REST To SOAP Transformation in Mediator End to
End tutorial

© Preface
End to End Flow
© Enabling REST invokes for a Virtual SOAP Service:
© SOAP - Version Handling:
© Invoking a REST enabled SOAP Service:
© SOAP Action Handling:
© Response handling:
© XSLT and ESB transformations:
© Multipart-Form data handling:

o

Preface

This feature enables the customers to invoke all SOAP based services as REST services. Mediator Clients would now be able to make RESTful
calls to Virtual SOAP services. Mediator would transform the REST request sent by the Client into SOAP requests as expected by the Native
SOAP service. The transformation of SOAP response sent by the Native service into REST response is also done.

End to End Flow

The following diagram depicts the above use-case more in detail

Makes a SOAP call

to the Virtual Service Request forwarded to MNative service
- Virtual SOAP »> Native SOAP
Senice Hosted in service
Response forwarded to Client Wediator <+——Response in S0AP ——

Client
SOAP request obtained after conversion
Makes a REST call forwarded to Mative Service Mative SUAP
to the Virtual Service Virtual SOAP gl semnice
Senvice Hosted in .
REST response Mediator +——Response in SOAP ———
= obtained after conversion forwarded —

Client to Client

Enabling REST invokes for a Virtual SOAP Service:

The provider can decide on what services he wants to expose for RESTful calls in Mediator. During virtualization he can use the "Enable REST
Support" action present in the Request Handling step for this purpose.

Virtualize soap.addInts_WSD (Step 2 of 3)

Configure the runtime aspects of your AP by dragaing policy actions and dropping them in the Message Flow area.

Policy Actions Message Flow
Receive

Reguest Handling
Require HTTP /HTTPS
Protocol

Request Transformation Enable REST Support
ke wehMethade Tntegration Server
Enable REST Support Enforce
Set Media type Operator (Applicable to only "Evaluate” actions) @ And () Or
Routing
Straight Through Routing

Re
Policy Enforcement esponse

Response Processing

Error Handling

Note: This action is added by default during fresh virtualization of a service.

On publishing this service to Mediator the following changes are made in the VSD.
1. Mediator adds two HTTP bindings with methods "GET" and "POST" to the Virtual Service WSDL.
2. The VSD contains the "expose-as -rest" to indicate that this service has been enabled with a REST invoke.

<«definition>
<monitorPolicies />
insequence

<expose-as-rest s n="soapll® /> |

ir g
<authentication mode="incoming” scheme="basicauth” />
</http-config>
<send>
<endpoint>
<address isAlias="false" optimize="none" passSecurityHeaders="false" uri="local://dems:multiplyInts WSD">
<connect-timeout>
<duration>3@¢/duration>
</connect -timeout>
</address>
</endpoint>
</send>
</inSequence>

Note: It is not possible to have "Enable as REST" and WS-Security polices applied at the same time to a Virtual service.This is because of the
restriction that REST invokes cannot have WSS headers. Please see XSLT and ESB transformations section on more details of how to support
such a use-case.

SOAP - Version Handling:

Mediator needs to know the SOAP version of the Native Endpoint in order to transform the REST request it receives. This information is passed
from the CentraSite which decides the SOAP version of the Endpoint selected from the Native service WSDL that is used for Virtualization and
adds it to the VSD.

Invoking a REST enabled SOAP Service:

The REST endpoint for a SOAP service is nothing but the Operation name added to the Virtual Service Invoke path. l.e. http(s) ://< HOST> :<
PORT>/ws/<SERVICE-NAME>/<OPERATION-NAME>.

Let's take an example of the StockQuote service (http://www.webservicex.net/stockquote.asmx?WSDL).

After virtualizing this service and publishing to Mediator it has 1 soap operation . Now the table explains the corresponding REST endpoint for the
Operation

SOAP Action | REST -Endpoint for the Action

GetQuote <IS-CONTEXT-URL>/StockQuoteService/GetQuote

The request can be of any one of the below content types:

application/xml

application/json
application/json/badgerfish
application/x-www-form-urlencoded
text/xml

multipart/form-data

http://www.webservicex.net/stockquote.asmx?WSDL

Note : If No Content-type header is provided in the request Mediator default that the Request is of application/json type.

The below table now explains the possible REST requests to the above stock quote service. All requests are made to the Endpoint
http://<Context-path>/ StockQuoteService/ GetQuote . The SOAP request is of the form

Content-type

application/xml
text/xml

application/xml

application/json

application/json

application/x-www-form-urlencoded

Important Note for URL-Encoded parameters:
Mediator can support URL-Encoded parameters only for one level.
For example to a Native service that expects a SOAP request of the form

Request

<web:GetQuote xmins:web="
http://iwww.webserviceX.NET/">
<web:symbol >IBM </web:symbol><
/web:GetQuote>

<web:symbol xmIns:web="
http://www.webserviceX.NET/">IBM
</web:symbol>

{

"GetQuote" : {
"symbol" : "IBM"
}

}

{

"symbol" : "IBM"
}
?symbol=IBM

Comments

This is same to the SOAP Request
without being wrapped over the
SOAP envelope

When the Operation Element is not
present in the request , Mediator
intelligently wraps the incoming
request with the operation element

Similar to 1 .Mediator adds the
requires Namespaces to the
converted requests.

