1
3
Introduction to XML


XPath 

Practical 4

In this practical you are going to look at simple examples of using XPath patterns and predicates for matching elements and attributes in XML files. This will be useful for when you come to use XSL and XSLT.

We are going to use the XPath as implemented by the Xalan Java classes produced by Apache
. The homepage for Xalan is 

http://xml.apache.org/xalan/overview.html

First we must install Xalan, which is very easy to do. The distribution can be found in 


http://industry.ebi.ac.uk/~alan/XMLWorkshop/Apps/

Save the file 'xalan_0_19_5.jar' to your home directory. To install, issue the following commands:


jar -xvf xalan_0_19_5.jar

This will create a directory 'xalan_0_19_5'. Go to this directory:


cd xalan_0_19_5

which contains the following files and directories:

  BUGS          Makefile         build/           src/

  CREDITS       README           build.xml        xalan.jar

  DONE          STATUS           make.include     xdocs/

  KEYS          bsf.jar          make.include2

  License       bsfengines.jar   samples/

Using Netscape open the 'Readme.html' file


netscape Readme.html

The jar files that you need to use is 'xalan.jar'. Xalan fully implements the W3C XSLT recommendation. It includes the XSL Transformation vocabulary and the XML Path language (XPath)interfaces and the implementations of these interfaces (and also DOM). 

For convenience, create a directory called 'classes' in your home directory and copy this file there:


mkdir ~/classes


cp xalan.jar ~/classes/

In any window where you are going to run XPath programs, you should first of all issue the following command
:


setenv CLASSPATH /path/to/xerces.jar:/path/to/xalan.jar:.

You can find the path to the jar files from doing a 'pwd' in the 'classes' directory (normally it will be '/homes/course#/classes/').

We are going to use the "ApplyXPath" Java program that comes with the Xalan distribution.


java ApplyXPath xml_file "expression"

It is a very simple program that when given a XML file and a XPath expression will

· Check that the XPath is valid

· Evaluate the XPath against the XML file and print out a XML file that describes the nodes that match the XPath expression

There are a couple of caveats to using this simple tool

· It only takes absolute paths, e.g. '/cluster' is valid, but 'seq' is not

· The expression should be surrounded by double quotes (") as it may contain special characters that the UNIX shell will try to interpret

· Any quotes within the expression should be single quotes (')

· It's a good idea to build up your query in small pieces so that you can error check it as you proceed 

· If you get an error or exception, it means your XPath was either incorrect, or had no matches in your XML file (sorry the error reporting is very bad)

Exercise 10
The template source code files and 'ApplyXPath' executable for these exercises can be found in:


http://industry.ebi.ac.uk/~alan/XMLWorkshop/Tutorial/Exercise_10/

Create a directory called 'XPath_Example' in your home directory and save the files from the Exercise_10 directory to it.

· Move to the 'XPath_Example' directory 

· Issue the CLASSPATH command if you have not already done so (see above)

· Open the 'cluster.xml' file in your browser from the web, or in your text editor

· At the command prompt type 

java ApplyXPath cluster.xml "//database"
· This is a very simple expression that prints out all the elements that match the pattern "//database". This pattern matches all occurrences of the 'database' element in the file ('//' is shorthand for "go through all the nodes and their descendants")

· The program should print a lot of text to the screen

The output description is an XML file, at first this may look confusing, but the relatively simple DTD appears to be

<!ELEMENT output (diagnoseXPathString2, nodelist*)>

<!ELEMENT diagnoseXPathString2 (#PCDATA)>

<!ELEMENT nodelist (node)>

<!ATTLIST nodelist  len  NMTOKEN  #REQUIRED>

<!ELEMENT node (#PCDATA, attrs*)>

<!ATTLIST node  name      CDATA        #REQUIRED

                type      NMTOKEN      #REQUIRED

                children  (true|false) #REQUIRED>

<!ELEMENT attrs (#PCDATA, node*)>

<!ATTLIST attrs  num  NMTOKEN  #REQUIRED>

The first output is really not human-readable and describes the traversal of the tree by the XPath algorithm. 

The elements and attributes of the 'nodelist' element are of the most interest. These give information about the nodes that matched the pattern.

· The 'len' attribute of 'nodelist' tells us the number of nodes that match

· The 'node' elements give the name and type of nodes found, plus whether this node has any children

· The 'node' elements may contain 'attr' elements that describe the number and value of any attributes found

· Compare the output of the last command with this

java ApplyXPath cluster.xml "/cluster"

· You may want to make your window as wide as possible to minimise text wrap around

The tool can handle other XPath operators

· For example to match only 'seq' elements of 'name' "ADH", enter:

java ApplyXPath cluster.xml "//seq[@name='ADH']"

· Enter an expression that will match only the second 'seq' element of the 'cluster' element in 'cluster.xml'

· Write an expression that will only match a 'database' element that came from "PIR" (Hint: You'll be wanting to look at string tests)

· Only match 'residues' elements that have an amino acid sequence of length 20 using the 'len' attribute

· Only match 'residue' elements that have a length greater than 22 both with and without using the 'len' attribute (i.e. write two different patterns)

· We can also use other operations, e.g. to find all the siblings of the second 'seq' element

java ApplyXPath cluster.xml "//seq[2]/following-sibling::node()"

· How might you match all the descendants of the third 'seq' element?

· How might you match the second 'residues' element in the XML document (Hint: This is not trivial and it is not //residues[2] (why not? - look at the XML structure) - you should be thinking about multiple operations on the 'seq' element)

We are now going to look at a second XML file that illustrates the problem of nodes being at different levels

· Open the file 'book.xml' - Note that there are two instances of 'para' elements

· Compare the behaviour of the patterns '//para' and '/*/*/para'

· How might you only match 'para' elements that are part of a 'note' element (assuming that the 'note' can appear at any level in the 'chapter' hierarchy).

· We may want to match the parent of any 'para' element:

java ApplyXPath book.xml "//para/parent::node()"

You have now come to the end of Practical 4.

�The Xalan XSL processor was originally called LotusXSL, but following the  donation of its source to Apache, it is now known as Xalan.


� If you know what you're doing, you can set this variable in your shell start-up script.





Alan Robinson

EMBL-EBI


