

Angebot Enterprise Service Bus / Integration Layer

Page Initialization

[image: image1.jpg]§ software~

[image: image2.jpg]6L L9 }9 J9 }9 99 EEERREEEN Y
02 99 }J9 0C 0 }J9 ¥L 0C 29 }9 0T 6L L9 VL €9

ADOTONHD11

	Version
	Date
	Status
	Author
	Comments

	0.1
	20.02.09
	draft
	Mathias Mittmann
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Table of content
31
Background

32
Problem

32.1
Initialize Method

32.2
BeforeRenderResponse Method

32.3
On Window Load function

33
Solution

33.1
Setting up the Task details portlet

33.1.1
Define a unique id

33.1.2
Define a portlet preference

33.1.3
Customize the beforeRenderResponse action

33.2
Setting up the Task inbox results portlet

1 Background
When opening a page it is often necessary to initialize data or invoking a service in order to pre-populate certain fields. This initialization should happen only once, i.e. when the page is opened.
2 Problem

There are several approaches how to solve this requirement but most of them don’t always work.
2.1 Initialize Method

One approach would be to initialize the page in the view’s initialize action. The initialize action is called for each view the first time the view is about to render after the page managed bean got created. The creation of the bean depends on its scope. Typically its scope is “session” with expireWithPageFlow set to “true” meaning the view bean will be re-created each time you navigate away from the portlet’s application and then come back. As long as you navigate to a portlet which resides in the same portlet application (like from the Task details to the Task’s own inbox) the view bean won’t be recreated. Hence when e.g. navigating from the Task details page to the Task inbox using e.g. the Return button (cancelView action) and returning straight back to the Task details, the initialize action wouldn’t be invoked, i.e. Task initialization wouldn’t take place.

2.2 BeforeRenderResponse Method

The beforeRenderResponse action is invoked just before the server response is rendered to the client (browser) for every server request. That is, each time you send a synchronous or asynchronous request to the server by e.g. hitting a async or sync command button or just refresh your browser the beforeRenderResponse action will be called. As we only want to initialize our page once the page is opened and not everytime a request is send to the server, we cannot use the beforeRenderResponse action without customizing it. So we could use a flag that is initially set to “true”. In the beforeRenderResponse action we check if the flag is true. If yes, we execute our initialization code and set the flag to “false”. Hence when sending a request to the the flag will be “false” and the initialization code will not be executed again.
The problem with this approach is, that assuming you are inside a Task and you navigate back to your inbox and return back to the details view the flag will be still “false” as you navigated within the same portlet application and the flag didn’t get reset automatically. That is, the page initialization will not happen although you want it to happen. What you could do is to reset the flag to “true” each time you navigate away from your page by using a button, like e.g. the “Cancel” button of a Task. But if a user navigates back to the inbox e.g. via the application’s menu, you don’t have control over the process and cannot reset the flag.
2.3 On Window Load function

You could also make use of a „on window load“ Javascript funtion (Event.observe(window, 'load', function() {}). The behaviour when using this technique can be compared to the behaviour of the two approaches above. In the end it seems that you cannot reliably control when your initialization action is invoked.
3 Solution
One possible solution would be to combine the beforeRenderResponse action with a similar construct as described above, i.e. use a flag in order to decide whether to invoke the action or not. But the actual value of the flag would be a unique id, e.g. the current time in milli seconds that is compared to a unique “invocation id” that is passed to the page as a parameter when it is called. As both ids will always be unique we don’t have to reset the flag and don’t have to care about how the user leaves the page and where he navigates to before he returns back to the page.
We want to use The Task details and Task inbox pages in order to provide an example for this approach.

3.1 Setting up the Task details portlet
First you have to set up the details portlet.
3.1.1 Define a unique id

We define a unique id that will be compared with the invocation id that will be passed from the inbox in order to decide whether to invoke the beforeRenderResponse action or not.

3.1.2 Define a portlet preference

Now we have to define a portlet preference that will receive the invocation id passed from the Task inbox. We call it inboxInvocationId. You can define a portlet preference either in the Portlet Editor or the Bindings view in Designer.

3.1.3 Customize the beforeRenderResponse action

Next step would be to extend the beforeRenderResponse action with logic to check whether the action has to be invoked or not (where TestActivity is the Task name).

3.2 Setting up the Task inbox results portlet

Next step would be to customize the openTask or acceptAndOpenTask action to pass the invocation id to the Task details portlet. In our case we want to customize the acceptAndOpenTask action (where testprozess1tasks is the name of the portlet application and testactivityview is the name of our details view).

Now, every time you click on the Task id link which invokes either the openTask or acceptAndOpenTask action you would pass a unique id to the Task details view. There you receive the id and compare it to your unique task details id. If the two ids are different you execute your initialization code and set the current id to the invocation id. The next time you send a request to the server the initialization code would not be executed anymore as the two time stamps are equal. As both ids will always be unique when you navigate from your inbox to the details page you don’t have to care about resetting the flag/ ids anymore.

Version: 0.1	

Authors: Mathias Mittmann

Date: 20.02.2009	

public void acceptAndOpenTask() throws Exception {

	TaskContentProviderExtended task1 = new TaskContentProviderExtended();

	task1.setTaskID(getCurrentTaskID());

	task1.acceptTask();

	IPortletURL portletURL = createRenderUrl();

	portletURL.clearParameters();

	portletURL.clearState();

	portletURL.setBaseURL(getTaskDetailsPage());

	portletURL.setPortlet(getTaskDetailsPortlet());

	portletURL.setParameter("taskID", getCurrentTaskID());

	IPortletURL cancelURL = createRenderUrl();

	cancelURL.setGlobalParameter("wmp_ks", "true");

	IPortletURL finishURL = createActionUrl();

	finishURL.setGlobalParameter("wmp_ks", "true");

	finishURL.setTargetAction("#{activePageBean.taskSearchProvider.refresh}");

	portletURL.setParameter("cancelUrl", cancelURL.toString());

	portletURL.setParameter("finishUrl", finishURL.toString());

	portletURL.setParameter("currentTab", "TaskData");

				

	IPortletURL taskDetailsUrl =

portletURL.addPortletURL(

"/portlet/testprozess1tasks___testactivityview");

taskDetailsUrl.setParameter("inboxInvocationId", � String.valueOf(System.currentTimeMillis()));

				

		getFacesContext().getExternalContext().redirect(portletURL.toString());

		}

public void beforeRenderResponse(){

		

try {

if (!getTestActivityView().getInboxInvocationId().equals(

taskInvocationId)) {

			taskInvocationId = getTestActivityView().getInboxInvocationId();

				

				//do your initialization work here..

				

			}

		} catch (Exception e) {

			// TODO Auto-generated catch block

			e.printStackTrace();

		}

	}

private java.lang.String taskInvocationId;

public java.lang.String getTaskInvocationId() throws Exception {

		

		taskInvocationId = String.valueOf(System.currentTimeMillis());

		

		return taskInvocationId;

	}

public void setTaskInvocationId(java.lang.String taskInvocationId) {

		this.taskInvocationId = taskInvocationId;

	}

Page Initialization

Page 2 / 7

