An analysis of sparse, limited flexibility, service architectures

John N. Tsitsiklis, Kuang Xu

July 2015
The general theme – some flexibility goes a long way

- Supply chain management
 - Jordan & Graves, 1995
 - Simchi-Levi & Wei, 2012
 - Chen et al., 2014, ...

- Supermarket model & extensions (load balancing/distribution)
 - Mitzenmacher, 1996
 - Vvedenskaya et al., 1996
 - Stolyar, 2015, ...

- Content provision
 - Leconte et al., 2012
 - Shah & deVeciana, 2015
Outline

- Service architectures with multiple job streams and servers
- Server flexibility: first example (fraction of capacity in global server)
- Sparsity requirement
- Second example: modular architecture
- Main model: based on expander graphs
 - scheduling policy and its analysis
- Concluding remarks
A space of service system architectures

Context
- server farms
- content provision
- call centers

Stream i
- type i jobs
- demand for video i
- question on subject i

No flexibility
- $\lambda \rightarrow \begin{array}{c}
\text{local queues} \rightarrow 1
\end{array}$
- delay $\sim 1/(1 - \lambda)$

Full flexibility
- $\lambda \rightarrow \begin{array}{c}
\text{global (flexible server)} \rightarrow 1
\end{array}$
- delay $\rightarrow 0$

- Consider intermediate ("limited flexibility") architectures
A partially flexible system

- \(N \) independent Poisson streams, \(\lambda < 1 \)
- local exponential servers, rate \(1 - p \)
- global (flexible server), rate \(pN \)
- \(Q_i^{(N)} \): # of jobs in queue \(i \), in steady-state
- \(p = 0 \): \(Q_i^{(N)} \) is geometric, mean \(\frac{1}{1 - \lambda} \)
- \(p = 1 \): \(Q_i^{(N)} \) \(\Rightarrow 0 \), as \(N \to \infty \)
Old results [JNT+KX, 2012]

\[P \left(Q_i^{(N)} \geq i^* \right) \rightarrow 0 \]

\[i^* = \log \frac{1}{1-p} \frac{1}{1 - \lambda} \]

- \(\mathbb{E}[\text{delay}] = O\left(\log \frac{1}{1 - \lambda} \right) \)

![Graph showing average queue length vs. traffic intensity with curves for p=0.05 and p=0, highlighting no pooling and a little pooling cases.](image)
Back to the original motivation

No flexibility
degree = 1

delay \sim 1/(1 - \lambda)

Limited flexibility
degree \ll n

Full flexibility
degree = n

delay \rightarrow 0

• Every node has one skill vs. all skills
• Previous model \approx fraction \ p \ of servers have all skills
• Every node has \ d \ll n \ skills
• Can we get delay \rightarrow 0? Architecture/graph? Scheduling policy?
One solution: Modular architecture

- All arrival rates are equal and < 1: delay $\to 0$
- But! not robust w.r.t. non-uniform arrival rates
 - e.g., if half of the streams have $\lambda_i = 0$
 and half have $\lambda_i \approx 2$

- fully connected clusters
 - d queues and d servers
- $d \to \infty$, e.g., $d \approx \sqrt{n}$
Randomized modular architecture

- Suppose that: \(\sum_i \lambda_i \leq \rho n \) \(\rho < 1 \): load factor
 \[\lambda_i \leq u \] \(u \): fluctuation parameter \(u \ll d \)

- Create \(d \)-stream clusters at random

- For any allowed rate vector, \(P(\text{stable and delay } \ll 1) \to 1 \)
 - But! Bad rate vectors will also exist
Robustness requires expanders

- Want to be able to handle “allowed” arrival vectors with:
 \[\lambda_i \leq u < d \]
 \[\sum_i \lambda_i \leq \rho n \quad \rho < 1 \]

- A set \(S \) of streams must be connected to at least \(u \cdot |S| \) servers
 (when \(|S| \leq \rho n / u \))
 \(\Rightarrow \) need an expander graph

- **Theorem: (Robustness; Large Capacity Region)**
 Expander with expansion parameter \(\approx u \)
 \(\Rightarrow \) all allowed \((\lambda_i) \) are feasible
 (corollary of max-flow/min-cut theorem)
Random graphs \rightarrow expanders

- **Fact:** If $d = (1 + \epsilon)u$, a random graph with expected degree d has the desired expansion property, with high probability.

