Stochastic Network Models for Hospital Inpatient Flow Management

Jim Dai
School of ORIE, Cornell University
(on leave from Georgia Institute of Technology)
Team members

- Georgia Tech
 - Pengyi Shi

- University of International Business & Economics, Beijing
 - Ding Ding

- National University of Singapore (NUS)
 - Jame Ang, Mabel Chou

- National University Hospital (NUH)
 - Jin Xin, Joe Sim
Outline

• Part 1: Empirical observations
• Part 2: Stochastic network models
• Part 3: Two-time-scale framework
• Part 4: Managerial insights & future research
Empirical observation at NUH

- Average queue length curve over 78 weeks
 - # of patients who are waiting for inpatient beds from the emergency department (ED)
 - Period 1: Jan 2008 to Jun 2009
 - Two types of variations
 - Time-of-day
 - Day-of-week
Average queue length curve (547 days)

- Time-of-day variation
Waiting time statistics: Period 1

Average waiting time

Fraction of patients who wait at least 6 hours
Bed-request rate and discharge distribution
Early discharge campaign: 2nd half of 2009

- Discharge time distribution
 - Period 1: Jan 08 to Jun 09 (13% discharge by noon)
 - Period 2: 2010 (27% discharge by noon)
Period 2 performance

- Changing operating environment
Israel hospital (Armony et al., 2011)
Motivation

- Can we *build a model* and *find methods* to predict the average queue length curve?
- If so, how can we use it to make relevant decisions?
Part 2: Stochastic network models

- Time-varying queues
 - Massey (1981), non-stationary queues
 - Whitt (1991)
 - Massey, Mandelbaum and Reiman (1998)
 - $M_t/GI/N$ framework
$M_t/GI/N$ queues fail to capture

- Simulation results from an $M_{peri}/\text{lognormal}/N$ system

avg waiting time

avg queue length
A new stochastic network model

- Multi-server pools serving multi-class customers
New features

- Endogenous service times
- Allocation delays
- Overflow trigger times
Endogenous service times

Service time = Discharge time – Admission time
= LOS + Dis hour – Adm hour
Length-of-stay (LOS) = number of nights in hospital

- LOS distribution
 - Average is ~ 5 days
 - Depends on admission source and medical specialty
Checking the service time model

(a) Empirical

(b) Simulation output
An alternative iid service time model

- Directly generate service times from the empirical distributions
 - Discharge distribution does not match
$M_t/GI/N$ queues fail to capture

- Simulation results from an $M_{peri}/\text{lognormal}/N$ system

Average waiting time

Average queue length

![Graph showing average waiting time and queue length over time.](image-url)
Allocation delays

- Getting a bed is a process
 - Pre-allocation delay
 - Bed management unit searches/negotiates for beds
 - Post-allocation delay
 - Delays in ED discharge
 - Delays in transportation
 - Delays in ward admission

- Must model allocation delays