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Introduction

• Components of code optimization
I Data Structure & Algorithm
I Code Implementation
I Hardware Optimization

• Primary components of a computer—CPU, Memory, Storage, etc.
• Registers vs. Cache
• Clock cycle—smallest unit of time to perform a task
• Addition (3 cycles), multiplication (6 cycles), division (30–60 cycles)
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Basic Operation

• x = y + z

• Fetch instruction from memory and decode it
• Hard disk → RAM → CPU (Cache and Registers)
• Fetch data y and z from memory. How long does it take? (300

cycles.)
• Perform addition. How long does this take? (3 cycles.)
• Retrieve result, and put it in x.

How long does the actual addition take?

• Each pipeline stage happens sequentially.
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Pipelines and Data Streams

• x(i) = y(i) + z(i), i ∈ {1, 2, . . . n}
• Can we do better?
• Use data stream
• Reduce latency: fetch next instruction and data while the previous

instruction is executing

Can we do even better?
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Vectorization

• No data dependency, unroll the loop
I i ∈ {1, 5, 9, . . .}
I x(i) = y(i) + z(i)
I x(i+ 1) = y(i+ 1) + z(i+ 1)
I x(i+ 2) = y(i+ 2) + z(i+ 2)
I x(i+ 3) = y(i+ 3) + z(i+ 3)

• Vector instructions: single message multiple data
• Vector registers comprising multiple cache lines
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Python Activities



Python Loops

• Python loops are slower compared to Java, C, etc. (Why?)

What are the alternatives available to looping constructs?

• List Comprehension and Set Comprehension
• Vectorization using numpy library

I Broadcasting for more complex scenarios
• Just-in-time compilation (JIT)

What if you are stuck with a python for-loop?
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Activity 1: Simple Exponential Smoothing

Write a python function to generate the exponential smoothing prediction
of a series given as a numpy array. Your function should take the series
and the α value as input. Time your function call using the “timeit”
python function for the series: 0, 0, 4.58, 0, 5.30, 3.19, 1.3, and α = 0.1.
You are allowed to use python libraries, even for directly calculating the
output. (Check that your function returns 1.1468938.)

SES formula

xforecast = α · xcurrent observation + (1− α) · xprevious forecast.
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Anecdote: Instagram Story (2018)
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Tips for Optimizing for-loops

• Minimize dots
• Prefer local variables over global variables
• Multiplication/Division are relatively expensive operations.
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Activity 2: Optimize for-loops

• Optimize the following code:

Any caveats to your optimized code?
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Activity 2: My solution
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Final Remarks

• Optimize only when needed.
• Identify bottle-necks in your code using profilers.
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Thank You!
Questions?
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