Introduction and Context

Recall:

- MCMC is really really really important.
- Some MCMC algorithms converge much faster than others.
- Can find optimality results from diffusion limits.
- e.g. Gaussian Random-Walk Metropolis: optimal choice has acceptance rate around 0.234 (how?), and proposal covariance \((2.38)^2 d^{-1} \Sigma_t\) where \(\Sigma_t\) is the target covariance (unknown).
- So, we have guidance about optimising MCMC in terms of acceptance rate, target covariance matrix \(\Sigma_t\), etc.
- But we don’t know what proposal will lead to a desired acceptance rate, nor how to compute \(\Sigma_t\).
- What to do? Trial and error? (difficult, especially in high dimension) Or . . .
Adaptive MCMC

• Suppose have a family \(\{ P_\gamma \}_{\gamma \in \mathcal{Y}} \) of possible Markov chains, each with stationary distribution \(\pi \).

• How to choose among them?

• Let the computer decide, on the fly!

• At iteration \(n \), use Markov chain \(P_{\Gamma_n} \), where \(\Gamma_n \in \mathcal{Y} \) chosen according to some adaptive rules (depending on history, etc.).

• Simple example: [APPLET]

• e.g. Estimate true target covariance \(\Sigma_t \) by the empirical estimate, \(\Sigma_n \), based on the observations so far \((X_1, X_2, \ldots, X_n) \).

• Can this help us to find better Markov chains? (Yes!)

• On the other hand, the Markov property, stationarity, etc. are all destroyed by using an adaptive scheme.

• Is the resulting algorithm still ergodic? (Sometimes!)

Example: 100-Dimensional Adaptive Metropolis

![Plot of first coord. Takes about 300,000 iterations, then “finds” good proposal covariance and starts mixing well. Good!]

• Similarly Adaptive Componentwise Metropolis, Gibbs, etc.
But What About the Theory?

• So, adaptive MCMC seems to work well in practice.
• But will it be ergodic, i.e. converge to π? (Converge at all . . . never mind how quickly . . .)
• Ordinary MCMC algorithms, with fixed choice γ, are automatically ergodic by standard Markov chain theory (since they’re irreducible and aperiodic and leave π stationary). But adaptive algorithms are more subtle, since the Markov property and stationarity are destroyed by using an adaptive scheme.
 • e.g. if the adaption of Γ_n is such that P_{Γ_n} usually moves slower when x is in a certain subset $X_0 \subseteq X$, then the algorithm will tend to spend much more than $\pi(X_0)$ of the time inside X_0, even if each update on its own preserves stationarity. [APPLET]
 • Some previous results, but they require limiting / hard-to-verify conditions, like bounded state space, or existence of simultaneous geometric drift conditions, or Doeblin condition, or . . .
 • Need more general, easily-verified theorems . . . (5/8)

One Particular Convergence Theorem

• Theorem [Roberts and R., J.A.P. 2007]: Adaptive MCMC will converge, i.e. $\lim_{n \to \infty} \sup_{A \subseteq X} \| P(X_n \in A) - \pi(A) \| = 0$, if:
 (a) [Diminishing Adaptation] Adapt less and less as the algorithm proceeds. Formally, $\sup_{x \in X} \| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \| \to 0$ in prob. [Can always be made to hold, since adaption is user controlled.]
 (b) [Containment] Times to stationary from X_n, if fix $\gamma = \Gamma_n$, remain bounded in probability as $n \to \infty$. [Technical condition, to avoid “escape to infinity”. Holds if e.g. X and Y finite, or compact, or . . . And always seems to hold in practice.]
(Also guarantees WLLN for bounded functionals. Various other results about LLN / CLT under stronger assumptions.)

Good, but . . . Containment condition is a pain.

Can we eliminate it?

(6/8)
What about that “Containment” Condition?

- Recall: adaptive MCMC is ergodic if it satisfied Diminishing Adaptation (easy: user-controlled) and Containment (technical).
- Is Containment just an annoying artifact of the proof? No!
- Theorem (Latuszynski and R., 2014): If an adaptive algorithm does not satisfy Containment, then for all $\epsilon > 0$,
 $$\lim_{K \to \infty} \limsup_{n \to \infty} P(M_\epsilon(X_n, \gamma_n) > K) > 0,$$
 where $M_\epsilon(x, \gamma) = \inf\{n \geq 1 : \|P^n_\gamma(x, \cdot) - \pi(\cdot)\| < \epsilon\}$ is the time to converge to within ϵ of stationarity.

That is, an adaptive algorithm without Containment will take arbitrarily large numbers of steps (K) to converge. Bad!

- Conclusion: Yay Containment!?!?
- But how to verify it??

Verifying Containment: “For Everyone”

- Proved general theorems about stability of “adversarial” Markov chains under various conditions (Craiu, Gray, Latuszynski, Madras, Roberts, and R., A.A.P. 2015).
- Then applied them to adaptive MCMC, to get a list of directly-verifiable conditions which guarantee Containment:
 $$\Rightarrow$$ Never move more than some (big) distance D.
 $$\Rightarrow$$ Outside (big) rectangle K, use fixed kernel (no adapting).
 $$\Rightarrow$$ The transition or proposal kernels have continuous densities wrt Lebesgue measure. (or piecewise continuous: Yang & R. 2015)
 $$\Rightarrow$$ The fixed kernel is bounded, above and below (on compact regions, for jumps $\leq \delta$), by constants times Lebesgue measure.
 (Easily verified under continuity assumptions.)
- Can directly verify these conditions in practice. So, this can be used by applied MCMC users. “Adaptive MCMC for everyone!”

- All my papers, applets, software: www.probability.ca