Congestion Management for Air Transportation: Trends in Research and Practice

Michael O. Ball
Robert H Smith School of Business
&
Institute for Systems Research
University of Maryland
Air Transportation Delay in the U.S.: Aggregate Average Delay Evolution (fr Zou and Hansen)
Aggregate buffer (schedule padding) over time
(fr Zou and Hansen)
Cost to Society of Air Transportation Delay in 2007

(ref: NECTOR Total Delay Impact Study)

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Cost (billion dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost to Airlines</td>
<td>8.3</td>
</tr>
<tr>
<td>Costs to Passengers</td>
<td>16.7</td>
</tr>
<tr>
<td>Cost from Lost Demand</td>
<td>3.9</td>
</tr>
<tr>
<td>Total Direct Cost</td>
<td>28.9</td>
</tr>
<tr>
<td>Indirect Impact on GDP</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Passenger Delay Costs

<table>
<thead>
<tr>
<th>Delay Category</th>
<th>Delay Cost (billion dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SB (schedule buffer)</td>
<td>6.0</td>
</tr>
<tr>
<td>2. PDS (passenger delay against schedule)</td>
<td></td>
</tr>
<tr>
<td>2a. Delay due to delayed flights</td>
<td>4.7</td>
</tr>
<tr>
<td>2b. Delay due to flight cancellations</td>
<td>3.2</td>
</tr>
<tr>
<td>2c. Delay due to missed connections</td>
<td>1.5</td>
</tr>
<tr>
<td>Total estimated PDS (2a+2b+2c)</td>
<td>9.4</td>
</tr>
<tr>
<td>3. CSD (capacity induced schedule delay)</td>
<td>.7</td>
</tr>
<tr>
<td>4. VSA (voluntary early departure time adjustment)</td>
<td>.6</td>
</tr>
<tr>
<td>Total cost of passenger delay</td>
<td>16.7</td>
</tr>
</tbody>
</table>
Passenger delay modeling:

Sherry, The effect of airline networks and itineraries on passenger trip delays
Fearing, Passenger travel and delays in the national air transportation system
Mitigating Delays

- **Capacity expansion:**
 - Infrastructure investment, e.g. new runways
 - New technology: the Next Generation Air Transportation System (NextGen)

 Zou, Assessing benefits from aviation capacity investment: an equilibrium approach

- **Air Traffic Flow Management (ATFM):** Daily operational strategies and controls that make the best use of available capacity on a given day

- **Demand management (aka – airport congestion management):** methods for restricting the demand placed on the system by flight operators, e.g. slot controls, congestion pricing.
NextGen

- Satellite-based navigation
- More information/control moves to cockpit
- Greater precision in all aspects of flight
- Trajectory-based operations
- Performance-based operations
- Dynamic capacity management
- Requires investment both in ground infrastructure (FAA) and in new aircraft avionics (flight operators)

Churchill, Best equipped, best served: a new operational paradigm?
Air Traffic Flow Management

- Forecasting capacity levels (usually reductions due to weather), demand and capacity-demand imbalances
- Planning and controlling traffic management initiatives, e.g. ground delay programs, airspace flow programs,
- Collaborative air traffic flow management
- Research topics: dynamic, stochastic models; distributed decision-making, collaborative decision making.
ATFM Presentations

Marla, Integrated disruption management and flight planning to trade off delay and fuel burn

Kuhn, Multicriteria air traffic flow management

Hoffman, Development and evaluation of market-based traffic flow management concepts

Gupta, Addressing weather induced uncertainty in air traffic flow management: a robust and adaptive optimization approach

Kim, The effects of user competition in air traffic management initiatives
Need for Airport Congestion Mgmt

Motivation for limiting the number of scheduled operations at an airport:

- an airport’s runway complex has a capacity, which may vary depending on weather
- as demand (scheduled ops) approaches capacity, queueing delays will increase at an exponential rate.

Inherent problem:

- multiple, competing airlines seek to use common airport capacity
- the incremental addition of a flight may cause much more delay (to other flights), than the delay experienced by the added flight

> without controls, an airport will naturally evolve to a highly congested state.
Slot Controls

Slot controls place an upper limit on the number of operations (scheduled departures and arrivals) in a given time window.
Slot Controls

These operations must be deleted or moved to less congested time windows.

Slot limit

0600 1200 1700
Slot Controls

slot limit

0600 1200 1700
Basic Options and Tradeoffs

Administrative measure vs market mechanism
Slots vs no slots
Market mechanism: auctions vs congestion pricing

Administrative measure ➔ slots
Slots + Market Mechanism ➔ Auctions
No Slots ➔ Congestion Pricing
Slots vs No Slots

- **Fixed limit on number of operations**
- **Congestion Prices provide “incentive” to limit operations**

Slots
- UAL
- USA
- DAL
- Others

No Slots
- UAL
- USA
- DAL
- Others

Slots allow for strong control over congestion and delays; no slots allow for carrier scheduling flexibility.
Airport Congestion Management: US vs Europe

Europe:
- virtually all major European airports are slot controlled (based on EEC and IATA rules) ➔ “grandfather rights” and “use-it-or-lose-it” rules.

US:
- to a great extent a first-come-first-served system is operated; access is limited only by availability of terminal facilities
- Historical exceptions: in 1968 high density rule (HDR) established slot controls at five airports: Chicago O’Hare (ORD), Washington Reagan National (DCA) and three NY area airports: LaGuardia (LGA), Kennedy (JFK) and Newark Liberty (EWR); HDR policies very similar to IATA (but does include buy-sell provision)
- There has been significant government activity in this area in the past 6 years, including proposed slot auctions – currently DCA, EWR, LGA, JFK have some form of slot controls
Demand Management Presentations

Determining slot levels and slot allocation:

Pita, Optimization-based analysis of slot allocation strategies for European airports
Lovell, Determining the number of airport slots

Justification of market-based approaches:

Swaroop, Social welfare justification for market-based approaches to airport congestion management
Vaze, Airport demand management under airline frequency competition

Environmental benefits of demand management:

Ryerson, Demand management and fuel savings
Air/road interactions:

Peeta (DeLaurentis), An integrated framework to analyze interactions between air and road modes in a regional transportation system
Perspectives on Congestion Management on the Ground vs in the Air

Road Transportation:

- Congestion mgmt initiative, e.g. tolls
- Change in individual user behavior
- Impact on system user
Perspectives on Congestion Management on the Ground vs in the Air

Road Transportation:

Congestion mgmt initiative, e.g. tolls → Change in individual user behavior → Impact on system user

Air Transportation:

Congestion mgmt initiative, e.g. slot control. → Change in airline behavior → Impact on system user
Perspectives on Congestion Management on the Ground vs in the Air

Road Transportation:

- Congestion mgmt initiative, e.g. tolls
- Change in individual user behavior

Impact on system user

Air Transportation:

- Congestion mgmt initiative, e.g. slot control.
- Change in airline behavior

Impact on system user
Congestion management research activities for ground and air transportation have largely proceeded independently

... we hope that this workshop will foster a cross fertilization of ideas and future research interactions.