
Expressive Power of Recursion and Aggregates in

XQuery

Technical Report UA 2005-05

Jan Hidders Stefania Marrara Jan Paredaens
Roel Vercammen

Abstract

The expressive power of languages has been widely studied in Computer Sci-
ence literature. In this technical report we investigate the expressive power of
XQuery, trying to focus on fragments of the language itself in order to outline
which features are really necessary, and which ones simplify queries already ex-
pressible and could hence be omitted. The core of the report is the study of
the effect of recursion, aggregates, sequence generators, node constructors, and
position information on the expressiveness of XQuery, starting from a simple
subset called XQ and then adding, step by step, new features, in order to dis-
cover what can be defined as a minimal set of syntax rules for each degree of
desired expressive power.

Contents

1 Introduction 2

2 XQuery Fragments 4
2.1 Syntax . 4

2.1.1 Comparison with LiXQuery 5
2.1.2 Simulation of (other) XQuery features 5

2.2 Semantics . 7

3 Expressive power of the fragments 12
3.1 Expressibility Results . 12
3.2 Inexpressibility Results . 17
3.3 Equivalence classes of XQuery fragments 28

4 Related Work 33

5 Conclusion 35

1

Chapter 1

Introduction

The literature on programming languages contains many studies about expres-
sive power of languages. These studies would like to formally prove that a certain
language is more or less expressive than another language. Determining such
a relation between languages objectively rather than subjectively seems to be
somewhat problematic, a phenomenon that Paul Graham has discussed in “The
Blub Paradox” [6]. Arguments in this context typically assert the expressibility
or non-expressibility of programming constructs relative to a language. Unfor-
tunately, programming language theory does not provide a formal framework
for specifying and verifying this statement as described in [5], as the languages
are usually universal. However, this approach can be useful if used to study the
expressive power of one single language, in order to separate an essential core
of programming structures from the syntactic sugar. In this work we study the
expressive power of the XML query language proposed by the W3C, XQuery
[2], which is a powerful and convenient language designed for querying XML
data. The drawback with this language is that XQuery is rather complex and
with a well defined but troublesome semantics. A question that rises is: what
queries can be expressed by a certain fragment of XQuery and is the entire
syntax of the language, with its complexity, really necessary? After all, it is the
inability to express certain properties that motivates language designers to add
new features. The point is: which are the redundancies of XQuery as it is going
to be the standard query language for XML data? The aim of our work is to
investigate the expressive power of this language, trying to focus on fragments of
the language itself in order to outline which features really add expressive power
and which ones simplify queries already expressible and could be omitted, for
example, in a prototype engine or to create a simple application for users who
do not need the whole complexity of XQuery. This work can be also useful
for theoretical studies, such as studying typing problems or the equivalence of
expressions (maybe for a new query optimization approach). As an example of
what could be syntactic sugar, consider the XQuery core definition: one possi-
ble definition says that it should be an essential group of rules, but it contains
constructs that could be easily omitted; for example the “case” clause can be
simulated by means of a set of “if” clauses, while two axes (child and descen-
dant) have enough expressive power to simulate all the others. On the other
hand, there are queries that cannot be expressed without certain constructs.
As an example, given a sequence of integers “seq” consider the following query

2

that uses the “at” clause:

for $i at $pos in $seq
return ($i + $pos)

It turns out that this query cannot be expressed without “at” or node con-
struction. There are many queries that can be simulated using only a small part
of the syntax of XQuery, and our aim is to point out which are the main frag-
ments of the language and the containment that hold among these fragments,
in order to discover what can be defined as a minimal set of syntax rules for
each degree of desired expressive power.

The core of this report is the study of the effect of recursion, aggregates,
sequence generators, node constructors, and position information on the expres-
siveness of XQuery starting from a simple subset called XQ and then adding,
step by step, new features. Section 2 defines the syntax and the semantics of the
different XQuery fragments that we are going to analyze. Chapter 3 presents
the classes to which fragments with the same expressive power belong and their
characteristics. Chapter 4 presents a small review of other work about the
problem of query languages expressive power. Finally, Chapter 5 outlines the
conclusions of our work.

3

Chapter 2

XQuery Fragments

This section formally introduces the XQuery fragments for which we study the
expressive power in this report. We will use LiXQuery [7] as a formal founda-
tion. LiXQuery is a light-weight sublanguage of XQuery which is fully down-
wards compatible with XQuery and includes the typical expressions of XQuery.
The sublanguage XQ of LiXQuery will be defined together with a set of at-
tributes (such as count, sum, recursion, at, to, and node constructors), which
we use to extend XQ. We can combine XQ and the attributes to construct a
number of XQuery fragments. The syntax of each of these fragments is defined
in Section 2.1. In Section 2.2 we briefly describe the semantics of a query.

2.1 Syntax

The syntax of the fragment XQ is shown in Figure 2.1, by rules [1-19] 1. This
syntax is an abstract syntax in the sense that it assumes that extra brackets
and precedence rules are added for disambiguation. The XQuery fragment XQ
contains simple arithmetic, path expressions, “for” clauses (without “at”), the
“if” test, “let” variable bindings, the existential semantics for comparison,
typeswitches and some built-in functions. It does not include user defined func-
tions, the “count” and “sum” functions, the “to” sequence generator, and node
constructors. Adding non-recursive function definitions to XQ would clearly
not augment the expressive power of XQ. We use 6 attributes for fragments:
C, S, at, ctr, to and R (cf. Figure 2.2 for the syntax of the attributed frag-
ments). The fragment XQR denotes XQ augmented with (recursive) functions
definitions. If a fragment is attributed by “C”, it also contains the “count”
function; the attribute “S” denotes the inclusion of the “sum” function; the
attribute “at” denotes the “at” clause in a for expression; “ctr” indicates the
inclusion of the node constructors, and finally the “to” attribute denotes the
sequence generator “to”. The fragment XQ can be attributed by a set of these
attributes. In this way, we obtain 64 fragments of XQuery. The aim of this work
is to investigate and to compare the expressive power of these fragments. With
XQ∗ we denote the fragment XQR,to,ctr

C,S,at expressed by rules [1-26]. Following

1Note that expressions which are not allowed in a fragment definition must be considered
as not occurring in the right hand side of a production rule. As an example FunCall and
Count do not occur in rule [2] for XQ.

4

auxiliary definitions will be used throughout the technical report:

Definition 2.1. The language L(XF) of an XQuery fragment XF is the (in-
finite) set of all expressions that can be generated by the grammar rules for this
fragment with 〈Query〉 as start symbol. The set Φ is the set of all 64 XQuery
fragments defined in Figure 2.2.

2.1.1 Comparison with LiXQuery

Since XQ∗ is a sublanguage of LiXQuery, we ignore typing and do not consider
namespaces2, comments, programming instructions, and entities. There are
some features left out from LiXQuery in the definition of XQ∗. The first feature
that is left out is the union. This can be easily simulated in the following way:

e1 “|” e2 → (e1 , e2)/.

The “/.” expression removes the duplicates and sort the result sequence by
document order. A second feature that is in LiXQuery, but not in XQ∗ is
the filter expression and the functions “position()” and “last()”. We can
simulate these as follows:

e1 “[” e2 “]” → let $seq := e1 return

let $last := count($seq) return

for $dot at $pos in e1

return

if (e′2)

then ($dot)

else ()

Where e′2 is the same test as e2, except that “position()” and “last()” are
replaced by “$pos” and “$last”. The last feature that is not in XQ∗ is the
parent step (“..”), which we can simulate as follows:

e1 “/..” → (

for $dot1 in e1

return

for $dot2 in root($dot1)//.

return

if ($dot1 = ($dot2/*, $dot2/text(), $dot2/@*))

then ($dot2)

else ()

)/.

Again, “/.” performs a distinct-doc-order operation. The variable “$dot2”
runs over all nodes of the input document trees and is in the result sequence if
one of its children (element, attribute, or text nodes) equals a node from the
input sequence. Since we have shown that all features that are in LiXQuery
but not in XQ∗ can be simulated in XQ∗, it follows that XQ∗ has the same
expressive power as LiXQuery.

