent
clients in the route.

The algorithm will be tested with real-world based data from the ARC in Vienna. Its solutions are
compared with those obtained with deterministic service times, in order to evaluate the robustness
of the computed schedules.

References
Carello G, Lanzarone E (2014) A cardinality-constrained robust model for the assignment problem in home care

services. European Journal of Operational Research 236:748–762, DOI 10.1016/j.ejor.2014.01.009
Cordeau JF, Laporte G, Mercier A (2001) A unified tabu search heuristic for vehicle routing problems with time

windows. The Journal of the Operational Research Society 52(8):928–936
Hirsch P (2011) Minimizing empty truck loads in round timber transport with tabu search strategies. International

Journal of Information Systems and Supply Chain Management 4(2):15–41, DOI 10.4018/jisscm.2011040102
Matta A, Chahed S, Sahin E, Dallery Y (2014) Modelling home care organisations from an operations management

perspective. Flexible Services and Manufacturing Journal 26(3):295–319, DOI 10.1007/s10696-012-9157-0
Mendoza JE, Rousseau LM, Villegas JG (2013) A hybrid metaheuristic for the vehicle routing problem with stochas-

tic demand and duration constraints. Tech. Rep. CIRRELT-2013-75, CIRRELT - Centre Interuniversitaire de
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Handling Travel Time Uncertainty in City Logistics Systems

City Logistics (CL) is a quickly developing area of research aiming to create the methods for designing 
efficient and effective freight distribution networks for cities. Consolidation and coordination are two 
approaches used in CL projects. Consolidation is combining shipments in order to make their 
deliveries possible with fewer vehicles. Such operations take place in facilities called City Distribution 
Centers (CDC). CDCs are typically located on the city boundaries in order to prevent large trucks from 
entering the city traffic. Coordination is establishing effective collaboration and communication 
between the stakeholders of the system. 

There are three main decisions to be made in a CL system: determining the number of CDCs and their 
locations (strategic decisions), making the allocation decisions between customers and CDCs (tactical 
decisions), and determining the vehicle routes for customer service (operational decisions). Although 
these decision problems are well-studied separately in the literature, there are only a few studies 
that consider their integration with the features of CL systems. As CL projects become more popular, 
there is a growing demand for the methods dealing with such problems tailored for CL systems. 

Decisions in CL systems are especially susceptible to uncertainty. For example, different realizations 
of uncertainty in demand, travel time, service time, etc. significantly affect the performance of 
decisions. Uncertainty in higher level decisions have even larger impact on the system performance. 
Due to their higher level nature, we consider CDC location and customer allocation decisions in the 
current study and we plan to incorporate routing decisions in a future research.  

There are multiple ways of formulating location-allocation decisions together in a CL framework in 
the presence of uncertainty. We formulate the problem as a fixed charge capacitated facility location 
problem as it usually constitutes a basis of other formulations. To incorporate uncertainty, we prefer 
stochastic optimization to robust optimization. Focusing on the worst-case scenarios for robustness 
deteriorate the effectiveness of solutions. However, worst-case scenarios span only short intervals 
within our planning horizon and their consideration may not bring significant benefit. As the main 
goal in CL systems is to create distribution networks for the long-term, robust optimization would not 
be suitable with a strategic view of CL. With these points in mind, we make use of scenarios to 
represent solution environment and we apply stochastic optimization. 

We use three types of models with respect to the different levels of incorporating uncertainty: 
deterministic, single-stage stochastic and two-stage stochastic models. Deterministic model is a 
simple facility location-allocation model. Single-stage stochastic model uses the expected value of 
uncertainty factors and both location and allocation decisions are made once, effective for all 
scenarios. Two-stage stochastic model attains different allocation decisions for each scenario while
location decisions are made only once. 

We compare the performance of solutions obtained from the three formulations within a value of
information framework. Value of stochastic solution (VSS) and expected value of perfect information
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goal in CL systems is to create distribution networks for the long-term, robust optimization would not 
be suitable with a strategic view of CL. With these points in mind, we make use of scenarios to 
represent solution environment and we apply stochastic optimization. 

We use three types of models with respect to the different levels of incorporating uncertainty: 
deterministic, single-stage stochastic and two-stage stochastic models. Deterministic model is a 
simple facility location-allocation model. Single-stage stochastic model uses the expected value of 
uncertainty factors and both location and allocation decisions are made once, effective for all 
scenarios. Two-stage stochastic model attains different allocation decisions for each scenario while 
location decisions are made only once.  

