
Introduction to Code Optimization

Sudesh K Agrawal

INFORMS Student Chapter Workshop

The University of Texas at Austin

May 3, 2021



Outline

1 Introduction

2 Memory Operations

3 Python Activities

4 Optimizing for-loops

5 Final Remarks

Introduction to Code Optimization—Agrawal 2 / 15



Introduction

• Components of code optimization
I Data Structure & Algorithm
I Code Implementation
I Hardware Optimization

• Primary components of a computer—CPU, Memory, Storage, etc.
• Registers vs. Cache
• Clock cycle—smallest unit of time to perform a task
• Addition (3 cycles), multiplication (6 cycles), division (30–60 cycles)

Introduction to Code Optimization—Agrawal Introduction 3 / 15



Basic Operation

• x = y + z

• Fetch instruction from memory and decode it
• Hard disk → RAM → CPU (Cache and Registers)
• Fetch data y and z from memory. How long does it take? (300

cycles.)
• Perform addition. How long does this take? (3 cycles.)
• Retrieve result, and put it in x.

How long does the actual addition take?

• Each pipeline stage happens sequentially.

Introduction to Code Optimization—Agrawal Memory Operations 4 / 15



Pipelines and Data Streams

• x(i) = y(i) + z(i), i ∈ {1, 2, . . . n}
• Can we do better?
• Use data stream
• Reduce latency: fetch next instruction and data while the previous

instruction is executing

Can we do even better?

Introduction to Code Optimization—Agrawal Memory Operations 5 / 15



Vectorization

• No data dependency, unroll the loop
I i ∈ {1, 5, 9, . . .}
I x(i) = y(i) + z(i)
I x(i+ 1) = y(i+ 1) + z(i+ 1)
I x(i+ 2) = y(i+ 2) + z(i+ 2)
I x(i+ 3) = y(i+ 3) + z(i+ 3)

• Vector instructions: single message multiple data
• Vector registers comprising multiple cache lines

Introduction to Code Optimization—Agrawal Memory Operations 6 / 15



Python Activities



Python Loops

• Python loops are slower compared to Java, C, etc. (Why?)

What are the alternatives available to looping constructs?

• List Comprehension and Set Comprehension
• Vectorization using numpy library

I Broadcasting for more complex scenarios
• Just-in-time compilation (JIT)

What if you are stuck with a python for-loop?

Introduction to Code Optimization—Agrawal Python 8 / 15



Activity 1: Simple Exponential Smoothing

Write a python function to generate the exponential smoothing prediction
of a series given as a numpy array. Your function should take the series
and the α value as input. Time your function call using the “timeit”
python function for the series: 0, 0, 4.58, 0, 5.30, 3.19, 1.3, and α = 0.1.
You are allowed to use python libraries, even for directly calculating the
output. (Check that your function returns 1.1468938.)

SES formula

xforecast = α · xcurrent observation + (1− α) · xprevious forecast.

Introduction to Code Optimization—Agrawal Python 9 / 15



Anecdote: Instagram Story (2018)

Introduction to Code Optimization—Agrawal Python 10 / 15



Tips for Optimizing for-loops

• Minimize dots
• Prefer local variables over global variables
• Multiplication/Division are relatively expensive operations.

Introduction to Code Optimization—Agrawal Optimizing for-loops 11 / 15



Activity 2: Optimize for-loops

• Optimize the following code:

Any caveats to your optimized code?

Introduction to Code Optimization—Agrawal Optimizing for-loops 12 / 15



Activity 2: My solution

Introduction to Code Optimization—Agrawal Optimizing for-loops 13 / 15



Final Remarks

• Optimize only when needed.
• Identify bottle-necks in your code using profilers.

Introduction to Code Optimization—Agrawal Final Remarks 14 / 15



Thank You!
Questions?


	Introduction
	Memory Operations
	Python Activities
	Optimizing for-loops
	Final Remarks