2.1.2 Simulation of (other) XQuery features

We can simulate many XQuery features that are not in XQ∗ by using (a sub-
language of) XQ∗. For example the emptiness test and the quantifiers some
and every can be simulated by following XQ expressions:

2In types and built-in functions, such as “xs:integer”, the “xs:” part indicates a names-
pace. Although we do not handle namespaces we use them here to be compatible with XQuery

5

[1] 〈Query〉 → (〈FunDecl〉“;”)∗〈Expr〉
[2] 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
〈Step〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 | 〈Constr〉 | 〈TypeSw〉 |
〈FunCall〉 | 〈Count〉 | 〈Sum〉

[3] 〈Var〉 → “$”〈Name〉
[4] 〈Literal〉 → 〈String〉 | 〈Integer〉
[5] 〈EmpSeq〉 → “()”
[6] 〈BuiltIn〉 → “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

“xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
“not(”〈Expr〉“)” | “distinct-values(” 〈Expr〉 “)”

[7] 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[8] 〈ForExpr〉 → “for”〈Var〉(〈AtExpr〉)? “in”〈Expr〉 “return”〈Expr〉
[9] 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[10] 〈Concat〉 → 〈Expr〉“,”〈Expr〉
[11] 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉
[12] 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉
[13] 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”) 〈Expr〉
[14] 〈AddExpr〉 → 〈Expr〉 (“+” | “-”) 〈Expr〉
[15] 〈MultExpr〉 → 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[16] 〈Step〉 → “.” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉
[18] 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+

“default” “return”〈Expr〉
[19] 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” | “element()” |

“attribute()” | “text()” | “document-node()”
[20] 〈Count〉 → “count(” 〈Expr〉 “)”
[21] 〈Sum〉 → “sum(” 〈Expr〉 “)”
[22] 〈AtExpr〉 → “at” 〈Var〉
[23] 〈SeqGen〉 → 〈Expr〉 “to” 〈Expr〉
[24] 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”
[25] 〈FunDecl〉 → “declare” “function” 〈Name〉 “(” (〈Var〉 (“,” 〈Var〉)∗)? “)”

“{” 〈Expr〉 “}”
[26] 〈Constr〉 → “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
“text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

Figure 2.1: Syntax for XQ∗ queries and expressions

XQ [1-19]
C + [20]
S + [21]
at + [22]
to + [23]
R + [24-25]
ctr + [26]

Figure 2.2: Definition of XQ fragments

6

“empty(” e1 “)” → if (1 = (for $y in e1 return 1))

then true()

else false()

“every” $x “in” e1 “satisfies” e2 → not(empty(

for $x in e1 return

if (e2) then $x else ()

))

“some” $x “in” e1 “satisfies” e2 → empty(

for $x in e1 return

if (e2) then () else $x
)

Another example is the aggregate function “max”, which can even be simulated
in XQ as we will now illustrate. The maximum of the result sequence of e1 can
be computed as follows:

“max(”e1“)” → let $v1 := e1 return

distinct-values(

for $v2 in $v1

return

if ($v2 < $v3)

then ()

else $v2

)

A third XQuery feature that can be simulated in XQ are all XPath axes. We
illustrate this claim by giving the simulation of the “following-sibling” axis:

e1“/following-sibling::node()” → (

for $v1 in e1

return

for $v2 in ($v1/../*, $v1/../text())

return

if ($v1 << $v2)

then $v2

else ()

)/.

The last XQuery feature that we use to illustrate the claim that most typical
XQuery expressions can be expressed in XQ∗ is the “order by” clause. The
simulation of this feature can be done by implementing the insertion sort algo-
rithm, which can obviously be done in XQR

at

2.2 Semantics

The semantics of the XQuery fragments that we have just defined is downwards
compatible with the XQuery Formal Semantics[4] defined by the W3C. However,
we need a more formal and precise notion of the result of a query for examining
the expressive power. Therefore we first introduce the notion of an XML store
and an environment, as described in [8]. Then we illustrate briefly how we can
define the result of XQ∗ expressions by using reasoning rules. Finally, we define
the semantics of a query by means of the semantics of its subexpressions. Most
definitions in this subsection originate from LiXQuery[7].

Expressions are evaluated against an XML store which contains XML frag-
ments created as intermediate results, and all the web documents. The latter
assumption is a simplification, since in practice these documents are material-
ized in the store when they are accessed for the first time. In the following

7

definitions we will use some sets for the formal specification of the LiXQuery
semantics. The set A is the set of all atomic values, V is the set of all nodes,
S ⊆ A is the set of all strings, and N ⊆ S is the set of strings that may be used
as tag names.

Definition 2.2. An XML Store is a 6-tuple St = (V,E, <, ν, σ, δ) where

• V = V d∪V e∪V a∪V t is a finite countable set of nodes (V ⊆ V) consisting
of document nodes V d, element nodes V e, attribute nodes V a, and text
nodes V t;

• (V,E) is an acyclic directed graph (with nodes V and directed edges E),
and hence it is composed of trees; if (m,n) ∈ E then we say that n is a
child of m;

• < is a strict partial order on V that compares exactly the different children
of a common node;

• ν : V e ∪ V a → N labels the element and attribute nodes with their node
name;

• σ : V a ∪ V t → S labels attribute and text nodes with their string value;

• δ : S → V d is a partial function that associates with a URI or a file
name, a document node. It is called the document function. This function
represents all the URIs of the Web and all the names of the files, together
with the documents they contain. We suppose that all the documents are
in the store.

Moreover, for each store:

• each document node is the root of a tree and contains exactly one child,
which is an element node;

• attribute nodes and text nodes do not have any children;

• in the <-order attribute children precede the element and text children;

• there are no adjacent text children;

• for all text nodes nt of V t holds σ(nt) 6= “”;

• all attribute children of a common node have a different name.

The set ST is the set of all (valid) XML Stores.

We now give an example to illustrate this definition. In both this example
and the rest of the report, we will use the function ξ, which maps a sequence of
items to its serialization, as defined in [9].

Example 2.2.1. Let St = (V,E, <, ν, σ, δ) be an XML store that is shown in
Figure 2.3.

• The set of nodes V consists of V e = {ne
1, n

e
2, n

e
3, n

e
5, n

e
7}, V t = {nt

4, n
t
6, n

t
8},

V d = V a = ∅.

8

ne
1

ne
2

ne
3

nt
4

ne
5

nt
6

ne
7

nt
8

Figure 2.3: XML tree of Example 2.2.1

• The set of edges is E = {(ne
1, n

e
2), (n

e
1, n

e
7), (n

e
2, n

e
3), (n

e
2, n

e
5), (n

e
3, n

t
4), (n

e
5, n

t
6),

(ne
7, n

t
8)}.

• The order relation < is defined by ne
2 < ne

7, n
e
3 < ne

5.

• Furthermore ν(ne
1) =“a”, ν(ne

2) = ν(ne
7) =“b”, ν(ne

3) = ν(ne
5) =“c”, and

σ(nt
4) = “t1”, σ(nt

6) = “t2”, σ(nt
8) = “t3”. 3

In this example ξ(ne
1) = “<a><c>t1</c><c>t2</c>t3” is

the serialization of the node ne
1.

For the evaluation of queries we do not only need an XML store, but also
an environment, which contains information about functions, variable bindings,
the context sequence, and the context item. This environment is defined as
follows:

Definition 2.3. An Environment of an XML store St is a 4-tuple En =
(a,b,v,x) with

• a partial function a : N → N ∗ that maps a function name to its formal
arguments; it is used in rule [1,24,25];

• a partial function b : N → L(XQ∗) that maps a function name to the
body of the function; it is also used in rules [1,24,25];

• a partial function v : N → (V ∪ A)∗ that maps variable names to their
values;

• x which is undefined or an item of St and indicates the context item; it is
used in rule [16,17];

Let XF ∈ Φ be an XQuery fragment. The set of XF -environments (EN [XF])
is the set of all environments for which it holds that (∀f ∈ rng(b)).(f ∈ L(XF)).

Note that the definition of an environment is slightly different from the
definition in [7]. The original definition also included the position of the context
item in the context sequence (k) and the size of the context sequence (m).

3We do not mention here the documents on the Web and on files.

9

They have been omitted because no rule of XQ∗ uses them in creating the
result sequence. The only LiXQuery constructs that use k and m values in
their semantics are “last()” and “position()”, but they are not included
in XQ∗ syntax. If En is an environment, n a name, and y an item then we
let En[v(n) 7→ y] denote the environment that is equal to En except that
the function v maps n to y. This gives us the necessary formal foundation
to write down what the result of the evaluation of an expression is. We write
St,En ` e ⇒ (St′, v) to denote that the evaluation of expression e against the
XML store St and environment En of St may result in the new XML store
St′ and a result sequence v, where v can only contain nodes of St′ and atomic
values. We will use reasoning rules to define the semantics of XQ∗ expressions.
Since the definition of the semantics is not the main purpose of this work, we
give only one example of such a rule. A more detailed discussion on the formal
semantics containing all semantic rules, can be found in [7]. As an example
of a semantic rule, consider the rule for the slash operator that occurs in path
expressions. The semantics of (e′ / e′′) is defined by following rule.

St, En ` e′ ⇒ (St0, 〈x1, . . . , xm〉) St0, En[x 7→ x1] ` e′′ ⇒ (St1, v1)
. . . Stm−1, En[x 7→ xm] ` e′′ ⇒ (Stm, vm) v1, . . . , vm ∈ V∗

St, En ` e′ / e′′ ⇒ (Stm,OrdStm (∪1≤i≤mSet(vi)))

First e′ is evaluated. Then for each item in its result we bind in the environ-
ment x to this item, and with this environment we evaluate e′′. The results
of all these evaluations are concatenated and finally this sequence is sorted by
document order (Ord) and the duplicates are removed (Set). The result is only
defined if all the evaluations of e′′ contain only nodes.

