How to build a basic Custom Document Literal SOAP Processor

The following is the source code for a Custom Document Literal SOAP Processor that is used by
Western Power — an energy utility based in Perth, Western Australia. This processor is relatively
simplistic as it does not handle headers nor access a service repository. The assistance of Mark
Carlson from the webMethods Users Group (www.wmusers.com) is gratefully acknowledged in
helping to build this processor.

B SEQUENCE (Parert Sequence - Exit

=] # SEQIUEMCE (Main Logic - Exit an Failure)
= pub soap utilsgetBody (Retrieve the body node. This is not properly formated as it does not have an xml header)
= pub il guery KMLNode
= pub universaliame: find (Find the location of the flove service ta inwvoke)
ofo MMAP (Get document type folder path (assumes namespace iz inthe format Hitp: feeeewy westernpoveer .comaui=folderpaths=)
ofo MAP [Cotnbine folder path with &' and with node name and 'RequestType' to get fully qualified Document type)
= pub il zmiModeToDocurment {Corvert node to & document type)
= netveorks util.zervice zoap; removebocumentPrefix (Remove prefix from document otherwise call to flove zervice won't work)
= netvworks util service soap invokeF lowService
Oro MAP (Map response to docurnent)
= networks util zervice soap: addDocumentPrefix (Add 'nspc’ prefix back into document zo that it can be added to soap bady)
= pub xml:document ToXMLString (Convert Response block into an XML data string))
= pub il zmlEtring ToXMLMade (Convert XML Data string to a Mode)
= pub zoap utilsaddBodyErtry (Add the Mode to the SOAP body)

E @ SEGUENCE (Error Handling - Exit when Done)
= nub flow getl astError
-
ofo MMAP (Populate soapFault documert. Replace crlf in error message with space)
= netvworks util service soap: determineErrorCode (Set errorCode if not already set)
Oro MAP (et first three char of errorCodeCut so it can be used to swaork out fautcods)

-1 BRAMCH
El $ SeerrorCode3Char %% =='DT-' || %errorCode3Char? == 'NY-' || SherrarCode3Char % == ""%-" SEQUENCE
oro MAR (These errar codes are due to data validstion errors. Set fauttcode to Client)

= pub xmldocument ToXMLString (Convert soapFault into an XML data string)
= pub xmlxmiString ToXMLMode (Convert XML Data string to & Mode)
= pub zoap utls:addBodyErtry (Add the Mode to the S0OAP body)
= pub floww: zetResponse
= pub flowy: setResponseCode

of® MAP (Clear pipeling)

A number of conventions (shown in red text below) are required to define the inputs and outputs for
the called service so that the relevant WSDL can be generated correctly and the subsequent soap
requests processed successfully. A service named getRecentAlertLevel is used to illustrate the
approach used. This service retrieves electricity emergency notification alert details. The number of
alerts to retrieve is passed as a parameter (numberOfAlerts) which must be an integer greater than
or equal to 1 and less than or equal to 100. The alert details retrieved are passes back in a canonical
array. Also passed back is a Response canonical to indicate the success of the process. If a serious
error occurs in the service or one of the services it calls, an exception is thrown by the relevant
service (via the exit $flow failure statement) with a suitable error message. This is trapped by the
soap processor and converted into a SOAP Fault message that is passed back to the calling client.

The inputs for the getRecentAlertLevel service are defined in a document as illustrated below:

B networks.emergencynotification.doc:getRecentAlertLevelRequest

m X e ¥ 4

ok numberofaledts

The name of this document must be the same as the name as the public service with the word
Request appended to it, ie getRecentAlertLevelRequest. The numberOfAlerts parameter is

How to build a basic Custom Document Literal SOAP Processor

created as a string, but has its content type property set to Integer with minInclusive of 1 and
maxInclusive of 100.

