Some Comments Related to
Limit Processes and
Optimization for QED Queues

Marty Reiman
Bell Labs, Lucent Technologies
Murray Hill, NJ
M/M/N Diffusion Limit

Consider a family of M/M/N queues with arrival rates \(\lambda_N \) and service rate \(\mu \), and define \(\rho_N = \lambda_N / N \mu \).

Let \(Q_N(t) = \# \) of customers in the system at time \(t \), \(t \geq 0 \), and let

\[
\hat{Q}_N(t) = N^{-1/2} [Q_N(t) - N].
\]

Theorem (Halflin and Whitt, 1981).

If \(\sqrt{N}(1 - \rho_N) \to \beta \), with \(-\infty < \beta < \infty \), and \(\hat{Q}_N(0) \to \hat{Q}(0) \), then \(\hat{Q}_N \to \hat{Q} \) in \(D[0, \infty) \), where \(\{\hat{Q}(t), \ t \geq 0\} \) is a diffusion on \(\mathbb{R} \) with infinitesimal drift \(m(x) \) given by

\[
m(x) = \begin{cases}
-\mu \beta, & x \geq 0 \\
-\mu(x + \beta), & x \leq 0
\end{cases}
\]

and infinitesimal variance \(\sigma^2 = 2\mu \).
Comparison of Two Heavy Traffic Regimes

<table>
<thead>
<tr>
<th>‘Classical’</th>
<th>QED (Halflin-Whitt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho \to 1$ with N fixed</td>
<td>$\rho \to 1$, $N \to \infty$, $\sqrt{N}(1 - \rho) \to c$</td>
</tr>
<tr>
<td>queue length not centered</td>
<td>queue length is centered</td>
</tr>
<tr>
<td>limit process is reflected</td>
<td>limit process is unconstrained</td>
</tr>
<tr>
<td>limit drift is constant</td>
<td>limit drift is state dependent</td>
</tr>
<tr>
<td>time in service: $O(n^{-1}) \to 0$</td>
<td>time in service is $O(1)$</td>
</tr>
</tbody>
</table>
The ’M’ Model

Consider a call center handling 2 skills and having 3 agent pools.

We assume:

- Call arrival processes are Poisson, with rates λ_i, $i = 1, 2$
- There are N_1 Type 1 agents, who can only serve skill 1
- There are N_2 Type 2 agents, who can only serve skill 2
- There are N_0 Type 0 agents, who can serve both skills
- Service times are exponentially distributed, with rates μ_i, $i = 1, 2$ (which depend only on skill, not agent)
Combined Staffing & Scheduling Problem

Given staffing costs $c_i > 0, i = 0, 1, 2$ and waiting costs $d_j > 0, j = 1, 2$, choose staffing levels N_0, N_1, N_2 and a non-preemptive (and non-anticipating) scheduling policy π to minimize

$$\sum_{i=0}^{2} c_i N_i + \sum_{j=1}^{2} d_j E \int_0^{\infty} e^{-\gamma t} Y_j^\pi(t) dt$$

where $Y_j^\pi(t)$ is the number of skill j customers waiting in the queue under the scheduling policy π.

Assume that $c_0 > \max(c_1, c_2)$: flexible servers cost more.
The QED Regime for the M Model

Consider a family of systems, indexed by \(n \), where \(\mu_i \) are held fixed and
\[
N_i(n) = \alpha_i n + o(\sqrt{n}), \quad i = 0, 1, 2,
\]
\[
\lambda_j(n) = \tilde{\lambda}_j n + \beta_j \sqrt{n} + o(\sqrt{n}), \quad j = 1, 2,
\]
with \(0 < \alpha_i < \infty, 0 < \tilde{\lambda}_j < \infty \) and \(-\infty < \beta_j < \infty \).

QED conditions:

\[
\tilde{\lambda}_i > \alpha_i \mu_i, \quad i = 1, 2,
\]

and

\[
\frac{\tilde{\lambda}_1}{\mu_1} + \frac{\tilde{\lambda}_2}{\mu_2} = \alpha_0 + \alpha_1 + \alpha_2.
\]

Theorem (Atar, 2005). The asymptotically optimal waiting cost

\[
\inf_{\pi \in \Pi} \sum_{j=1}^{2} d_j E \int_{0}^{\infty} e^{-\gamma t} \hat{Y}_j^{\pi}(t) dt
\]

does not depend on \((\alpha_0, \alpha_1, \alpha_2)\) as long as \(\alpha_i > 0, i = 0, 1, 2, \) and the QED conditions are satisfied.
An Open Problem

The waiting cost does not depend on $(\alpha_0, \alpha_1, \alpha_2)$, but the staffing cost $n \sum \alpha_i c_i$ clearly does.

Recall that $c_0 > \max(c_1, c_2)$, so to reduce staffing costs we take $\alpha_0 \to 0$.

But $\alpha_0 = 0$ is not covered by extant theory.

In particular, a reasonable guess is that the asymptotically optimal staffing level satisfies

$$N_i(n) = \frac{\bar{\lambda}_1}{\mu_1} n + \eta_i \sqrt{n} + o(\sqrt{n}), \quad i = 1, 2$$

and

$$N_0(n) = \eta_0 \sqrt{n} + o(\sqrt{n})$$

with $0 < \eta_0 < \infty$ and $-\infty < \eta_i < \infty$, $i = 1, 2$.

Open problem: Solve for the optimal scheduling policy for a given (η_0, η_1, η_2), determine the associated waiting cost and optimize over (η_0, η_1, η_2).