So far, we have only discussed the semantics of XQ∗ expressions, which are
evaluated against a store and an environment. But in this paper we want to
study the expressive power of queries. For this we will need to specify the
semantics of a query in a certain fragment.

Definition 2.4. Let XF ∈ Φ be an XQuery fragment. An XF query q is an
XF expression that is evaluated against an initial store (containing the web)
and an initial environment of the set EN [XF]. The semantics of this query q
is the same as the semantics of the XF expression evaluated against the initial
store and the initial environment.

This definition can have a few implications w.r.t. expressive power. The
input of a query is not only a store, but also an environment has to be taken
into account. This can be justified by the XQuery Processing Model[4], which
allows the user to set an initial environment. Furthermore, this guarantees mod-
ularity, since each query can now be expressed in a function and vice versa (the
parameters of a function are just variables of the environment). The output of a
query is supposed not to be serialized, i.e., a new store and the result sequence
are returned. Again, this can be justified by the Processing Model which states
the serialization of the result sequence is optional and that the result can some-
times be processed directly via a DOM interface. Moreover, serialization is not
an information-preserving operation, since it discards information about node
identity. Hence when queries q1 and q2 are composed, we could get a different
result for q2 as we would get by inlining q1 into q2, assuming that serialization

10

would be done after evaluating q1. For these reasons, we will look at the ex-
pressive power of expressions instead of queries. From our point of view a query
has the same semantics as an expression.

11

Chapter 3

Expressive power of the
fragments

In this chapter we study the expressive power of the XQuery fragments defined
in Chapter 2. First we prove some expressibility results in Section 3.1. In
Section 3.2 some inexpressibility results are shown. Finally in Section 3.3 we
demonstrate the equivalence classes of fragments and their relationship.

3.1 Expressibility Results

Some features that correspond to XQ attributes can be simulated in a fragment
that does not have this feature. It is possible that in such a simulation new nodes
are constructed that cannot be reached after the termination of the simulation.
These nodes can then safely be garbage collected. More precisely, the garbage
collection is defined as follows:

Definition 3.1 (Garbage Collection). Garbage Collection (Γs) maps a store
St and a sequence s to a new store St′ by removing all trees from St for which
the root node is not in rng(δ) and for which no node of the tree is in s.

This garbage collection operation only preserves the nodes in the store that
can be accessed through document calls or items in the sequences. We call
two expressions equivalent iff they always return the same result upto garbage
collection:

Definition 3.2 (XQuery function). The XQuery function corresponding to
an expression e is {((St,v), (Γv(St′), v)) | St, (φ, φ,v,⊥) ` e ⇒ (St′, v)}. An
element of this set is called an evaluation pair. If two expressions e1 and e2 have
the same corresponding XQuery functions then they are said to be equivalent,
denoted as e1 ∼ e2.

We say that an expression e can be expressed in a certain fragment F iff
there exists an expression e′ ∈ L(F) such that e ∼ e′. Note that we do not
require the input environments to be in EN [F], since the equality of results
of both expressions has to hold for every environment and hence also for all
environments in EN [F].

12

Lemma 3.1. The “count” operator can be expressed in XQat.

Proof. From Section 2.1 we know that “max(e1)” and “empty(e1)” can be ex-
pressed in XQ. Hence the following expression is equivalent to “count(e1)”:
let $v := max(for $i at $pos in e1 return $pos)
return
if (empty($v)) then 0 else $v

Lemma 3.2. The “count” operator can be expressed in XQS.

Proof. Following XQS expression is equivalent to “count(e1)”:
sum(for $i in e1 return 1)

Lemma 3.3. The “to” operator can be expressed in XQR.

Proof. We can define a recursive function “to” such that “e1 to e2” is equiv-
alent to “to(e1, e2)” as follows:
declare function to($i ,$j) {
if ($j < $i)
then ()
else (to($i, $j - 1), $j)

};

Lemma 3.4. The “sum” operator can be expressed in XQto
C .

Proof. Following XQto
C expression is equivalent to “sum(e1)”:

count(
for $i in $sequence return
for $j in (1 to $i) return 1)

Lemma 3.5. The “count” operator can be expressed in XQctr,R.

Proof. We can define a recursive function “count-nodes” such that “count(e1)”
is equivalent to following XQctr,R expression:
count-nodes(
for $e in e1

return element {"e"} {()}
)

This expression generates as many new nodes as there are items in the input
e1 and then applies a newly defined function “count-nodes” to this sequence,
which counts the number of distinct nodes in a sequence. This can be done
by decreasing the input sequence of the function call to “count-nodes” by ex-
actly one node each recursion step, which is possible since all items in the input
sequence of “count-nodes” have a different node identity and hence we can
remove each step the first node (in document order) of the newly created nodes.
More precisely, the function “count-nodes” is defined as follows:

declare function count-nodes($sequence) {

if ($sequence) then (

let $head := (

for $e1 in $sequence

let $other := (

13

for $e2 in $sequence

return (

if (not($e1 is $e2)) then $e2 else ()

)

)

return

if (

for $e3 in $other

return

if ($e3 << $e1) then 1 else ()

) then $e1 else ()

) return

let $tail := (

for $e1 in $sequence

return

if (not($e1 is $head)) then $e1 else ()

)

return (1 + count-nodes($tail))

)

else 0

};

Each recursion step we filter out the node of the sequence that is first in doc-
ument order (this node is stored in the variable “$head”) and we recursively
apply the function on the rest of the sequence (“$tail”). The recursion stops
when applied to an empty sequence. Note that, since the count operator re-
turns only atomic values, none of the newly created nodes that were used to
count the number of items in the sequence is reachable after applying garbage
collection.

Lemma 3.6. The “at” clause in a for expression can be expressed in XQctr
C .

Proof. The proof is based on the idea that it is possible to transform sequence
order into document order by creating new nodes as children of a common par-
ent such that the new nodes will contain all information of the item and are
in the same order as the corresponding items in the original sequence. If we
can define auxiliary (non-recursive) XQctr

C functions “pos” (to find the position
of a node in a sequence of document-ordered nodes), “encode” and “decode”
(to make sure that we do not loose any information in creating a new node for
an item in the result sequence of the “in” clause) then the following XQctr

C

be equivalent to the XQctr
C,at expression “for $x at $pos in e1 return e2”

(where e1 and e2 are XQctr
C expressions):

let $seq := e1 return

let $newseq := encode($seq) return

for $x in $newseq

return (

let $pos := pos($x, $newseq) return

let $x := decode($x, $seq)

return e2)

Since the result sequence of e1, $seq, is used both in the “in” clause of the
for expression and as actual parameter for the “decode” function, we have to

14

assign this result to a new variable, otherwise by simple substitution a node
construction that is done in e1 would be evaluated many times. Furthermore
the expression e2 is guaranteed to have the right values for the variables “$x”
and “$pos” iff the function “decode” is behaves as desired. We only assume
that e2 does not use variables “$seq” and “$newseq”, since they are used in the
simulation1.

We now take a closer look at how to define the functions “decode” and
“encode”. The function “encode” needs to create a new sequence in which
we simulate all items by creating a new node for each item with its own iden-
tity. By adding these nodes as children of a newly constructed element (named
“newseq”) we ensure that the original sequence order is reflected in the docu-
ment order for the newly constructed sequence. Atomic values are simulated by
putting their value as text-node in an element which denotes the type of atomic
value. Encoding nodes cannot be done by making a copy of them, since they
have node identity and putting them as a child in a newly constructed node
would discard all information we have about the node identity. Therefore we
store for a node all information we need to recover the node later using the
function “decode”. We do this by storing the root of the node and the position
where the node is located in the descendant-or-self list of its root node. If we
assume that we can define the (non-recursive) XQctr

C functions “pos” (which we
already assumed earlier in this proof), and “atpos” (to find the nth node in a
sequence of nodes ordered by document order) then we can define the functions
“encode” and “decode” as follows:

declare function encode($seq) {

let $rootseq := (

for $e in $seq

return

typeswitch($e)

case element() return root($e)

case attribute() return root($e)

case document-node() return root($e)

default return ()

)/. return

let $newseq := element {"newseq"} {

for $e in $seq

return

typeswitch($e)

case xs:boolean return

element {"boolean"} {if ($e) then 1 else 0}

case xs:integer return

element {"integer"} {$e}

case xs:string return

element {"string"} {$e}

case element() return

element {"node"} {

attribute {"root"} {pos(root($e), $rootseq)},

attribute {"descpos"} {pos($e, root($e)//.)}

}

case attribute() return

element {"node"} {

1This issue can off course easily be solved by choosing two unused variables to replace these
variables.