- How about delay?

- **Theorem [JNT+KX, 2013]:** Can design a policy such that: For allowed (λ_i): delay $\ll 1$, with high probability

- But maybe, for any given graph, some “allowed” (λ_i) will have “bad” delay?

- **Theorem [JNT+KX, 2015]:** Assume expander, $u \leq cd$. Can design a policy such that: For all allowed (λ_i): delay $\ll 1$.

- Theorem [JNT+KX, 2013]: Can design a policy such that: For allowed (λ_i): delay $\ll 1$, with high probability
A virtual queue policy

batch the arrivals: ρb jobs \quad time \approx \frac{b}{n}

service intervals: $s = (\rho + \epsilon)\frac{b}{n} < \frac{b}{n}$

- At start of service interval:
 - If “free”: make all servers busy
 - at end: $\approx (\rho + \epsilon)b$ free servers
 - assign all ρb jobs to servers, if possible
 - success: batch departs, next service interval is free
 - failure: do something simple, until all jobs are assigned

$u \leq cd < d$

$log n \ll d \ll b \ll n$
A virtual queue policy

batch the arrivals: ρb jobs \quad time $\approx b/n$

$u \leq cd < d$

$\log n \ll d \ll b \ll n$

service intervals: $s = (\rho + \epsilon) \frac{b}{n} < \frac{b}{n}$

- Service time of a batch: s (one service slot)
 - plus more service slots in case of failure (probability q)
 - additional time: mean $O(b)$; variance: $O(b^2)$
- Key lemma: $q = O(1/n^2)$
- $\#$ batches: G/G/1 queue \quad $\mathbb{E}[\text{svc. time}] \approx s < b/n$ Stable!
- Kingman’s formula: time of a batch in virtual queue $= O(s)$
The key lemma: $P(“failure to assign”) \text{ is small}$

batch the arrivals: ρb jobs \hspace{1cm} time $\approx b/n$

\begin{itemize}
 \item batch: ρb jobs arrive; to $\leq \rho b$ queues \hspace{1cm} keep $\approx \rho b$ “left nodes”
 \item during service interval for batch:
 \hspace{0.5cm} about $(\rho + \epsilon)b$ free servers ("right nodes"), w.h.p.
 \item Initial graph is expander: set S has (about) $\geq d|S|$ neighbors
 \item Random subgraph is expander, w.h.p., expansion $\approx d(b/n)$
 \item each left node has “supply” (about) $\leq u(b/n)$, w.h.p.
 \hspace{0.5cm} \Rightarrow exists feasible assignment (w.h.p.)
\end{itemize}

$u \leq cd < d$

$log n \ll d \ll b \ll n$
The key sub-lemma: random subsets of expanders are expanders

- Initial graph is expander: set S has (about) $\geq d|S|$ neighbors
- In subgraph:
 a neighbor is still there, with prob. $\approx b/n$
 set S has $\geq d|S|b/n$ neighbors, w.h.p.
 (delicate) union bound: all sets S have $\geq d|S|b/n$ neighbors, w.h.p.
 subgraph is expander, expansion $d(b/n)$ (w.h.p.)
Recapitulation

batch the arrivals: ρb jobs

time $\approx b/n$

service intervals:

$\begin{align*} s &= (\rho + \epsilon) \frac{b}{n} < \frac{b}{n} \

\end{align*}$

- Choose an expander graph

expansion parameter, $d > u$, fluctuation parameter

- Allowed flows ($\lambda_i < u$) are feasible

- Batch & match ρb jobs

 - succeed with high probability

 - delay of job: \approx batching time $\approx b/n$

 plus “service time of batch” $\approx s \approx b/n$
Comments

- Policy uses centralized information
collect batch of jobs and free servers and assign
- Can design architecture/policy with randomized routing
that does not use global state information
 - clusters as in random modular architecture
 - connect clusters according to sparse expander
- But policy needs to know the λ_i
- Open question:
 architecture+policy with vanishing delay and low informational requirements?
Back to the big picture

• Small degree of centralization (or resource pooling, or flexibility) can yield significant benefits.
 – architecture/policy design may be nontrivial

• Technical extensions:
 – relax Poisson/exponential assumptions
 – heavy-tailed service times
 – time-varying λ_i
 – multiple-layer models

• Models that incorporate specific application aspects
 – Call centers
 – Supply chains
 – Decision making systems
 – …
Thank you!