We compare the performance of solutions obtained from the three formulations within a value of 
information framework. Value of stochastic solution (VSS) and expected value of perfect information 
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(EVPI) values are calculated to observe the tradeoff between the solution quality and the 
computational complexity of finding a solution. We have found that the two-stage stochastic model 
produces significantly better solutions than the single-stage stochastic model and that making both 
location and allocation decisions specifically for each scenario does not improve the objective 
function value significantly, compared to the two-stage stochastic model. Our understanding of these 
results is that the two-stage stochastic model should be the main decision-making tool for the 
location-allocation decisions of CL systems.  

We consider several types of patterns (like clustered, unclustered, and mixed) and distributions 
(uniform and normal) for the customer locations. After applying value of information analysis on the 
instances generated for each type separately, we observed that patterns and distributions have a 
significant effect on VSS values. For instance, uniform distribution obtains lower VSS values than 
random distribution and clustered pattern obtains higher VSS values than unclustered pattern. 

We repeat the same value of information analysis for the instances where candidate facilities are 
located inside the city (contrary to CDCs being located on the city boundaries). We observed that 
both VSS and EVPI values are significantly smaller in this case. We believe that these results 
demonstrate an important characteristic of location-allocation in CL systems.  

Obtaining different allocation decisions for different scenarios brings up the need for coordination. 
We assume that any customer with varying allocation creates a coordination cost for the whole 
system. Therefore, a second tradeoff appears between solution performances with respect to the 
cost of serving customers and the cost of coordination. For a desirable solution according to the 
preferences of the decision maker, one can place a limit on the cost of coordination and investigate 
the possible solutions as alternatives.  

While the methods described above can be applied for any kind of uncertainty, we made our 
experiments and analyses considering travel time uncertainty. The instances contain customers 
dispersed with different patterns and distributions. We generate a large number of scenarios for 
each instance using the Bureau of Public Roads function that models the travel time in a city. We 
identify several causes for traffic congestion and systematically construct our scenarios so that the 
effect of each cause is represented. 

Considering the large number of customers that would be present in a CL system, we develop a 
solution method based on Benders Decomposition. For larger scale instances, Benders 
Decomposition finds feasible solutions with acceptable performance in short time. This method is 
makes it possible to decompose the problem with respect to scenarios as well as decision variables. 
By decomposing scenarios, we deal with a lot of small sized problems. However, the total solution 
time does not increase largely as the number of customers increases.  

In the next steps of our study, we are planning to deal with routing decisions explicitly. Since the 
major model is already NP-hard even without routing decisions, our aim is to consider routing under 
an approximation framework. 
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1 Introduction

The demand for goods in urban areas has seen a sharp growth in the past years; this trend is expected to

continue in years to come (Benjelloun and Crainic, 2009). As a result, urban areas experience an increase

in inflow of trucks, contributing to problems such as congestion, air pollution, and noise hindrance.

Often, these trucks carry only a relatively small volume of goods for a few destinations within the area.

A possible solution to reduce the number of trucks in urban areas is the use of consolidation centers at

the edge of these areas, where goods from incoming trucks are transshipped to dedicated urban delivery

vehicles. These vehicles can subsequently make efficient tours within the urban area.

We study the dispatching decisions at an urban consolidation center with uncontrolled batch arrivals

of Less-than-Truckload goods. The uncontrolled arrivals reflect the delivery of goods by independent

carriers. A batch may well contain orders with, e.g., dispersed destinations and various delivery windows.

Directly distributing an arriving batch may therefore render poor solutions. Instead, the hub operator

could decide to hold some orders and wait for more incoming batches that allow for consolidation within

the delivery vehicles. As such, more efficient routes can be taken. Various uncertainties affect the

planning, such as the arrival time of new batches and the properties of the orders in a batch (e.g.,

size, volume, time-windows). Based on the available knowledge regarding current and future orders,

the operator is able to make informed waiting decisions. This can be accomplished by deploying a

waiting policy that provides shipping decisions given the information and beliefs of the operator. For

this purpose, we propose an Approximate Dynamic Programming (ADP) approach, aimed at efficiently

dispatching urban delivery vehicles. As such, we facilitate the need for operational planning at the urban

distribution level, where the arrival process of goods at the consolidation center has a significant impact.

