The University of Texas at Austin
Operations Research and
Industrial Engineering

Introduction to Code Optimization

Sudesh K Agrawal

INFORMS Student Chapter Workshop

The University of Texas at Austin

May 3, 2021



Outline

@ Introduction

@ Memory Operations
@ Python Activities
@ Optimizing for-loops

@ Final Remarks

Introduction to Code Optimization—Agrawal 2/15



Introduction

Components of code optimization
» Data Structure & Algorithm
» Code Implementation
» Hardware Optimization

Primary components of a computer—CPU, Memory, Storage, etc.

Registers vs. Cache

Clock cycle—smallest unit of time to perform a task

Addition (3 cycles), multiplication (6 cycles), division (3060 cycles)

Introduction to Code Optimization—Agrawal Introduction 3/15



Basic Operation

e r=y-+z

Fetch instruction from memory and decode it
Hard disk - RAM — CPU (Cache and Registers)

Fetch data y and z from memory. How long does it take? (300
cycles.)

Perform addition. How long does this take? (3 cycles.)

Retrieve result, and put it in z.

How long does the actual addition take?

e Each pipeline stage happens sequentially.

Introduction to Code Optimization—Agrawal Memory Operations 4 /15



Pipelines and Data Streams

o 2(1) =y(i)+ 2(i), ie{l,2,...n}

e Can we do better?

e Use data stream

e Reduce latency: fetch next instruction and data while the previous

instruction is executing

Can we do even better?

Introduction to Code Optimization—Agrawal Memory Operations 5/15



Vectorization

e No data dependency, unroll the loop
» ic{1,5,9,...}
> x(i) = y(i) + 2(i)
i+ 1) =yl +1)+2(i+1)
> 2(i4+2) =y +2)+2(1+2)
» 2(i+3) =y +3)+ 2(i +3)
e Vector instructions: single message multiple data

e Vector registers comprising multiple cache lines

Introduction to Code Optimization—Agrawal Memory Operations 6 /15



Python Activities



Python Loops

e Python loops are slower compared to Java, C, etc. (Why?)

What are the alternatives available to looping constructs?

e List Comprehension and Set Comprehension
e Vectorization using numpy library
» Broadcasting for more complex scenarios

e Just-in-time compilation (JIT)

What if you are stuck with a python for-loop?

Introduction to Code Optimization—Agrawal Python

8/ 15



Activity 1. Simple Exponential Smoothing

Write a python function to generate the exponential smoothing prediction
of a series given as a numpy array. Your function should take the series
and the « value as input. Time your function call using the “timeit”
python function for the series: 0,0, 4.58,0,5.30,3.19, 1.3, and o = 0.1.
You are allowed to use python libraries, even for directly calculating the
output. (Check that your function returns 1.1468938.)

Tforecast = & * Tcurrent observation T+ (1 - Oé) * Lprevious forecast-

Introduction to Code Optimization—Agrawal Python 9 /15



Anecdote: Instagram Story (2018)

Thanks to
@imsudesh for
saving my soul
= and my grade
Why does MATLAB absolutely suck at 3

constructing large arrays?

You're probably using
loops to initialize arrays/
matrices, try using
vectorized operations
instead.




Tips for Optimizing for-loops

e Minimize dots
e Prefer local variables over global variables

e Multiplication/Division are relatively expensive operations.

Introduction to Code Optimization—Agrawal Optimizing for-loops 11 /15



Activity 2: Optimize for-loops

e Optimize the following code:

(int i=2; i<=n-1; i++)

z[1] = x[1]/a + y[i]/a;

Any caveats to your optimized code?

Introduction to Code Optimization—Agrawal



Activity 2: My solution

1.0/a
(int 1=2; i<=n-1; i++)

z[i] = (x[1] + y[i])"b;

Introduction to Code Optimization—Agrawal



Final Remarks

e Optimize only when needed.

e |dentify bottle-necks in your code using profilers.

Introduction to Code Optimization—Agrawal Final Remarks 14 / 15



Thank You!
Questions?



	Introduction
	Memory Operations
	Python Activities
	Optimizing for-loops
	Final Remarks