15

attribute {"root"} {pos(root($e), $rootseq)},

attribute {"descpos"} {pos($e, root($e)//.)}

}

case text() return

element {"node"} {

attribute {"root"} {pos(root($e), $rootseq)},

attribute {"descpos"} {pos($e, root($e)//.)}

}

case document-node() return

element {"node"} {

attribute {"root"} {pos(root($e), $rootseq)},

attribute {"descpos"} {pos($e, root($e)//.)}

}

default return

element {"string"} {$e}

}

return $newseq/*

};

declare function decode($node, $seq) {

if (name($node) = "boolean") then

if (xs:integer($node/text()) = 1) then true() else false()

else if (name($node) = "integer") then

xs:integer($node/text())

else if (name($node) = "string") then

string($node/text())

else if (name($node) = "node") then (

let $root := atpos(rootseq($seq), xs:integer($node/@root))

return atpos($root//., xs:integer($node/@descpos))

)

else ()

};

To finish the proof, we still need to show how we can express the func-
tions “pos” and “atpos”, which respectively give the position of a node in a
document-ordered sequence and returns a node at a certain position in such
sequence. Their definitions, by means of XQctr

C expressions, are:

declare function pos($node, $seq) {

count(

for $e in $seq

return

if ($e << $node) then 1

else ()

) + 1

};

declare function atpos($seq, $pos) {

for $node in $seq

return

if (pos($node, $seq) = $pos) then $node else ()

};

Note that none of the previous functions used recursion. Hence we do not
actually need functions since we could inline the function definitions in the ex-

16

pressions. Hence the simulation of the “at” clause can be written in XQctr
C .

Furthermore there is no newly created node in the result sequence of the simu-
lation, so all newly created nodes are garbage collected and hence “at” can be
expressed in XQctr

C .

3.2 Inexpressibility Results

The previous section provided some expressibility results. In this section we
prove that certain features can not be simulated in certain fragments.

The first two inexpressibility results rely on the fact that we cannot dis-
tinguish between sequences with the same set or bag representation in some
XQuery fragments. To formalize this notion we define set-equivalency and bag-
equivalency between evironments and between sequences.

Definition 3.3. Consider a store St and two environments En = (a,b,v,x)
and En′ = (a′,b′,v′,x′) over the store St. We call En and En′ set-equivalent
iff the following statements hold:

• a = a′;

• b = b′;

• dom(v) = dom(v′) and (∀s ∈ dom(v)).(Set(v(s)) = Set(v′(s)));

• x = x′;

The environments En and En′ are called bag-equivalent iff they are set-equivalent
and it holds that (∀s ∈ dom(v)). (Bag(v(s)) = Bag(v′(s)))

Lemma 3.7. Let St be a store, En,En′ ∈ EN [XQR] two set-equivalent XQR

environments, and e an expression in XQR. If the result of e is defined for both
En and En′, then for each sequence r and r′ for which it holds that St,En `
e ⇒ (St, r) and St,En′ ` e ⇒ (St, r′)2, it also holds that Set(r) = Set(r′).

Proof. We prove this lemma by induction on the query AST. In this AST the
nodes correspond to the 〈Expr〉 non-terminal of the XQR grammar and as a
consequence each node corresponds to a construct of rules [3 − 18, 24] in Fig-
ure 2.1. We prove that Set(r) = Set(r′) for all evaluations St,En ` e ⇒ (St, r)
and St,En′ ` e ⇒ (St, r′), with En,En′ ∈ EN [XQR] two set-equivalent XQR

environments and e an expression in XQR.
First, consider the leafs of the AST. The result of literals [4,5] is fixed and

does not depend on the environment. Hence all evaluations of such an expres-
sion yield the same result. A step [16] returns nodes starting from the context
item (x) of the environment. Since the sets of context items of set-equivalent
environments are equal, these expressions return the same result in both eval-
uations. Variables [3] return a value from the environment. Since En and En′

are set-equivalent, both evaluations return set-equivalent result sequences.
Second, consider expressions that contain subexpressions and assume that

the lemma holds for all evaluations of the subexpressions. If e is evaluated
2Since e does not contain node constructors in its subexpressions, it’s easy to see that all

subexpressions are evaluated against the same store St and that the result store of all these
subexpressions will also be St.

17

against En and ei is the ith subexpression e then we denote the result sequences
of the kth evaluation of ei by ri,k and the environments against which it is
evaluated by Eni,k. If a subexpression is evaluated only once, then we denote
this environment by Eni and the result sequence by ri.

• The subexpressions of a built-in function [6] are evaluated against set-
equivalent environments iff the built-in function itself is evaluated against
set-equivalent environments. Because two set-equivalent sequences of length
one are always the same, we know by the induction hypothesis that built-in
functions that only take sequences of one item return the same result when
applied to set-equivalent sequences. The function “distinct-values()”
return the set-representation of the result sequence of the subexpression
and is therefore also equal for evaluations against set-equivalent environ-
ments. Similar to literals, the functions “true()” and “false()” always
return the same value, no matter against which environment it gets eval-
uated.

• The if expression [7] first evaluates the clause e1 before evaluating one
of its two subexpressions. Since evaluations of e1 against set-equivalent
environments yield set-equivalent result sequences (Set(r1) = Set(r′1)),
we know that both evaluations either evaluate to true or false, and hence
the same ei (i = 2, 3) is evaluated for both evaluations of e. Since ei is
evaluated against the same environment as e, we know by induction that
they yield set-equivalent result sequences and hence also both evaluations
of the if expression return set-equivalent result sequences.

• The for expression [8] evaluates the “in” clause e1. The subexpression
e2 (the “return” clause) of the for expression is then evaluated against
environments En2,k which are equal to En except for the value of the
variable v that is used as iteration variable and which equals the kth

item of r1. Since the results of both evaluations of e1 are set-equivalent
(Set(r1) = Set(r′1)), we know that for each En2,k there exists an En′2,k′

such that the variable v has the same value, and vice versa. More precisely,
if E2 is the set of all (En2,k, r2,k) pairs and E′

2 the set of all (En′2,k′ , r′2,k′)
pairs then the relation “has the same value for variable v” from E2 to E′

2 is
total and surjective. The only difference between En and the environments
in E2 is the value of the variable v. Since the same also holds for En′ and
E′

2, we know that the relation “has a set-equivalent environment” from
E2 to E′

2 is also total and surjective. From the induction hypothesis
then follows that also the relation “has a set-equivalent result sequence”
is total and surjective. Because r and r′ are the concatenations of the
result sequences of respectively E2 and E′

2 it hence obviously holds that
Set(r) = Set(r′).

• The let expression [9] binds the result sequence r1 of clause e1 to a vari-
able v. From the fact that En1 = En follows by induction that Set(r1) =
Set(r′1). This value is added to the environment against which e2 is evalu-
ated. Hence En2 and En′2 are also set-equivalent, by induction the results
of the return clause e2 are also set-equivalent (Set(r2) = Set(r′2)) and
therefore the result sequences of e are set-equivalent.

18

• For the concatenation [10] of two sequences it simply holds that Set(r1, r2) =
Set(r1) ∪ Set(r2) and hence by induction (both e1 and e2 are evalu-
ated against the same environment as e) the concatenation returns set-
equivalent result sequences when evaluated against set-equivalent environ-
ments.

• The binary expressions [11-15] that take two sequences of one item from
their subexpressions obviously return the same result when evaluated
against set-equivalent environments because, by induction hypothesis, their
subexpressions return set-equivalent sequences which are both of length 1
(since we only consider well-defined evaluations). From this we know that
r1 = r′1 and r2 = r′2 and therefore obviously Set(r) = Set(r′).

• Path expressions [17] are comparable to for loops, i.e., they compute the
concatenation of the results of e2, which is evaluated against the items of
r1. The result sequence is then the result of sorting the set representation
of the concatenated sequence by document order. Hence path expressions
return the same result sequences when evaluated against set-equivalent
environments.

• The evaluation of typeswitches [18] is similar to the evaluation of the “if”
clause and hence the same conclusions can be drawn. Note that the result
of a type test [19] depends on the environment that contains only one item.
Since these enviroments are also set-equivalent, it follows that the item is
the same for all the evaluations of this expression. Hence all evaluations
of such an expression yield the same result.

• Finally, the evaluation of a function call e [24] against a store St and
an environment En is the same as the evaluation of the function body f
against the same store St (since we do not have constructors in XQR) and
a new environment Enf in which we have bound variables (correspond-
ing to the formal parameters) to the actual parameters, specified by the
subexpressions of e. Since the values of the actual parameters are by in-
duction set-equivalent, we know that also the environments Enf and En′f
are set-equivalent and hence that the result of both evaluations of f yield
set-equivalent result sequences.

Lemma 3.8. It is impossible to simulate a “count” function in XQR.

Proof. Clearly the count function has not the property of Lemma 3.7. Indeed,
if we consider an environment En ∈ EN [XQR], then En1 = En[v(“seq”) 7→
〈1, 1〉] and En2 = En[v(“seq”) 7→ 〈1〉] are two set-equivalent XQR environ-
ments. The expression “count($seq)” returns 〈2〉 in the evaluation against
En1 and 〈1〉 against En2.