2 Problem description

We formulate the problem as a Stochastic Dynamic Program (SDP), where the goal of the hub operator

is to minimize the total costs over a given planning horizon. We define stages as decision moments within
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given by all possible combinations of orders to dispatch. The outcome space follows from the transition

of inventory and fleet due to the action taken in combination with the new random arrivals. Costs are

comprised of two elements. First, transportation costs are incurred according to a cost function based

on travel distance and fill rate. Second, the operator incurs a financial penalty in case of violating the

delivery windows. The operator aims to minimize total costs, and is therefore required to strike a balance

between lateness and efficiency. The key difficulty in finding this balance lies in the uncertainty regarding

future arrivals. New arriving batches may allow to combine orders and generate more efficient routes,

but the waiting time increases the risk of lateness without the desired orders arriving.

3 Solution approach

The state space of the SDP increases exponentially with both the number of orders and the number

of order types. Furthermore, the action space and outcome space quickly become very large. The

SDP therefore becomes intractable for realistic instances. Following Powell et al. (2012), we develop an

Approximate Dynamic Programming approach to (i) solve the decision problem for large instances, and

(ii) obtain fitted value function approximations that allow for fast decision making in a practical setting.

To efficiently learn values of states, we define features that describe the state of the system, and deter-

mine the explanatory values of these features by applying linear regression on a small but representative

instance of the corresponding SDP. We obtain a set of features that explain about 95% of the costs:

the total number of orders available, the number of orders of every type, and fleet availability in the

current stage. We introduce several exponents and cross-products as separate features to improve the fit.

By considering the features instead of the full state description, we drastically reduce the computation

effort. We learn the weights corresponding to specific features by simulating random arrivals and learn

the values of specific actions. The result of the procedure is a value function, where inputting the batch

properties and the corresponding weights directly yields an action.

4 Computational study

Inspired by a real-life case of urban distribution, we design a network and infer probability distributions

for the order types. To assess the quality of the value function approximation, we first make use of

toy-sized instances. For these small instances, we are able to compare the ADP results with the exact

results of the SDP. To obtain insights into the behavior of the algorithm, we subsequently focus on large

instances. We vary several of the real-life characteristics to obtain a broad insight into the behavior of

the algorithm. Variables we assess are (i) transportation- and penalty costs, (ii) sources of uncertainty

(batch arrival time and/or contents of the batch), (iii) frequency of incoming and departing batches,

(iv) flexibility in delivery windows, and (v) sizes of batches and orders (order sizes, capacity of long-haul

trucks and delivery trucks). For the large instances, we compare our approach with two greedy heuristics.
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1 Introduction

Less stock-keeping at factories and retailers has increased the pressure on carriers to deliver on time. With
more trucks, probabilities for congestions rise. These do not only occur on roads, but especially at warehouses.
In urban areas, this problem is increased by inadequate loading facilities and parking space. Congestions at
loading bays can cause severe delays in logistics processes and cause increasing bottlenecks for truck routes.

According to a survey among more than 500 transport companies in Germany, 18% of them have an
average waiting time of more than two hours and 51% have an average waiting time between one to two
hours at each warehouse [4]. Another problem is insufficient parking capacity for waiting trucks. The German
Federal Office for Goods Transport has provided a special report on problems at loading bays [3]. The main
reasons for waiting times include shortages of resources (staff and infrastructure) and uncoordinated arrivals
of trucks, especially at peak times. These problems are interconnected, since uncoordinated arrival of trucks
make appropriate staffing difficult. In addition, congestions can interfere with other processes due to a
high number of trucks at the facility. Proposed remedies for these problems are time slot management,
information sharing, and increased infrastructure capacities.

Capacity increases require rather high investments compared to improved coordination by information
sharing or time slot management and are often even infeasible in urban areas. We have investigated the
provision of information about the historical waiting times to the carriers in previous work. Carriers can
utilize this information by changing their routes and schedules accordingly. Since waiting time information
is the same for all carriers, there is a risk that they make similar decisions, e.g. delaying departure to avoid
waiting times that occur in the morning, and therefore cause new congestion at another time of the day.