The outputs are defined in a separate document as illustrated below:

] networks.emergencynotification.doc:getRecentAlertl evelResponse

X &S W

=] &ﬂ Responzeletails (Responseletails_v2)
Ree| ResponseStatusCode
Rbs| ResponseStatusDesc
o OriginalReguestDesc
o WhenRunDateTime
= u EmergencySletHdr (Ermergencyblert 1)
= Emergencyalert
= u Emergencyllertiey
et EmmergencylentDateTime
ke Etnergencyslerlevelo
*[Abe EmergencyalentDesc
Cortactiame
CantactPhonerdo

ke CrestedByUserid

L}
Abe

L}
Abc

¥
¥
¥
¥
¥

The name of this document must be the same as the name as the public service with the word
Response appended to it, ic getRecentAlertLevelResponse. This document is made up of
document references to two canonicals. In the first case a single document reference has been made
to the ResponseDetails v2 canonical to store the return status code details. In the second case a
document reference list (ie an array of documents) is made to the EmergencyAlert v1 canonical so
that multiple alert level details can be passed back. Note: Because document references are used,
you cannot modify the content type property of individual fields — this would have to be done in the
canonical document itself.

Western Power has a policy of setting up public services that pretty much do very little other than to
call a relevant worker service to do all the processing. The reason for this is that we often find the
need to create public services that are a variation on a theme. In this case, the public service
getRecentAlertLevel calls a worker service named getRecentAlertLevelProcess passing in the
numberOfAlerts parameter to get back the desired number of alerts. We also have another public
service named getCurrentAlertLevel that has no parameters. It calls the same worker service but
sets the numberOfAlerts to 1 in order to only get back the latest alert level.

This means that at least one public service and the worker service share the same inputs and
outputs. We therefore create a specification document that contains references to the Request and
Response documents as illustrated below:

¥ networks.emergencynotification.doc:getRecentilertLevelSpec

X T el

Specification Reference

Irpact | Cwgtpt
—

= etRecenttlertlevel yetRecentletl evelRequest) = getRecertlerntlevelResponze (getRecentAletlevelResponge)
Abe| " ALIMEET lerts Rezponsebetails (Responseletails _w2)

u Ernergency &lertHdr (Ermergencydlert_w1)

The name of this document must be the same as the name as the public service with the word
Spec appended to it, ic getRecentAlertLevelSpec. The name given to the document reference to
the Request document must be exactly the same as the name of the public service. In this case
the reference name is getRecentAlertLevel. The name given to the document reference to the
Response document is the same as the name of the Response document. In this case the
reference name is getRecentAlertLevelResponse.

How to build a basic Custom Document Literal SOAP Processor

There are two reasons for creating a specification document:
1. The comments tab enables the inputs/outputs to be documented in one place.
2. This specification is easily included for both the public service and the worker service,
hence you only need to create it once and use it twice.

Note: this is a Western Power coding standard ... you don’t have to do this, but we think it is
worthwhile.

In order for a public flow service to be invoked using the document literal (SOAP-MSG) format the
request and response must have a namespace. For RPC Encoded (SOAP-RPC) format a namespace
is not required. The above request and response documents do not have a namespace so are fine for
generating an RPC Encoded WSDL. However, in order to be able generate a doc literal WSDL, we
need to set up two more documents which include namespace details.

The following diagram illustrates the input document type required to support doc literal.

B networks.emergencynotification.doc:getRecentAlertLevelRequest... Property | Walue

IE“;-V % | 2 5 4l I = General
. . . - Marne nspgetRecentAlerl evel
= @ ':5: Recentdlertlevel (getRecentdletl evelReguest) Type Document Referance. J
meel” nmberOfalerts XML namespace hittp: itwewy e sternpoveer com auhetworks emergencynatification.doc
Comments

The name of this document must be the same as the name as the public service with the words
RequestType appended to it, ic getRecentAlertLevelRequestType. All it contains is a document
reference to the Request document. The name given to the document reference to the request
document must be exactly the same as the name of the public service and must have a prefix
of nsp: prepended to it, ic nsp:getRecentAlertLevel. Do not use any other prefix name as the
custom soap processor relies on this prefix being used.