Lemma 3.9. Let St be a store, En,En′ ∈ EN [XQR
C] two bag-equivalent XQR

C

environments and e be an expression in XQR
C . If the result of e is defined for

both En and En′, then for each sequence r and r′ for which it holds that St,En `
e ⇒ (St, r) and St,En′ ` e ⇒ (St, r′), it also holds that Bag(r) = Bag(r′).

19

Proof. For all XQR expressions we can show similar to the proof of Lemma 3.7
that evaluations against bag-equivalent environments result into bag-equivalent
result sequences. The only real difference in this proof is that we now have to
show that there exists a bijection between the “subevaluations” of for expres-
sions. More precisely (using the notation from the proof of Lemma 3.7) the
relations “has a bag-equivalent environment” and “has a bag-equivalent result
sequence” from E2 to E′

2 have to be bijections. Finally, the count function
obviously returns the same number for evaluations against bag-equivalent envi-
ronments.

Lemma 3.10. It is impossible to simulate the “at” expression in XQR
C .

Proof. Clearly the “at” expression has not the property of Lemma 3.9. Indeed,
if we consider an environment En ∈ EN [XQR

C], then En1 = En[v(“seq”) 7→
〈1, 2〉] and En2 = En[v(“se”) 7→ 〈2, 1〉] are two bag-equivalent XQR

C environ-
ments, but the evaluation of the expression

for $i at $pos in $seq
return if ($pos=1) then $i else ()

returns 〈1〉 when evaluated against environment En1 and 〈2〉 when evaluated
against En2.

The maximum size of the output for all queries in certain XQuery fragments
can be identified as being bounded by a class of functions w.r.t. the input size.
For proving the inexpressibility results related to the output size, we introduce
following notions for the maximal input and output size for both sequences and
items:

Definition 3.4 (Auxiliary Notations). Let St = (V,E, <, ν, σ, δ) be a store,
En = (a,b,v,x) an environment over St and s a sequence over St. The sets
of atomic values As, ASt, and AEn are defined as follows:

• As = Set(s) ∩ A (atomic values in a sequence s);

• ASt = (rng(ν) ∪ rng(σ)) ∩ A (atomic values in the store St);

• AEn =
⋃

s∈rng(v) As (atomic values in the environment En).

The sizes ∆forest
St and ∆tree

St for the store St are defined as follows:

• ∆forest
St is the size of the forest in St, i.e., ∆forest

St = |V |

• ∆tree
St is the size of the largest tree of the forest in St, i.e., ∆tree

St =
max(

⋃
n1∈V {c|c = |{n2|(n1, n2) ∈ E∗}|})3

The function size maps an atomic value to the number of cells needed to repre-
sent this item on the tape of a Turing Machine.

3E∗ denotes the reflexive and transitive closure of E

20

Definition 3.5 (Largest Sequence/Item Sizes). Consider the evaluation
St,En ` e ⇒ (St′′, v) of a query e, where St = (V,E, <, ν, σ, δ), En =
(a,b,v,x), and Γv(St′′) = St′ = (V ′, E′, <′, ν′, σ′, δ′). The largest input and
output sizes for sequences and items are defined as follows:

• The largest input sequence size is ds
I = max({|s| |s ∈ rng(v)} ∪ {∆tree

St }).

• The largest input item size is di
I = max({size(a)|a ∈ (ASt ∪ AEn)} ∪

{dlog(∆forest
St + 1)e}).

• The largest output sequence size is ds
O = max({|v|,∆tree

St′).

• The largest output item size is di
O = max({size(a)|a ∈ (ASt′ ∪ Av)} ∪

{dlog(∆forest
St′ + 1)e}).

In the definition of the largest sequence sizes we include the size of the
largest tree in the store, since one can generate such a sequence by using the
descendant-or-self axis. Note that in the definition of the largest item sizes the
first set of the union contains all sizes needed to represent the atomic values that
occur in the store (or environment) and the second set contains only one value
which indicates how much space we need to represent a pointer to a node in the
store. Furthermore, we consider in the definition the maximal size for the entire
store (including the entire web). This is a theoretical simplification, but it does
not have an influence on the input/output size results: if we have to show that
the result of a certain evaluation has an upperbound f(n) where n is the input
size, then we have to show that this upperbound holds for all input stores and
hence also for the “minimal input store”, i.e., the store that only contains these
input nodes that are actually accessed during the evaluation. Furthermore, the
inclusion of the nodes of the output store in the output size is allowed for two
reasons. The first reason is that all upperbound functions that we use in our
lemmas are at least linear functions and the input nodes that occur in the output
store just add a linear factor to the upperbound function. The second reason
is that the nodes of the output store that do not occur in the input store have
to be reachable by nodes in the result sequence since for each fragment applied
garbage collection. Following example illustrates the definition of largest input
and output sequence/item size of a query.

Example 3.2.1. Consider the following stores St1, St2, environment En, ex-
pression e, and result sequence v in the evaluation St1, En ` e ⇒ (St3, v) with
Γv(St3) = St2:

• St1 = (V1, E1, <1, ν1, σ1, δ1) with

– V1 = V d
1 ∪ V e

1 ∪ V t
1 ∪ V a

1 with V d
1 = {n0}, V e

1 = {n1, n2, n4},
V t

1 = {n3, n4}, V a
1 = {}

– E1 = {(n0, n1), (n1, n2), (n1, n4), (n2, n3), (n4, n5)}
– <1= {(n2, n4)}
– ν1 = {(n1, “a”), (n2, “b”), (n4, “b”)}
– σ1 = {(n3, “123”), (n5, “Brussels”}
– δ1 = {(“text.xml”, n0)}

21

The serialization of the root nodes of the store St1 is
“document{<a>123Brussels},”. The largest input item
size is 8 (since the largest input item is “Brussels”) and the largest input
sequence size is 6 (since there are 6 items in the store and the store has
only one root).

• En = ({}, {}, {},⊥)

•

e = let $x := doc("text.xml")

return ($x/a, $x/a,

element{"res"}{$x/a,$x/a},

element{"res"}{$x/a/b},"Antwerp")

• The result store after garbage collection Γv(St3) = St2 = (V2, E2, <2

, ν2, σ2, δ2) with

– V2 = V d
2 ∪ V e

2 ∪ V t
2 ∪ V a

2 with V d
2 = V d

1 , V e
2 = V e

1 ∪ {n6, n7, n8, n10,
n12, n13, n15, n17, n18, n20}, V t

2 = V t
1 ∪ {n9, n11, n14, n16, n19, n21},

V a
2 = V a

1

– E2 = E1∪ {(n6, n7), (n6, n12), (n7, n8), (n7, n10), (n8, n9), (n10, n11),
(n12, n13), (n12, n15), (n13, n14), (n15, n16), (n17, n18), (n17, n20), (n18, n19),
(n20, n21)}

– <2=<1 ∪{(n7, n12), (n8, n10), (n13, n15), (n18, n20)}
– ν2 = ν1 ∪ {(n6, “res”), (n7, “a”), (n8, “b”), (n10, “b”), (n12, “a”),

(n13, “b”), (n15, “b”), (n17, “res”), (n18, “b”), (n20, “b”)}
– σ2 = σ1∪ {(n9, “123”), (n11, “Brussels”), (n14, “123”), (n16, “Brussels”),

(n19, “123”), (n21, “Brussels”)}
– δ2 = δ1

The garbage collection removed deep-equal nodes of the children of n6 and
n17 that could no longer be reached by document loading δ3 or result se-
quence v.

• The result sequence v = 〈n1, n1, n6, n17, “Antwerp”〉.

The largest output item size is 8 (for “Brussels”) and the largest output sequence
size is 11 (the size of the tree under node n6.

The following inexpressibility results use the observation that the maximum item
and/or sequence output size can be bounded by a certain class of functions in
terms of the input size.

Lemma 3.11. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr,to)
and En ∈ EN [XQctr,to] it holds that di

O ≤ p(di
I) for some polynomial p

Proof. For each polynomial p that has IN or IN2 as its domain there always
exists an increasing polynomial function p′ such that p′ is an upperbound for p.
Therefore we assume all functions that are used as an upperbound in this and
following proofs to be increasing functions. This assumption is needed to prove
the lemma by induction on the size of the abstract syntax tree of the query q.
In this AST the nodes correspond to the 〈Expr〉 non-terminal of the XQctr,to

22

grammar and as a consequence each node corresponds to a construct of rules
[3− 18, 23, 26] in Figure 2.1.

First, consider the leafs of the query AST. Literals [4,5] return constant
values, while steps [16], and variables [3] return some items from the input
(store and environment) of the expression and hence it is obvious that for all
leaf expressions di

O ≤ p(di
I) hold for some polynomial p (linear function).