To mitigate congestions at loading bays, we propose the application of package (combinatorial) auctions
to allocate time slots to trucks. The contributions of this research are a bidding language and a core-selecting
package auction for loading bay coordination. Core-selecting payment rules have been applied in spectrum
auctions and can avoid several drawbacks of the Vickrey–Clarke–Groves (VCG) mechanism with Clarke pivot
rule, e.g., low perceived fairness of prices [2, 5, 6]. We evaluate our proposal by means of simulation and
assess (i) the potential for waiting time reduction compared to uncoordinated arrivals as well as sharing of
historical waiting times from previous work, (ii) the empirical complexity of the computational problem for
scenarios of varying complexity, and (iii) the relation of VCG and bidder-Pareto-optimal core payments.

2 Loading bay time slot auction

We assume there is a set of carriers and warehouses, each having a specific location. Each of the carriers’
trucks is given a tour that is a subset of the set of warehouses. Trucks start at and return to the depots.
Warehouses can serve a number of carriers at the same time; this (un)loading capacity may vary for both
different warehouses and different time slots. When a warehouse is fully occupied and/or reserved, other
carriers have to line up and wait until the warehouse employees can serve them. Routes define ordered tours
and thus paths in the transportation network graph. To build routes for tours, carriers have to order the
locations. This can be done for example by solving a Traveling Salesman Problem (TSP).

The general problem setting is comparable with multiple instances of the time-dependent traveling sales-
man problem (TD-TSP) [1, 7, 8]. That is, for every truck, a TD-TSP has to be solved. In contrast to
existing approaches, the problem addressed in this work also results from the constrained capacity of the
vertices (as compared to edges) of the traveling graph. This means that the solutions interact with those of
the other carriers and the resulting round trip times are therefore interdependent, i.e., carriers optimize at
the same time and their optimizations impact each other.

The proposed auction allocates warehouse loading bay time slots to bidders and guarantees that a carrier
either gets an entire bundle of time slots that fit a route or none. Different departure times and different
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routes can be realized by bidding for different bundles of time slots. The service capacity of warehouses
(loading bays) is modeled as a multi-knapsack problem. In each time slot t ∈ T , each warehouse k ∈ K has a
capacity of ckt. The carriers (bidders) i submit zero or more bids j ∈ Ji as tuples (bj , R

j), where Rj denotes
a |T | × |K| reservation matrix and bj the monetary bid on the reservations described by this matrix.

To maximize the social welfare, the objective is to maximize the sum of accepted monetary bids in the
winner determination (WD) problem. Constraints ensures that the warehouse capacities are not exceeded for
accepted bids and that at most one bid can be accepted per bidder (for alternative routes/departure times).
Following Day and Raghavan [6], we calculate equitable bidder-Pareto optimal (EBPO) core payments
iteratively as follows. (i) Determine winners and calculate VCG payments. (ii) Solve the core separation
problem, which finds coalitions of bidders that block the current outcome (who “would pay more” than the
current payments of winners). (iii) If there is a blocking coalition, add a constraint for the prices to be larger
than the bids of the blocking coalition found. (iv) Re-calculate payments with the constraints found so far.
This procedure is repeated from step (ii) until no further core constraint violation is found [6].

3 Results and conclusion

Our findings provide evidence that loading bay auctions can alleviate congestion substantially and that the
core-pricing rule is well-suited to address the price fairness problem in this setting.

Building on previous work, we have proposed a method to further decrease the mean waiting time
substantially in our simulations. This improvement, however, comes at the cost of computational complexity.
Computational solver time substantially increases for scenarios of higher complexity, even for the rather small
setting of ten bidders in our scenario. While the observed absolute numbers remain feasible in practice, the
computational complexity has to be analyzed in detail for practical applications. For example, it may be
required to restrict valid bids to a reduced number of time slots since this parameter has an essential impact
on the computational complexity. The application of core-selecting payment rules requires WD and pricing
problems to be solved exactly. If this is not feasible in practice since further restrictions on valid bids cannot
be applied, approximation of these problems may be required. Then, additional problems can arise that
mitigate the acceptance of the approach by participants. For example, when approximating WD, a bidder
might win the auction who would not have won in the efficient, exact solution. We leave an application of
approximation algorithms to our setting for future work.
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With the rise of Big Data analytics and urban informatics, there is a rising interest to gather ever more real 
time data from a city’s environment for real time traffic monitoring (Gerolimins and Daganzo, 2008) or 
travel momentum monitoring (Liu et al., 2014). Numerous monitoring sensor technologies exist for this 
purpose; some of the more promising among these are mobile sensors that can be deployed 
autonomously, such as unmanned aerial vehicles (i.e. drones). For example, UAVs have been 
demonstrated as feasible tools for gathering real traffic and transportation data (Srinivasan et al., 2004). 
UAVs can substitute traditional methods for a number of uses in transportation including measuring level 
of service, average annual daily traffic, intersection operations, parking utilization (Coifman et al., 2006); 
traffic management (Huiyuan et al., 2007); and origin-destination estimation (Braut et al., 2012). 