The XML namespace property of the document reference must be in the format:
<business internet site home address>/<folder path where request document is stored>
In this case, the business is western power and the documents are stored in
networks.emergencynotification.doc therefore the namespace is:
http://www.westernpower.com.au/networks.emergencynotification.doc

The following diagram illustrates the ouput document type required to support doc literal.

= X Property | Walue |
IEI\;-V * | 2 5 4l I = General
Matre naprgetRecentAlertl evelResponse
ERN = certalertl ertalertLey Type Document Reference. =
5]
H ,_, RespanseDetalls (RespanseDetails_v2) HML namespace hittp: e svesternpovver com awnetvworks emer gencynotification.doc
EmergencysletHdr (Emergencyilet_w1) Comments

The name of this document must be the same as the name as the public service with the words
ResponseType appended to it, ic getRecentAlertLevelResponseType. All it contains is a
document reference to the Response document. The name given to the document reference is the
same as the Response document name with a prefix of nsp: prepended to it, ic
nsp:getRecentAlertLevelResponse. The XML namespace property of the document reference
must be the same as for the RequestType document above.

When generating a WSDL for document literal (SOAP-MSG), you must provide the names of the
documents that specify the input and outputs. In this case the documents to provide are the
RequestType and ResponseType documents as these contain the XML namespace details. If you try
to use the Request and Response documents to generate the WSDL, webMethods will display a
message indicating that the top level fields must have XML namespace values.

How to build a basic Custom Document Literal SOAP Processor

The following diagram illustrates the getRecentAlertLevel public service (note that all it does is to
call the worker service getRecentAlertLevelProcess and that it does not have a try/catch):

0 emerge otification.pub:getRe eve X Praperty | Walug |

=0 i B F Lt X | & F 4l El Retry on ISRurtimeExcepti
Mz sttempts

Retry irterval]
=l Universal hame

= netwwarks emergencynotification service: getRecentdlertlevelProcess

Namespace name http: Maewewy weesternpoveer .com auhetvworks emergencynotification .doc

Lacal hamme getRecerntAlertleyel

The universal name must have a namespace name that exactly matches the namespace used in
the XML namespace property of the RequestType and ResponseType document. The Local
name must be exactly the same as the public service name. webMethods stores internally a table
that relates the Namespace name and Local name to the fully qualified name of the service.

The following diagram illustrates the inputs/outputs for the getRecentAletLevel public service. In
this case a reference is made to the specification document.

Specification Reference hetwaorks.emergencynotification.doc: getRecentAlertlevelSpec

Irupwat | Outpt
= getRecertAlertl evel (getRecertAlertl evelReguest) El getRecertAlertl evelResponse (getRecentdlentl evelResponse)
ot numberOfslerts ResponseDetails (ResponseDetails_w2)

u@ Emergency&lertHdr (EmergencyAlert_v1)

If you choose not to set up a specification document then set up document references to the Request
and Response documents. The name given to the document reference to the Request document
must be exactly the same as the name of the public service (ie getRecentAlertLevel).

Why is all this necessary?
When a document literal WSDL is generated, it contains far less information about a service than
does RPC. This can be a good thing (less compatibility issues) but can also be a bad thing (don’t
know as much about the details of the service, so some extra processing is required). When a
consumer client uses the WSDL to format a doc literal soap message and sends it to webMethods
the custom soap processor performs the following tasks:

1. Find out the fully qualified name of the service to invoke.

2. Find out the fully qualified name of the Request document

3. Invoke the service using the Request document

4. Pass the results back to the caller in a soap message.

The following is a sample of a doc literal soap request for the getRecentAlertLevel service which
requests the latest 10 alerts.

1 =20AP-ENY Envelope xmins: S0AP-EMNY="hitp: fzchemas xmlzoap orgfzoaplenvelope =mins: SO0OAP-EMC="http: fechemas xmizoap org/soapencoding
wminzxsi="http oy w3 orgi2001 SEMLS chema-instance” =mins: xed="http feewewe w3 orgi2000 SRl Schema"=

=S0AP-ENY Body=

=m:getRecentAlertlevel xmins m="http: Aoy veesternpower com awinetworks emergencynatification.doc"=

{1 =numberOislerts=10=/number i Slerts=

i =imgetRecentalerlevel=

=IS0AP-EMY: Body=

2
3
4
5
5
7 =IS0AP-ENY Envelopes=

Here again is the source code for the main logic sequence of the custom soap processor.