Hence it is not needed to send the
Namespaces.

Similar to 2

This is passing the arguments in the
URL encoded fashion.

<add>

<numt/ >
<nung/ >

</ add>

The above said XML have an equivalent URL -Encoded request like http://<Context-path>/AddIntsService/add?num1=10&num2=9

Whereas if the request has nested elements like

</ add>

<nuns>

</ nuns>

<numtl/ >
<nung/ >

Then this CANNOT be supported with application/x-www-form-urlencoded content type.

SOAP Action Handling:

Mediator needs to add the SOAP-Action header to the converted SOAP request. It derives this information from the service WSDL.

— <wsdl:binding name="5tockQuoteSoapl2" type="tns:StockQuoteSoap">
<soapl2:binding transport="http://schemas. ap.org/soap/http"/=
— <wsdl:operation name="GetQuotg "=
<soapl2:operation soapAction="http://www webservice X NET/GetQuote" style="document"/=
—<wsdl:input>
=soapl2:body use="literal"/>
</wsdl:input>
—<=wsdl:output>
<soapl2:body use="literal"/>
</wsdl:output>
</wsdl:operation>
frgdl-hinding

Response handling:

Mediator during the Response phase should convert the Native service response (SOAP) to a REST response depending on the Accept header.

If no Accept Header is provided Mediator default it to application/json.

XSLT and ESB transformations:

When a SOAP service is enabled for REST invokes, a provider would need to configure XSLT's and ESB's only when the invoke is via a REST or
vice versa.

For example there is a Native service that has WS-Security enforced in it .For SOAP invokes the client can add these data to the request to
Mediator, which is not possible for REST invokes.

This can be achieved in Mediator with the help of a property pg_isRestinvoke. By using this property the provider can write his own XSLT's and
ESB that change the details of Service invocation only if it is REST/SOAP.

A sample XSLT is shown below.

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl:stylesheet xmns:xsl=" http://ww.w3.org/ 1999/ XSL/ Transform' xm ns:
soapenv=" http://schemas. xm soap. or g/ soap/ envel ope/"

xm ns: esp=" http://bnms. conf esp" version="1.0">

<xsl : par am nanme="pg_i sRest | nvoke"/ >

<xsl :tenpl ate mat ch="soapenv: Envel ope" >
<xsl : choose>
<xsl :when test="3$pg_i sRestlnvoke = "true' ">
<soapenv: Envel ope>
<soapenv: Header >
<yes></yes>
</ soapenv: Header >
<soapenv: Body>
<I-Body Content goes here for REST->
</ soapenv: Body>
</ soapenv: Envel ope>
</ xsl : when>
<xsl : ot herw se>
<soapenv: Envel ope>
<soapenv: Header >
<no></ no>
</ soapenv: Header >
<soapenv: Body>
<!-Body Content goes here for SOAP->
</ soapenv: Body>
</ soapenv: Envel ope>
</ xsl : ot herwi se>
</ xsl : choose>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Note: The ESB and XSLT transformations are applied only after converting the Client's REST request to SOAP request. Hence the XSLT/ESB
can modify the converted SOAP request as per requirements. .

Multipart-Form data handling:

The provider can have a Native SOAP service that expects attachments in the SOAP body. It can use any optimization technique (MTOM/SwA).
The equivalent REST invoke to the service will be of type ‘'multipart/form-data’

Mediator also needs the optimization technique used for outbound request. This information is derived by Mediator from the Endpoint properties
that is configured in CentraSite

Message Flow
Receive

Require HTTP / HTTPS Endpoint Properties

Enable REST Support SOAP Optimization Method
MNone -
Enforce MTOM
Operator (Applicable to only "Evaluate™ actions) @ And @) Or None
SWA
Routing SSL Configuration
Straight Through Routing & Client Certificate Alias

Keystore Alias

Response

WS-Security Header

Remove processed security headers hd

ws || Virtualize || Next Can
Cancel 0K F

Mediator uses the following rules to convert the multipart/form-data request to a request with SOAP attachments

* |f the multipart/form-data requests contain an application/json part then the JSON part is converted and added as the SOAP body of the
outgoing request.

® |f an application/json part is not present Mediator checks for an application/xml part and adds it to the SOAP body.

® If no application/json or application/xml parts are found in the request an empty soap body with the operation element alone is added.

® |f more than one application/json or application/xml parts are found in the request the first part is taken and processed. The remaining
parts are sent as attachments to the outbound requests.

Consider the following Multipart Form Request.