Despite the benefits to city monitoring and humanitarian logistics, deployment of UAVs or other 
mobile sensors remains a challenge. Kinney et al. (2005) noted that current practice in planning the routes 
of UAVs typically involves manual calculations. More recent studies have sought to address the 
deployment problem in one of three ways. One group of studies tackled the need for periodic coverage 
and timing of mobile sensors over different areas (Cheng et al., 2011; Du et al., 2010), called “sweep 
coverage” (see Gage, 1992), which is not to be confused with sweep algorithms in vehicle routing. The 
second group of studies focused on the arc routing aspect of mobile sensors on infrastructure networks, 
ensuring that tours visit each critical link in a network like in a rural postman problem (Sipahioglu et al., 
2010). Yazici et al. (2014) extended the arc routing to a dynamic deployment problem where incidents 
require updating the routes of the autonomous sensors in real time. However, there is a research gap in 
considering dynamic/online UAV sensor deployment that explicitly handles the periodic sweep coverage. 

We address this gap by proposing an inventory routing variation of the dynamic UAV sensor 
deployment problem from Yazici et al. (2014) as a means to handle sweep coverage. Inventories in this 
problem setting are used to model the periodic constraint for revisiting a link in a network. This is 
accomplished by a new arc-inventory routing problem formulation where “customer demand” is located 
on links instead of nodes. The magnitude of the demand represents the degree of frequency desired for 
patrolling a particular link, and varies from link to link. The expected frequency requirement is related to 
factors for risk of an incident that requires significant surveillance (this would be the “stock-out” event). 
Factors include traffic flow densities, for example, if real time traffic surveillance was the objective, or 
population densities in the case of humanitarian logistics. 

To maintain a dynamic problem under uncertainty with real time information, we consider the 
stochastic inventory routing problem (IRP) as defined in Bard et al. (1998), Jaillet et al. (2002), Bertazzi 
et al. (2013), Coelho et al. (2014), among others. Uncertainty in this problem setting may involve 
changing real time information pertaining to traffic densities or other data like weather conditions. The 
framework involves a look ahead to multiple periods to plan out which optional links to visit in the 
current period and which to defer, and then to execute only the portion of the plan until new information 
arises. Earlier studies have generally treated the random demand as a stationary variable. In our study we 
generalize it to a nonstationary process: a mean reverting process (see Chow and Regan, 2011a) from 
which the stationary process is a special case.  
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 Three deployment policies are compared. The first is an adaptation of Bertazzi et al.’s (2013) 
rollout algorithm representing a state of the art method in solving the stochastic IRP. Rather than 
employing a deterministic IRP as the value approximation as they’ve done, the single period sensor 
deployment problem from Yazici et al. (2014) is substituted. Their method uses a generalized Voronoi 
diagram to construct the graph and solve by either a minimum perfect matching algorithm if all links need 
to be covered or with Frederickson’s algorithm otherwise. The second policy is an adaptation of the real 
option-based network design and timing policy from Chow and Regan (2011b). Although Chow and 
Sayarshad (2015) showed that single period routing problems may not benefit much from such a policy 
that gains most of its value from timing, the IRP is essentially an optimal timing problem. The two 
policies are compared against a myopic reoptimization policy. 
 The three policies are compared in a series of numerical tests involving a simple 9 node grid 
network, a medium network of 24 nodes, and a larger, more realistic network setting extracted from the 
Toronto region.  