How to build a basic Custom Document Literal SOAP Processor

=] @ SEQIUENCE (Main Logic - Exit on Failure)
= pub zoap utilsgetBody (Retrieve the body node. This iz not properly formated as it does not have an xml header)
= pub il guery XMLMode
= pub universaliatne: find (Find the location of the flove service to invoke)
Oro MAP [Get document type folder path (assumes namespace is inthe format Bitp: ifaewese swesternpoveer cotn aui=folderpath=)
Oro MAP [Cambing folder path with &' and with node name and 'RequestType' to get fully qualified Document type)
= pub xmlxmiModeTolocument (Corvert node to a document type)
= retworks util service soap removebocumerntPrefix (Remove prefix from document otherwise callto flove service won't wark)
= riebworks util service soap:invokeFlowSer vice
Oro MAP (Map response to document)
= netveorks util zervice soap addDocumentPrefiz (Add 'hsp:' prefix back into document so that it can be added to soap body)
= pub ximl document ToXMLSinG (Convert Response block into an XML data string)
= pub il zmlEtring ToXMLMade (Convert XML Data string to a Mode)
= pub zoap utilsaddBodyErtry (Add the Mode to the SOAP body)

Line 1: pub.soap.utils:getBody
Get the body of the soap message as an XML node. In this example, the body is essentially
this part of the soap message:

i amgetRecentslertlevel xmins: m="http: fhaewewe westernpoveer com aunetvwarks emergencynotification doc'=
=numberOfAlerts=1 0=numberOfAlertss
=im:getRecent &lertlevel=

Line 2: pub.xml:queryXMLNode
This function enables you to interrogate an XML node without having to know anything
about the nodes structure or namespace. For string variable namespace execute Query
/*/namespace() with type XQL

et Y| & T 41 Ip| s & |@ ‘

— | uery Pinamespacet) xaL =]
] nodeName | T4p8 [el String | Ao il ~ |

|| SampleWiew | XML Made View |

o Pun Trace to load XML node ‘

This retrieves the namespace of the root node in the soap body. In this case:
http://www.westernpower.com.au/networks.emergencynotification.doc

For string variable nodeName execute Query /*/nodeName() with type XQL

Inputicutput | Pipeline || Comments | Weriskles |

et Y| & F 41 1p|s & |@ |
Akl namespace Query ihadeMame) xaL =]

| Tvpe [l string | Aol |

|| Sample View | XML Node View |

o Pun Trace to load XML node ‘

This retrieves the name of the root node in the soap body. In this case: getRecentAlertLevel

Line 3: pub.universalName:find
Use the namespace and nodeName pipeline variables from line 2 to find the fully qualified
name of the flow service to invoke. This assumes the flow service in question has been set
up with a universal name (ie namespace and local name) that matches this data.

Lines 4 & 5: Map statements
Take the last part of the namespace, add a colon (“ :”) , and the node name and the text
‘RequestType’ to come up with the fully qualified name of the request document type (ie
networks.emergencynotification.doc:getRecentAlertLevelRequestType) and store this in a
pipeline variable (docTypeFullQualName)

Line 6: pub.xml:xmINodeToDocument
This function converts an XML node to a document type. The first trick is to know what
type of document to map it to. By following the above conventions, we know exactly what

How to build a basic Custom Document Literal SOAP Processor

that document type is. Map the docTypeFullQualName to the documentTypeName
parameter and set makeArrays to false.