All other expressions have subexpressions. We denote the largest input/output
item sizes of the kth subexpression by di

Ik
and di

Ok
. From the induction hypoth-

esis follows that for each subexpression it holds that di
Ok

≤ pk(di
Ik

) for some
polynomial pk. Note that many expressions [6, 7, 10-15, 17, 18, 23, 26] do not
alter the environment or the store before passing them to their subexpressions,
so di

Ik
= di

I for all subexpressions, and hence di
Ok

≤ pk(di
I). All items in the re-

sult sequence of these expressions are either in the result of their subexpressions,
constant values or items polynomialy bounded in size by the items in the result
of their subexpressions, while all items in the result store of these expressions
are items in the result store and/or sequence of their subexpresesions. Hence it
holds that di

O ≤ p(di
I) for some polynomial p. The expressions in XQctr,to that

do change the environment are:

• For expressions [8] evaluate their second subexpression e2 for each result
of their first subexpression e1 with this result bound to a variable $x.
By induction we know, the largest item in $x needs at most di

O1
≤ p1(di

I)
space, for some polynomial p1. From the induction hypothesis follows that
for each iteration of e2 it holds that di

O2
≤ p2(di

I2
for some polynomial p2,

and hence di
O2

≤ p2(p1(di
I)). Since the result of a for expression contains

only items that are in the result of an evaluation of e2, we know that there
exists a polynomial p such that di

O ≤ p(di
I)

• Similarly, the let expression [9] binds a variable $x to the result of its
first subexpression, adds this variable to the environment and passes the
new environment and the result store of the first subexpression as input
to the second subexpression e2. The output of e2 is then the output of
the entire expression. From the induction hypothesis follows that the
output item sizes for the first expression are bounded as di

O1
≤ p1(di

I)
for some polynomial p1. This upperbound also applies to di

O2
. Hence

di
O = di

O2
≤ p2(p1(di

I)) ≤ p3((di
I) for some polynomial p3.

Lemma 3.12. It is impossible to simulate a “count” function in XQctr,to.

Proof. Clearly the “count()” function has not the property of Lemma 3.11.
Indeed, if we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈1, . . . , 1〉)},⊥), and the expression e = “count($input)” where the
length of the sequence bound to variable $input equals k, then the evaluation
St0, En ` e ⇒ (St′, v) has largest input item size di

I = 1 and output item size
di

O = dlog(k + 1)e.

Lemma 3.13. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr
at,S)

and En ∈ EN [XQctr
at,S] it holds that ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) for

some polynomials p1 and p2.

23

Proof. We prove this lemma by induction on the size of the abstract syntax tree
of the query q. In this AST the nodes correspond to the 〈Expr〉 non-terminal of
the XQctr

at,S grammar and as a consequence each node corresponds to a construct
of rules [3− 18, 21, 26] in Figure 2.1.

First, consider the leafs of the query AST. Literals [4,5] return constant
values, while steps [16], and variables [3] return some items from the input
(store and environment) of the expression and hence it is obvious that for all
leaf expressions ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) hold for some polynomials

(linear functions) p1 and p2.
All other expressions have subexpressions. Similar to the proof of Lemma 3.11,

we denote the input/output sizes of the kth subexpression by ds
Ik

, di
Ik

, ds
Ok

,
and di

Ok
. From the induction hypothesis follows that ds

Ok
≤ pk1(d

s
Ik

) and
di

Ok
≤ pk2(log(ds

Ik
), di

Ik
) for each subexpression. Note that many expressions

[6, 7, 10-15, 18, 21, 26] do not alter the environment or the store before passing
them to their subexpressions, so ds

Ik
= ds

I and di
Ik

= di
I for all subexpressions.

• All basic built-in functions [6], if expressions [7], the binary expressions
[10-15], and typeswitch expressions [18] return results that are directly
bound by the sum of output sizes of these subexpressions. Hence their
output size is bound by ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) for some

polynomials p1 and p2.

• The sum function [21] returns a number that is the sum of a number of
values of the input sequence (output of the subexpression). This result is
bounded by ds

O1
.di

O1
≤ pk1(d

s
I).2

pk2 (log(ds
I),di

I) and hence O(log(pk1(d
s
I)) +

pk2(log(ds
I), d

i
I)) place is needed to represent this result (one item), which

is bounded by p(log(ds
I), d

i
I) for some polynomial p.

• Constructors [26] can worst-case copy the entire input store, such that the
output sequence size ds

O ≤ O(2.ds
I), and di

O ≤ O(log(ds
I), d

i
I), which is still

within the bounds that we have to show.

• The let expression [9] binds a variable to the result of its first subexpres-
sion, adds this variable to the environment and passes the new environ-
ment and the result store of the first subexpression as input to the second
subexpression. The output of the second expression is the output of the
let expression. From the induction hypothesis follows that the output
sizes for the first expression are bounded as follows: ds

O1
≤ p1(ds

I) and
di

O1
≤ p2(log(ds

I), d
i
I) for some increasing polynomials p1 and p2. These

upperbounds also apply to ds
I2

and di
I2

. From the induction hypothe-
sis it follows that ds

O2
≤ p3(ds

I2
) and di

O2
≤ p4(log(ds

I2
), di

I2
) for some

polynomials p3 and p4. Hence ds
O = ds

O2
≤ p3(p1(ds

I)) ≤ p5(ds
I) and

di
O = di

O2
≤ p4(p1(log(ds

I)), p2(log(ds
I), d

i
I)) ≤ p6(log(ds

I), d
i
I) for some in-

creasing polynomials p5 and p6.

• For expressions [8] of the form “for $x at $y in e1 return e2” bind
the variables $x and $y each iteration to one item. The largest item
of $y needs at most log(ds

I) space and the largest item of $x needs at
most di

I space. Hence, for each iteration of e2 it holds that ds
I2

= ds
I and

di
I2

= max(di
I , log(ds

I)) ≤ p((log(ds
I), d

i
I)) for some polynomial p. From the

induction hypothesis then follows that for each iteration of e2 it holds that

24

ds
O2

≤ p1(ds
I) and di

O2
≤ p2(log(ds

I2
), di

I2
) for some polynomials p1 and p2

(we omit the details of this computation). Since the number of iterations is
bounded by the result sequence of e1, we know that at most ds

O1
≤ p3(ds

I)
iterations can occur, where p3 is a polynomial. The result sequences of all
iterations are concatenated in order to compute the end result and hence
the output sizes are bounded as follows: ds

O ≤ p3(ds
I).p1(ds

I) ≤ p4(ds
I) and

di
O ≤ p3(ds

I).p2(log(ds
I), d

i
I) ≤ p5(log(ds

I), d
i
I) for some polynomials p4 and

p5.

• Path expressions [17] also obviously have output sizes within these poly-
nomial bounds, since they are in fact a special kind of for expressions with
an extra selection at the end, i.e., a node test and removal of duplicate
nodes.

Since the number of subexpressions of an expression does not depend on the
input store or environment, the previous results suffice to show that ds

O ≤ p1(ds
I)

and di
O ≤ p2(log(ds

I), d
i
I) where p1 and p2 are some polynomials that only depend

on the expression itself and the functions in the environment and not on the
values in the store or the environment.

Lemma 3.14. It is impossible to simulate the “to” expression in XQctr
at,S.

Proof. Clearly the “to” expression has not the property of Lemma 3.13. In-
deed, if we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈k〉)},⊥), and the expression e = “1 to $input”, then the evalu-
ation St0, En ` e ⇒ (St′, v) has maximal input sequence size ds

I = O(log(k))
and maximal output sequence size ds

O = O(k log(k)).

Lemma 3.15. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr,to
at)

and En ∈ EN [XQctr,to
at] it holds that ds

O ≤ p1(ds
I , 2

di
I) and di

O ≤ p2(log(ds
I), d

i
I)

for some polynomials p1 and p2.

Proof. Similar to the proof of Lemma 3.13 we prove this lemma by induction on
the AST. However, in this proof we will omit some details that were discussed
earlier. In the proof of Lemma 3.13 we were allowed to use induction since a
polynomial applied to a polynomial resulted again into a polynomial. We are
also now allowed to use induction for the following reason. Suppose that the
following hold:

• ds
O ≤ p1(ds

I1
, 2di

I1),

• di
O ≤ p2(log(ds

I1
), di

I1
),

• ds
I1
≤ p3(ds

I , 2
di

I) and

• di
I1
≤ p4(log(ds

I), d
i
I).

Then it follows that

• ds
O ≤ p1(p3(ds

I , 2
di

I), 2p4(log(ds
I),di

I)) ≤ p1(p3(ds
I , 2

di
I), p5(2log(ds

I), 2di
I)) for

some polynomial p5 and hence ds
O ≤ p6(ds

I , 2
di

I) for some polynomial p6

25

• di
O ≤ p2(log(p3(ds

I , 2
di

I)), p4(log(ds
I), d

i
I)) ≤ p2(p7(log(ds

I), log(2di
I)), p4(log(ds

I), d
i
I))

for some polynomial p7 and hence di
O ≤ p8(log(ds

I), d
i
I) for some polyno-

mial p8.