To the best of our knowledge, there are no studies in the literature that consider dynamic 
stochastic inventory routing problems with nonstationary demand as mean reverting processes or as arc 
routing problems. There are also no studies that have dealt with dynamic sensor deployment with sweep 
coverage. Lastly, the proposed algorithm adapted from Chow and Regan (2011b) is the first such 
extension of a real option routing and timing policy for IRP.  
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Introduction
A good calibration is usually a prerequisite for the
simulator to reliably reproduce and predict traffic
conditions. High-resolution stochastic traffic simu-
lators enable detailed representations of reality, and
as such they are built around data-intensive model
systems. This renders the automatic calibration of
high-resolution stochastic traffic simulators a diffi-
cult and practically relevant problem. A largely un-
solved methodological challenge in this context is
the formulation of tractable measurement equations
that link available surveillance data from the real
transport system to the model parameters one wishes
to calibrate.

High-resolution stochastic traffic simulators
usually do not satisfy strong model assumptions such
as continuity, differentiability, and normality. There-
fore, almost all existing approaches utilize black-
box optimization routines that exploit problem struc-
ture hardly beyond numerical differentiation. Ex-
amples of computationally intensive strategies in-
clude simultaneous perturbation stochastic approx-
imation (Spall (1)), unscented Kalman filter (Julier
and Uhlmann (2)), and derivative-free search meth-
ods. See Antoniou, Balakrishna (3, 4) for exam-
ples, or Ben-Akiva et al. (5) for a comprehensive
literature review. Recent contributions by Flötteröd
et al. (6, 7, 8) approach the calibration problem effi-
ciently by analytically approximating the gradient of
the measurement equation.

This paper proposes a generalized cali-
bration method for high-resolution stochastic traf-
fic simulators. The problem is formulated as a
simulation-based optimization (SO) problem whose
framework was initially proposed by Osorio and
Bierlaire (9).

Problem statement
Origin-destination (OD) pairs are trip production and
attraction points connected by a set of routes in an ur-
ban network. A single OD pair is denoted by s ∈ S

where S is the set of OD pairs. The set of routes for
OD pair s is denoted by Rs. The total traffic demand
between OD pair s is denoted by ds. The probability
that a traveler in OD pair s selects a route r ∈ Rs is
written as Ps(r | x,θ) where x represents the route-
associated network attributes (i.e., the travel times)
and θ is a vector of parameters that governs the route
choice. Let δir be one if route r contains link i and
zero otherwise. Assuming no losses, the expected
link flow q on link i for parameter θ is expressed as:

qi(θ) =
∑
s∈S

ds
∑
r∈Rs

δirPs(r | x,θ). (1)

Since the network travel time contained in x depend
in turn on the network flows, Equation (1) is cir-
cular and can in general only be solved iteratively.
These iterations can be viewed as a learning pro-
cess in high-resolution stochastic traffic simulations
where users choose routes based on the recent net-
work conditions x, which updates the future network
conditions.

Denoting the traffic count on link i by yi, the
problem of calibrating route choice behavioral pa-
rameters can be formulated as minimizing the sum of
squared differences between the expected simulated
flows qi(θ) and the traffic counts:

min
θ

∑
i

(yi − qi(θ))
2 . (2)

The problem is difficult because Equa-
tion (1) has no closed form expression and is rep-
resented only procedurally through the traffic simu-
lation.

The objective of this paper is to address
Problem (2) by embedding analytical approxima-
tion of Equation (1) which incorporates structural
information from an analytical differentiable traf-
fic model. The embedded analytical information is
expected to enhance the computational efficiency,
and further allows us to efficiently solve high-
dimensional calibration problems.
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At the outset, we concentrate on the cali-
bration of the travel time coefficient in a logit route
choice model where travel time is the sole explana-
tory variable and is denoted by a scalar θ.

Simulation-based optimization approach
Metamodel (or surrogate) method is used to derive an
analytical approximation of Equation (1) that com-
bines information from the high-resolution stochas-
tic traffic simulation model and information from
an computationally efficient macroscopic analytical
traffic model. Ideas along these lines have been
used to efficiently address large-scale urban traffic
management problems while using inefficient yet de-
tailed microsimulators (Osorio and Chong, Osorio
and Nanduri, Chen et al. (10, 11, 12)).