(23 b @~ X2 & & b |
=miModeToDocument
Pipeline In Service In Service Out Pineline Out
W namespaceName |0 [k node document DB [noce
% sospRequestData “[mee] attrPrefix we namespaceName I
| soapResponseDat i arrays % sospRequesiData I
k| hody “mee] makedrrays ? fee| makedrrays
Abs| MAMESPACE g collect % sospResponseData
Abe| GocTypeFolderPath B 9 nsDecls 5 rslecls
b dncTy’peFuHQualNameh\—_] dacumsnts B[ooy
e nodeNarms ke document Typeharms B [md documentTypeNams
“labe] sveName “[be] mixedModel e namespace
#d docTypeFolderPath
we docTypeFulQualName
fbs| niodehlame
“linel - svehiame
) daocument

The second trick is to convert the prefix in the request soap message root node (which could
be anything — in this case it is m:) into something we know (ie nsp:). To do this set the
nsDecls as follows:

x|

nsDecls nsp namespaceh

[¥] Cvererite pipeling value
[v] Perform variable substitution

The result is a document that exactly matches the structure of the RequestType document,
even down to the prefix of nsp:

Line 7: removeDocumentPrefix
However, the Request document of the target service does not have a prefix of nsp: so we
have to get rid of this from the document. The following piece of Java code does this.

E [networks.util.service.soap:removeDocumentPrefix
public: static fival woid removeDocumentPrefiz((Data pineline) throws ServiceException {
IDataCursar ide = pipeline. getCursar();
IData doc = IDataFactory.create():

if (idc.first(“document”)) {
doc = IDataUtil.getlData(ide, "document”);

1 else {
idc.destroy():
throw new ServiceException(”removeDocumentPrefix failed: Document type 'document' not found in pipeline®);

¥

Jfget a cursor for the "document” IData
IDataCursor ideDoc = doc.getCursor();:

//position the cursor to the first entry in the document. This should be another IData
idcDoc. first();

//get. the name of the key of the first entry in the "document” IData
String docName = idcDoc.getEey():
J/rename document remowing prefix, if present. Changes the name of the child document in place.
if (docName.indexOE{":"™) > 0] {

idcDoc. setKey (docName. substringidocName. index0E(":") + 1))
i
idcDoc.destroyi):

idc.destroy();

Line 8: invokeFlowService
So we now have the fully qualified name of the service to invoke and the input parameters
in a document that exactly matches the Request document of the service. All we have to do
is invoke the service and pass in the document. The following java code does this. Note that
it traps any exceptions thrown by the called service and re-throws a ServiceException.

How to build a basic Custom Document Literal SOAP Processor

10U

W' networks.util.service.soapinuokeFlowService

Rublic static final void invokeFlowService(IData pipeline) throws ServiceException {
IDataCursor pipelineCursor = pipeline.getCursor():?

String strlUniversallWame = null:

// Bet the wniversalllame input parameter
if (pipelineCursor.first("universalName"}} {
strimiversallame = ($tring)pipelineCursor.get¥alue();
} else |
pipelineCursor.destroyi);
throw nev JerviceException("invokeFlowierwice failed: Invalid universalName parameter');
i

if (striniversalName.index0f(":") == 0 || striniversalName.lengthi} == 0) {
pipelineCursor.destroy();
throw new ServiceException(”invokeFlowSerwice failed: Invalid universalName parameter”);

+
NiName nsiervice = NiNawe.create(strUniversallName)
/4 Call the £low service using the given request document and pass back the resulting response document

IData inDoc = (IData)IDataltil.get(pipelineCursor,"requesthoc’™):
IData outDoc = IDataFactory.create(];

try {

outDoc = §ervice.doInvoke(nsfervice, inDoc):
} catchiException excj {

pipelineCursor. destroy():

throw nev ServiceException(exc):

i
IDataUtil.put{pipelineCursor, responseDoc”,outDoc) ;

pipelineCursor. destroy()
returr;
av'l

The inputs/outputs for this service are:

InputiOutput | Shared || Commerts |

ErX|: T iy

Specification Reference

Input o Output

Al universaliame % responseDoc
¥ requestDoc

Line 9: Map Response Document
This line maps the responseDoc object to a document type called document. This document
has the Response structure underneath it (ie in this case getRecentAlertLevelResponse).