Hence we can use induction in order to prove this lemma. We know that for
all XQctr

at expressions there was a polynomial relation between the largest input
sequence/item sizes and the largest output sequence/item sizes. Furtermore,
the “to” expression can construct a sequence of size, at worst, O(2di

I) with
values that need at most O(di

I) space. As a consequence is can easily be seen
that all XQctr,to

at expressions have output sizes within the bounds specified by
this lemma when evaluated against an XQctr,to

at environment.

Lemma 3.16. It is impossible to simulate recursive function definitions in
XQctr,to

at .

Proof. Clearly there are expressions in XQR that do not have the property
of Lemma 3.15. Indeed, if we consider the empty store St0, the environment
En = ({}, {}, {(“$input′′, k)},⊥), and the expression e =“

declare function mpowern($m, $n) {

if ($n = 1)

then $m

else ($m * mpowern($m, $n - 1))

};

declare function genseq($n) {

if ($n < 1)

then ()

else (genseq($n - 1), 1)

};

let $n := $input

return genseq(mpowern($n, $n))

”, then the evaluation St0, En ` e ⇒ (St′, v) has largest input item size di
I =

dlog(k +1)e, largest input sequence size ds
I = 1 and largest output sequence size

O(kk).

Finally, we show that the number of possible output values is polynomially
bounded by the largest input sequence size and the size of the set of possbile
atomic values in the input store and environment. We will first define the set
of possible outputs for an expression e when the input values are restricted to a
certain alphabet of atomic values and the largest input sequence size is smaller
than a given number S.

Definition 3.6 (Possible Results). Consider an expression e, a (finite) al-
phabet Σ ⊂ A and a number S. The set Res of possible results for evaluations
of e constrained by Σ and S is defined as the set of all pairs (St′, v) for which it
holds that there exists an evaluation St,En ` e ⇒ (St′, v) (with En in the same
fragment as e) such that for this evaluation ds

I ≤ S and ASt ∪AEn ⊆ Σ.

In other words, given an expression e, an alphabet Σ and a number S, the
set Res contains all possible outputs of the evaluations of e restricted to Σ and
S. We will now show that the number of (different) atomic values in this set is
polynomially bounded by S and the size of Σ.

26

Lemma 3.17. Consider a (finite) alphabet Σ ⊂ A and a number S. If N =
|Σ| then for each XQctr

at expression e it holds that if Res is the set of pos-
sible results for evaluations of e constrained by Σ and S, then the number
of atomic values in the possible outputs is polynomially bounded as follows:∣∣∣⋃(St′,v)∈Res(A

St′ ∪Av)
∣∣∣ ≤ p(N,S) for some polynomial p

Proof. This lemma can be proven by induction on the AST where each ex-
pression corresponds to the 〈Expr〉 non-terminal of the XQctr

at grammar and
as a consequence each node corresponds to a construct of rules [3 − 18, 26] of
Figure 2.1.

First, consider the leafs of the query AST. Literals [4,5] return for all evalua-
tions the same atomic value, steps [16] do not return atomic values and variables
[3] only return atomic values originated from the input. All these expressions
do not change the input store. Hence it holds that the number atomic values in
the possible results is bounded by N + 1.

All other expressions have subexpressions. Note that many expressions [6,
7, 10-15, 18, 26] do not alter the environment or the store before passing them
to their subexpressions. All these expressions return either only atomic values
from their subexpressions or one new atomic value that is a boolean. From
the induction hypothesis and the fact that all these expressions have a constant
number of subexpressions, which are all evaluated only once during one evalu-
ation of the superexpression, follows that the number of atomic values in the
possible results is bounded by p(N,S) for some polynomial p.

We now discuss the remaining expresions.

• The let expression [9] binds a variable to the result of its first subex-
pression, adds this variable to the environment and passes the new en-
vironment of the first subexpression as input to the second subexpres-
sion. This in fact means that the second subexpression is evaluated
against an alphabet of size N ′ < pN (N,S) and a store and environ-
ment with a maximal sequence size of S′ < pS(S) (Lemma 3.13) for
some polynomials pN , pS . From the induction hypothesis then follows
that the number of atomic values in the possible results is bounded by
p′(N ′, S′) < p′(pN (N,S), pS(S)) < p(N,S) for some polynomials p and
p′.

• The for expression [8] first evaluates the subexpression in the “in” clause.
From Lemma 3.13 we know that the number of items in the result se-
quence of this subexpression is bounded by pS(S) for some polynomial
pS and the number of different atomic values in the possible results is
bounded by pN (N,S) for some polynomial pN . The expression in the re-
turn clause is evaluated at most pS(S) times against the result store of
the first subexpression and environment where two extra variables are set.
This in fact means that the subexpression is evaluated against an alpha-
bet of size N ′ < pN (N,S) and a store and environment with a maximal
sequence size of S′ < pS(S). Hence, from the induction hypothesis follows
that the number of atomic values in the possible results for each evalua-
tion is bounded by p′(N ′, S′) < p′(pN (N,S), pS(S)) < p′′(N,S) for some
polynomial p′′. Since the result of the “for” expression is just the con-
catenation of all results of the return clause, the total number of atomic

27

values in the possible results is bounded by pS(S).p′′(N,S) < p(N,S) for
some polynomial p.

• Path expressions [17] are a special kind of for expressions with an extra
selection at the end, i.e., sorting nodes in document order and removing
duplicate nodes. Hence, obviously the lemma also holds for them.

Lemma 3.18. It is impossible to simulate the sum operator in XQctr
at

Proof. The XQS expression “sum($x)” does not have the property of Lemma 3.17.
Consider the alphabet Σ = {1, 2, 4, . . . , 2n−1} and S = n. Since “$x” can con-
tain any combination of elements of Σ, the result of the sum can be any number
between 1 and 2n− 1. However, there exists no polynomial p such that for each
n it holds that 2n − 1 ≤ p(n, n). Hence we know that we cannot express the
sum in XQat.

3.3 Equivalence classes of XQuery fragments

As we have shown in the two previous subsections, some LiXQuery features can
be simulated in some fragments that do not contain them and some can not. We
will now study the relationships between all 64 fragments in terms of expressive
power. In order to be able to compare fragments, we first have to define what
“equivalent” and “more expressive” means for XQuery fragments.

Definition 3.7 (Equivalent Fragments). Consider two XQuery fragments
XF1, XF2 ∈ Φ.

• XF1 � XF2 ⇐⇒ (∀e1 ∈ L(XF1)).((∃e2 ∈ L(XF2)).(e1 ∼ e2))
(XF1 simulates XF2)

• XF1 ≡ XF2 ⇐⇒ ((XF1 � XF2) ∧ (XF2 � XF1))
(XF1 is equivalent to XF2, XF1 is as expressive as XF2)

• XF1 � XF2 ⇐⇒ ((XF1 � XF2) ∧ (XF1 6≡ XF2))
(XF1 is more expressive than XF2)

In this definition, the relation � is a partial order on Φ, and ≡ is an equiv-
alence relation on Φ. We use these relations to investigate the relationships
between all XQuery fragments defined in Section 2. We show that the equiv-
alence relation ≡ partitions Φ (containing 64 fragments) into 17 equivalence
classes. In Figure 3.1 we show these 17 equivalence classes and their relation-
ships. Each node of the graph represents an equivalence class, i.e., a class
of XQuery fragments with the same expressive power. Each edge is directed
from a more expressive class C1 to a less expressive one C2 and points out
that each fragment in C1 is more expressive than all fragments of C2 (i.e.,
(∀XF1 ∈ C1, XF2 ∈ C2).(XF1 � XF2)). The intuitive meaning of the dotted
borders between equivalence classes in Figure 3.1 is that they divide the set of
fragments in two parts: one in which we can express the construct that is used
as a label of the border and one in which we know that we cannot express it.
We will now prove that Figure 3.1 correctly shows the relationships between all
64 XQuery fragments. In order to prove this correctness of the figure, we first
prove three simple lemmas.

28

XQ

XQat

XQat,C

XQC
XQS

XQC,S

XQat,S

XQat,C,S

XQto

XQto
C

XQto
S

XQto
C,S

XQto
at. . .

XQto
at,C,S

XQR

XQR,to

XQR
C

XQR
S. . .

XQR,to
C,S

XQR
at. . .

XQR,to
at,C,S

XQctr

XQctr
C

XQctr
at

XQctr
at,C

XQctr
S. . .

XQctr
at,C,S

XQctr,to

XQctr,to
at

XQctr,to
C. . .

XQctr,to
at,C,S

XQctr,R

. . .

XQctr,R,to
at,C,S

S to R

C

at

Figure 3.1: Equivalence classes of XQuery fragments

29

Lemma 3.19. All fragments that appear in the same node in Figure 3.1 are
within the same equivalence class.