A typical Metamodel SO iteration involves
two main steps. Firstly, a metamodel is constructed
based on a sample of simulated observations. Sec-
ondly, it is used to perform optimization and pro-
duces a trial point (calibration parameter value). The
trial point is evaluated by the simulator and new sim-
ulation observations are obtained. The metamodel is
improved with the availability of new simulation ob-
servations (step 1) and leads ultimately to better trial
points (step 2). The general metamodel SO frame-
work was proposed by Osorio and Bierlaire (9) who
use the derivative-free trust region algorithm of Conn
et al. (13).

The analytical traffic model used is based on
Osorio and Bierlaire (14) and is complemented by
multinomial logit model to make route choice en-
dogenous. The high-resolution stochastic traffic sim-
ulator used is MATSim (Nagel et al. (15)) which is
an agent-based mesoscopic traffic simulation model.

Results
Comparing to the benchmark approach using a lin-
ear polynomial metamodel, the performance of the
proposed approach has been tested on a toy network.
The ’real’ traffic counts on links are generated by
simulation.

Given the same fixed computational budget,
5 experiments for each approach are plotted respec-
tively as the current iterate (the trial point value) vs.
iteration in Figure 1 and 2. In both figures, the pro-
posed metamodel is denoted by m while the bench-
mark metamodel is denoted by ϕ.

FIGURE 1 Initial point θ0 = −57; Optimal
point θ∗ = −42. Simulated calibration parame-
ter values across algorithmic iterations.

FIGURE 2 Initial point θ0 = −10; Optimal
point θ∗ = −42. Simulated calibration parame-
ter values across algorithmic iterations.

The figures suggests that the proposed
metamodel outperforms the benchmark metamodel
within a tight computational budget. To better un-
derstand the pros and cons of the proposed approach,
more extensive experiments are currently being car-
ried out.

The undergoing work is to evaluate the per-
formance of this novel approach for a large-scale real
network of the city of Berlin, Germany.
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Traffic accidents or disruptions and the resulting traffic bottlenecks represent a huge drain on
global productivity. New vehicular technologies enabling instantaneous direct communication with
other vehicles as well as a central planner are soon on the way. However it is not clear how these
technologies can be exploited. In this research work we consider a simple situation that represents
a common traffic problem: In a two-lane highway, a vehicular incident (accident, breakdown) or
maintenance work shuts down one lane at a certain point and traffic has to merge to the open lane
to proceed. We set up an optimization model to determine the best solution if a central planner can
control the vehicles. We then compare this solution against a number of behavioral and informational
assumptions on the drivers. Our aim is to derive the best centralized and decentralized policies with
selfish agents.

1 Traffic situation

A two-lane highway has one lane blocked due to some construction or an accident. The speed on

2-lane highway

Lane block

Figure 1: A two-lane highway with a blocked lane

the two lanes is given by some function

v1 = f(M,µ1, µ−1, v−1)

where M is the maximum legal speed and µ1 and µ−1 are the density of traffic (number of cars/km)
on i and the other lane respectively, as well as the velocity of the other lane. Precise nature of this
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function has to be specified. It is for instance decreasing in both densities, but also decreasing if
max(0, µ−1−µ1), that is if the other lane has a higher density there is a merging process that slows
down the speed of lane 1. Likewise if the velocity of the other lane is slower, there is merging into
lane 1 and again this effects lane 1 velocity.

In steady state µ1 = µ−1 and this is the maximum speed.

Now one of the lanes get blocked. We would like to compare the resulting process against a one
lane highway

v11 = f(M, 2µ1)

with a fully merged traffic.

Surprisingly very few papers that model and analyze merging behavior. Many simulations,
cellular automata models that descriptively, and often without empirical justification, give rules of
merging. Papers that marginally touch upon merging and game-theoretic analysis are the following.
Daganzo [3], Hidas [6], Gipps [5], Chang and Y-M.Kao [2], Baykal-Gürsoy, Xiao, and Ozbay [1],
Duret, Bouffier, and Buisson [4].

2 Research contribution

We first formulate a central planner’s optimization problem to maximize throughput. The solution to
this problem represents an equilibrium that may not be reached for lack of information or irrational
behavior. We compare the solution with self-interested drivers who are either myopic or optimize
based on local limited information. We study the role of information: equilibrium behavior when
drivers are informed of the incident a distance x̂ ahead of the incident but are under no obligation
to merge right away. Each individual driver makes a decision on when to merge based on different
informational assumptions. Our objective is to determine the optimal warning-ahead distance x∗ if
any, and study the Nash equilibrium.
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