Line 10: addDocumentPrefix
The root node of soap body must have a prefix and a namespace defined. Therefore, before
we can convert the document into a soap body, we have to add the prefix back in to the

document. The prefix can be anything, but we make it ‘nsp:’ to be consistent with the
request soap body code.

IL.Service.soap:a

Rublic static final void addDocumentPrefix(IData pipeline) throws ServiceException {
IDataCursor pipelineCursor = pipeline.getfursori):
IData doc = IDataFactory.create();

string strPrefix = "nsp:";

if (pipelineCursor.firsc("document”)) {
doc = TDaralltil.getIData(pipelineCurasor,”document”) ;
} else {

pipelineCursor. destroy():
throw new ServiceException(”addDosumentPrefix failed: Document type 'document' not found in pipeline™):

i

//oet a cursor for the “document”™ IData
IbataCurser ideboc = doc.getCursor();

//position the cursor to the first entry in the document. This should be another IData
idecDoc. firsti):

//get the name of the key of the first entry in the “document” IData
String docName = idcDoc.getKey():

//renawe document adding prefix. Chenges the name of the child document in place.
idcDoc. setKey(strPrefix + docName)

idcDoc.destroy();
pipelineCursor.destroy();

Line 11: pub.xml:documentToXMLString
This function converts the document into an XML string. The addHeader parameter is false.
The encode parameter is true (to convert any nasties such as >’ to the encoded format so as
not to mess up the XML). The nsDecls parameter is the same as in Line 6.

How to build a basic Custom Document Literal SOAP Processor

- v o~ | ms e W wmow

Pipeline In

cocument ToXMLString

Service In Service Out

Pipeline Out l

% sospRequestData “[mee] atrPrefic ae| xmidata % soapRequestData
% soapResponseData document k| scapResponseData
dn:umamD—’_—r_f___—’_—’ "B rnsDecls I neDecls
e namespace & " addHesder B [md addHeader
& encoce ? ke encode
“[fbe] documentTypeNams I documsnt
“[f] genersteRequiredTags B [m namespace
®[fee enforcelegalhil ks xtrilciata

"B otoHeaderinto

"] butferSize

The result is xmldata which is a string in the right format for adding into the body of the
response soap message.

Line 12: pub.xml:xmlStringToXMLNode
This function converts a given xml string to an xml node. The isXML parameter is true.

les 3 b |mi~ X2 § & 19 |
mISHnGToXMLNode
Fipsline In Service In Service Out Pipeline Cut
% sompRequestData e wrilcata % noteo— | k| scapRequestData
% sospResponseData [iedsta pa—— % bodyErtry
#e xmidsta ¥ $fiestream %| soapResponseData
o encoding 3 ks xprlciata
] expandDTD B [md isKML
[T Y B [H rode

Line 13: pub.soap.utils:addBodyEntry
This function takes the xml node (bodyEntry) that contains the resonse details and adds it
into the soapResponseData object. This is then passed back to the calling client.

Error Handling

Here is the error handling code for the soap processor:
E- F SEQUENCE (Error Handling - Exit when Done)

= pub.flovwsgetl sstError
-
oro MAP (Populate soapFault document. Replace crlf in error message with space)
= retvworks util service soap: determineErrorCode (Set errorCode if not already set)
Oro MAP [Get first three char of errorCodeCut =0 it can be used to work out faultcode)
= 1534 BRAMCH
B % SerrorCode3Char ¥ =='"0T-" || HetrorCode3Char % == WY || HeerrarCode3Char¥ == Y- SEQUENCE
Oro MAP (These errar codes are dus to data validation errors. Set fauttcode to Client)
= pub il document ToXMLSE NG (Convert soapFault into an XML data string)
= b ki String ToXMLMNode (Convert XL Data string to a Mode)
= pub zoaputils: addBodyEntry (Add the Mode to the S0OAP body)
= pub flow zetResponse
= pub flov: setResponseCode
o2 MAP (Clear pipeling)

Error Line 1: pub.flow:getLastError
This function gets the details of the last error thrown.