Multipart/form-data request

POST http://1ocal host: 5555/ ws/ Enpl oyeeFi | eUpl oadSer vi ceMrov

/ Upl oadFi | eRequest HTTP/ 1.1

Content-Type: nmultipart/formdata; boundary="----= Part_ 1 1421953406.
1422953553647"

M Me-Version: 1.0

Content-Lengt h: 633

Host: | ocal host: 5555

Connection: Keep-Alive

User - Agent: Apache-HtpCient/4.1.1 (java 1.5)

—————— = Part_1_1421953406. 1422953553647

Cont ent - Type: application/json; nane=enpl oyeeDetails.json

Cont ent - Tr ansf er - Encodi ng: bi nary

Content-Di sposition: formdata; name="enpl oyeeDetails.json"; filenanme=
enpl oyeeDet ai | s. j son"

{
"enpl oyeel D' :"1",
"filename" : "details.txt"

------ = Part_1 1421953406. 1422953553647

Cont ent - Type: text/plain; charset=Cpl252; name=Tests.txt

Cont ent - Transf er - Encodi ng: bi nary

Content-Disposition: formdata; nane="data"; fil enane="Tests.txt"

Test PGSchemaUnwr apper 3 tests
Test JSONConvertor 5 tests

1. native service
2. xslt

------ = Part_1_1421953406. 1422953553647- -

The above request contains two parts

1. A JSON part with content-id ‘employeeDetails.json'.
2. An text/plain part of content-id 'data’

Now the converted SOAP request is as shown below

Converted SOAP Request

POST / Enpl oyeeDet ai | / servi ces/ enpl oyeeFile HTTP/ 1.1

User-Agent: Mzilla/4.0 [en] (WnNT; 1)

Accept: image/gif, */*

Host: | ocal host: 7022

Content - Type: nultipart/rel ated; boundary="

M MEBoundary_e1283a82dcb388a3866f 725¢6809ae0871f ad51b973cf a9b"; type="
application/xop+xnm"; start="<0.
12283a82dcb388a3866f 725c6809ae0871f ad51b973cf a9b@pache. org>"; start-info="
appl i cation/soap+xm "; action="urn: upl oadEnpl oyeeFi | e"

M ME-Version: 1.0

Cont ent - Length: 1142

--M MEBoundary_e1283a82dch388a3866f 725c6809ae0871f ad51b973cf a9b
Cont ent - Type: application/xop+xm ; charset=UTF-8; type="application

/ soap+xm "

Cont ent - Transf er - Encodi ng: bi nary

Content-1D: <0.12283a82dch388a3866f 725c6809ae0871f ad51b973cf a9b@pache. or g>

<?xm version='1.0" encodi ng="' UTF- 8" ?><soapenv: Envel ope xm ns: soapenv="
http://ww. w3. or g/ 2003/ 05/ soap- envel ope" >
<soapenv: Body>
<axi s2ns87: Upl oadFi | eRequest xml ns: axi s2ns87="
htt p:// nedi at or. sof t war eag. com " >
<dat a><xop: I ncl ude xm ns: xop="http://ww. w3. org
/ 2004/ 08/ xop/ i ncl ude" href="cid: 1. 02283
a82dch388a3866f 725c6809ae0871f ad51b973cf a9b@pache. org” />
</ dat a>
<enpl oyeel D>1</ enpl oyeel D>
<filenane>details.txt</fil ename>
</ axi s2ns87: Upl oadFi | eRequest >
</ soapenv: Body>
</ soapenv: Envel ope>
-- M MEBoundary_e1283a82dcb388a3866f 725c¢6809ae0871f ad51b973cf a9b
Cont ent - Type: text/plain; charset=Cpl252; nanme=Tests.txt
Cont ent - Transf er - Encodi ng: bi nary
Content-1D: <1.02283a82dcbh388a3866f 725c6809ae0871f ad51b973cf a9b@pache. or g>

Test PGSchemaUnwr apper 3 tests
Test JISONConvertor 5 tests
1. native service

2. xslt

--M MEBoundary_e1283a82dch388a3866f 725c6809ae0871f ad51b973cf a9b- -

Now the converted request has a SOAP Body (converted JSON part with ID ‘employeeDetails.json’). Please note the

<dat a>

<xop: I ncl ude xm ns: xop="http://ww. w3. or g/ 2004/ 08/ xop/ i ncl ude" href="ci d: 1. 02283
a82dch388a3866f 725¢6809ae0871f ad51b973cf a9b@pache. org"/ >

</ dat a>

which is the attachment that is sent. Also the attachment XOP element is wrapped with the element ‘data’ which is the Content-ID of the
attachment that is sent.

The below image shows the attachments in SOAPUI(Attachments tab in Request).

i@ ®
Mame | Content type | Size| | ‘ ContentID Cached

employeeDetails.json application/json 5 .. employeeDetailsjson

Tests.tet text/plain 98 .. dats

The content ID is equal to 'data’
which is expected by the Mative
The Content-type application/json indicates service
that this part should be injected to the
outbound SOAP body

	REST To SOAP Transformation in Mediator End to End tutorial

