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Introduction

Components of code optimization
» Data Structure & Algorithm
» Code Implementation
» Hardware Optimization

Primary components of a computer—CPU, Memory, Storage, etc.

Registers vs. Cache

Clock cycle—smallest unit of time to perform a task

Addition (3 cycles), multiplication (6 cycles), division (3060 cycles)
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Basic Operation

e r=y-+z

Fetch instruction from memory and decode it
Hard disk - RAM — CPU (Cache and Registers)

Fetch data y and z from memory. How long does it take? (300
cycles.)

Perform addition. How long does this take? (3 cycles.)

Retrieve result, and put it in z.

How long does the actual addition take?

e Each pipeline stage happens sequentially.
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Pipelines and Data Streams

o 2(1) =y(i)+ 2(i), ie{l,2,...n}

e Can we do better?

e Use data stream

e Reduce latency: fetch next instruction and data while the previous

instruction is executing

Can we do even better?
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Vectorization

e No data dependency, unroll the loop
» ic{1,5,9,...}
> x(i) = y(i) + 2(i)
i+ 1) =yl +1)+2(i+1)
> 2(i4+2) =y +2)+2(1+2)
» 2(i+3) =y +3)+ 2(i +3)
e Vector instructions: single message multiple data

e Vector registers comprising multiple cache lines
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Python Activities



Python Loops

e Python loops are slower compared to Java, C, etc. (Why?)

What are the alternatives available to looping constructs?

e List Comprehension and Set Comprehension
e Vectorization using numpy library
» Broadcasting for more complex scenarios

e Just-in-time compilation (JIT)

What if you are stuck with a python for-loop?
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Activity 1. Simple Exponential Smoothing

Write a python function to generate the exponential smoothing prediction
of a series given as a numpy array. Your function should take the series
and the « value as input. Time your function call using the “timeit”
python function for the series: 0,0, 4.58,0,5.30,3.19, 1.3, and o = 0.1.
You are allowed to use python libraries, even for directly calculating the
output. (Check that your function returns 1.1468938.)

Tforecast = & * Tcurrent observation T+ (1 - Oé) * Lprevious forecast-
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Anecdote: Instagram Story (2018)

Thanks to
@imsudesh for
saving my soul
= and my grade
Why does MATLAB absolutely suck at 3

constructing large arrays?

You're probably using
loops to initialize arrays/
matrices, try using
vectorized operations
instead.




Tips for Optimizing for-loops

e Minimize dots
e Prefer local variables over global variables

e Multiplication/Division are relatively expensive operations.
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Activity 2: Optimize for-loops

e Optimize the following code:

(int i=2; i<=n-1; i++)

z[1] = x[1]/a + y[i]/a;

Any caveats to your optimized code?
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Activity 2: My solution

1.0/a
(int 1=2; i<=n-1; i++)

z[i] = (x[1] + y[i])"b;
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Final Remarks

e Optimize only when needed.

e |dentify bottle-necks in your code using profilers.
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Thank You!
Questions?
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