Error Line 2: Map soapFault document
Instantiate a soapFault document type canonical and populate it with details from the
getLastError call. In the process, remove carriage return linefeed characters from the error
message. There is a standard format for a soap fault (ie faultcode, faultstring, faultactor and
a details section that can be customised). Western Power have set up a standard structure for
the details section which includes an errorCode, errorMessage, errorDateTime and call stack
amongst other things.

How to build a basic Custom Document Literal SOAP Processor

Error Lines 3-5: Set up soapFault details
Code specific to Western Power to populate the details section of the soapFault document.

Error Line 6: pub.xml:documentToXMLString
This function converts the soapFault document to an XML string. The addHeader parameter

is false and the encode parameter is true.
lee 3 & @i~ X2 F ¢lip |
documentToXML String

Pipeline In Service In Service Cut Pipeling Out
% soapRequestData "l attrPrefic o scrnldata | sospRequestData
SOAP-ENY Fault (soapFaull_v1) 0——————————a# document I document
%| scapResponzeData u nzDecls B nsDecls
lastError (exceptioninfo) % “[fwe addHeacer i fbe| ridHeader
W errorCodedChar & "l encode B[encode
“[me document TypeName V- [S0LP-ENY Faul (sospFaut_v1)
“[pe generateRequiredTags %k soapResponseData
“[fwe enforcelegalihL i @ lastError (exceptioninfo)
"B dteHeaderinfo B [nd erorcode3Char

"] butfersize el xmidsta

Note the prefix is SOAP-ENV: so the nsDecls parameter is:
x|

rsiecls SOAP-ENY hitp ischemas xmlsoap orgfsoap/enyelopel

[¥] Crverwrite pipeling value
[Perform variakle sukbstitution

Error Line 7: pub.xml:xmlIStringToXMLNode
This function converts a given xml string to an xml node. The isXML parameter is set to
true.

Error Line 8: pub.soap.utils:addBodyEntry
This function takes the xml node (bodyEntry) that contains the soapFault details and adds it
into the soapResponseData object.

Error Line 9: pub.flow:setResponse
Sets the soapResponseData as the response to be passed back.

|77 Y T mE /& W ve v |
setResponse
Pipeline In Service In Service Out Pipeline Cut
we| message W |—0 [#e| response fke| response
% sospData 3 ke contentType k| sospRequestData
%k soapRequestData ke encoding %k soapResponseDats
Abe| atritig %
% soapResponseData

Error Line 10: pub.flow:setResponseCode
Sets the HTML response code to 500 (standard HTML error condition).

nputicutput | Pieeline | Gomments |

o0 3 & |mi~X|& T ¢ 19 |

setResponseCode I
Fipeline In Service In Servics Out Fipeline Out
Abc| [ESPONSE Q? Roc| pESpORFECods % fbe| rESpOMEECOdE
% sospRequestData DB [response

% soapResponseData % soapRequestData

[

soapRespanseData

Security
It is recommended that you apply an ACL rule to the custom soap processor. This allows you to

control access to the processor but also enables a challenge — response model, that is, if an external
client calls the soap processor without any basic authentication details (user id/password) then an

How to build a basic Custom Document Literal SOAP Processor

HTML 401 will be passed back. This indicates that the client should call again but this time pass in
the relevant authentication details. Clients built using VB .net (an also XMLSpy) expect to work
this way.

Gotchas

A known issue is that when a doc literal WSDL for a web service which has no input parameters
is imported into XML Spy a ‘model is non-deterministic’ error is reported. The solution is to
manually remove the following entries from the WSDL.

<xsd:any processContents="lax"/>

About the Author
Craig Harper is the Applications Architect at Western Power.
Email: craig.harper@westernpower.com.au

This document is intended as a guide only. The code given is not ‘industrial strength’ and is
unlikely to work in all scenarios. However, it should help most people climb up the rather steep
learning curve involved in building a soap processor.

If you find any errors/improvements/changes can you please pass these back to the author.

July 2006.

10