Proof. We show for all nodes containing more than one fragment that all of the
fragments within the same node are equivalent:

• XQat ≡ XQat,C : this follows from Lemma 3.1

• XQctr
C ≡ XQctr

at ≡ XQctr
at,C : this follows from Lemmas 3.1, 3.6

• XQS ≡ XQC,S : this follows from Lemma 3.2

• XQat,S ≡ XQat,C,S : this follows from Lemma 3.2

• XQctr
S ≡ XQctr

C,S ≡ XQctr
at,S ≡ XQctr

at,C,S : this follows from Lemma 3.2, 3.6

• XQto
C ≡ XQto

S ≡ XQto
C,S : this follows from Lemmas 3.2, 3.4

• XQto
at ≡ XQto

at,C ≡ XQto
at,S ≡ XQto

at,C,S : this follows from Lemmas 3.1, 3.2, 3.4

• XQctr,to
C ≡ XQctr,to

S ≡ XQctr,to
C,S ≡ XQctr,to

at ≡ XQctr,to
at,C ≡ XQctr,to

at,S ≡
XQctr,to

at,C,S : this follows from Lemmas 3.1, 3.2, 3.4, 3.6

• XQR ≡ XQR,to: this follows from Lemma 3.3

• XQR
C ≡ XQR

S ≡ XQR
C,S ≡ XQR,to

C ≡ XQR,to
S ≡ XQR,to

C,S : this follows
from Lemmas 3.2, 3.3, 3.4

• XQR
at ≡ XQR

at,C ≡ XQR
at,S ≡ XQR

at,C,S ≡ XQR,to
at ≡ XQR,to

at,C ≡ XQR,to
at,S ≡

XQR,to
at,C,S : this follows from Lemmas 3.1, 3.2, 3.3, 3.4

• XQctr,R ≡ XQctr,R
C ≡ XQctr,R

S ≡ XQctr,R
C,S ≡ XQctr,R,to ≡ XQctr,R,to

C ≡
XQctr,R,to

S ≡ XQctr,R,to
C,S ≡ XQctr,R

at ≡ XQctr,R
at,C ≡ XQctr,R

at,S ≡ XQctr,R
at,C,S ≡

XQctr,R,to
at ≡ XQctr,R,to

at,C ≡ XQctr,R,to
at,S ≡ XQctr,R,to

at,C,S : this follows from

Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6

Lemma 3.20. Let n1 and n2 be two nodes in the graph of Figure 3.1 such that
there is a directed path from n1 to n2. If XF1 is a fragment in node n1 and
XF2 is a fragment in node n2 then XF1 � XF2.

Proof. From the figure we know that in both n1 and n2 there are equivalent
fragments XF3 ≡ XF1 and XF4 ≡ XF2 such that L(XF3) is a superset of
L(XF4) so we know for sure that all expressions that can be expressed in XF4

and hence in XF2, can be expressed in XF3 and XF1.

Lemma 3.21. The dotted borders in Figure 3.1 divide the set of fragments (Φ)
in two parts: one in which the attribute that labels the border can be expressed
and one in which this attribute cannot be expressed. The arrows that cross the
labels all go in one direction, i.e., from the set of fragments where you can
express a certain construct to the the set where you cannot express it. We call
the set of fragments that can simulate the construct the right-hand side of the
border and the other set the left-hand side of the border.

30

Proof. We prove the correctness of the dotted borders by showing that you can
express something in the least expressive fragment of the right-hand side that
you cannot express in the most expressive fragment of the left-hand side:

• to-border: The most expressive fragment on the left-hand side is XQctr
at,S .

The least expressive fragment on the right-hand side is XQto. From
Lemma 3.14 follows that “to” cannot be expressed in XQctr

S .

• R-border: The most expressive fragment on the left-hand side is XQctr,to
at .

The least expressive fragment on the right-hand side is XQR. From
Lemma 3.16 follows that recursive function definitions cannot be simu-
lated in XQctr,to

at .

• C-border: The most expressive fragments on the left-hand side are XQR

and XQctr,to. The least expressive fragment on the right-hand side is
XQC . From Lemma 3.8 follows that “count()” cannot be expressed in
XQR and from Lemma 3.12 follows that “count()” cannot be expressed
in XQctr,to.

• at-border: The most expressive fragments on the left-hand side are XQR
C

and XQctr,to. The least expressive fragment on the right-hand side is
XQat. From Lemma 3.10 follows that “at” cannot be expressed in XQR

C .
From Lemma 3.12 follows that “count()” cannot be expressed in XQctr,to

and hence also “at” cannot be expressed in XQctr,to, since otherwise
we would get a contradiction by simulating “count()” as known from
Lemma 3.1.

• S-border: The most expressive fragments on the left-hand side are XQR,
XQctr,to and XQctr

C . The least expressive fragment on the right-hand
side is XQS . From Lemma 3.12 and Lemma 3.8 follows that “count()”
cannot be expressed in XQctr,to and in XQR. Hence “sum()” cannot be
simulated in XQR nor XQctr,to. Finally, from Lemma 3.18 follows that
“sum()” cannot be expressed in XQctr

C .

Theorem 3.1. For the graph in Figure 3.1 and for all fragments XF1, XF2 ∈ Φ
it holds that

• XF1 ≡ XF2 ⇐⇒ XF1 and XF2 are within the same node

• XF1 � XF2 ⇐⇒ there is a directed path from the node containing XF1

to the node containing XF2

Proof. The proof consists of two parts:

• If XF1 and XF2 are in the same node then it follows from Lemma 3.19
that they are equivalent.
Suppose that XF1 and XF2 are not in the same node. There are two pos-
sibilities: if one of the two fragments contains a node constructor (suppose
XF1) and the other (XF2) does not then you obviously cannot simulate
the node construction in XF2. Else it follows from the figure that they
are seperated by a dotted border and hence we know by Lemma 3.21 that
there is something in one fragment that you cannot express in the other
fragment, so XF1 6≡ XF2.

31

• If there is a directed path from the node containing XF1 to the node
containing XF2 then we know by Lemma 3.20 that XF1 � XF2 and
since XF1 and XF2 appear in a different node they are not equivalent, so
XF1 � XF2.
Suppose that XF1 � XF2 and there is no directed path from XF1 to
XF2. Then either there is a directed path from XF2 to XF1 such that
XF2 � XF1 and hence XF1 6� XF2 or there is no directed path at all
between the nodes of both fragments. In this case we know by inspecting
Figure 3.1 that there are (at least) two borders seperating the nodes of
both fragments where for the first border XF1 is in the more expressive
set of fragments and for the second border XF2 is in the more expressive
set of fragments. Hence XF1 and XF2 are incomparable so XF1 6� XF2.

32

Chapter 4

Related Work

The problem of expressive power of languages has been widely studied in Com-
puter Science literature. There are works in knowledge languages literature,
programming languages and querying languages literature. Obviously, we are
more interested into the last two topics. One of the first works, about expressive
power of programming languages, is “Beating the Averages” by Paul Graham
[6]. In this paper he argues that some languages are more powerful than others,
and posits a hypothetical middle of the road language called Blub. He describes
the paradox arising when a Blub programmer consider other languages. There
are two kind of languages for the Blub programmer: languages obviously less
expressive than Blub because they are missing some features the programmer is
used to, and languages with a lot of useless things as Blub is enough for him - he
thinks in Blub. The author starts from this paradox to prove that it is not ob-
jectively possible to say that a language has more expressive power that another
(as they are usually complete), but that the preference is always subjective since
based on what the programmer is used to. It treats the notion of programming
language power as a continuum, with assembly language at the bottom and
some other languages at the top. He claims that it correctly orders languages in
terms of raw programming facility (he consider only domain-independent fea-
tures): a language A is more powerful than language B if A contains features
that couldn’t be obtained in B without writing an interpreter for (a subset of)
A in B.

Besides this general notion of expressive power of languages, there have
been many works that have studied the expressive power of database query
languages. One of the first works we consider, studies the expressive power of
relational algebra as a core of expressive power often used to compare the power
of other, more complex, languages. In [11], Paredaens offers a method to detect
whether a relation is an answer to any question for a given relational database,
giving a good introduction to deeper formal studies of the relational algebra.

A famous result, of the comparison between SQL and relational algebra, is
that SQL cannot express recursive queries such as reachability. This problem
has been widely studied by Libkin, [10], who studied the expressive power of
SQL and proved that recursion (introduced in SQL3) adds expressive power to
SQL2 because reachability queries cannot be expressed over unordered types
over ordered domains, than the new construct is justified. Another work that
studies the problem of recursion expressive power is [3]: in this work, the au-

33

thors claim that the primitive operations of database query language should be
organized around types. In particular, they study the property of structural
recursion over bags and sets, and prove that recursive queries such as transitive
closure are not definable with the help of grouping, summation, and product
over columns, and standard rational arithmetic.

The idea of studying the expressive power of a language, breaking the lan-
guage itself into fragments, is borrowed by [1]. In this paper, the authors study
structural properties of each of the main sublanguages of XPath commonly used
in practice. The paper is divided into two parts: first, they characterize the ex-
pressive power of these fragments in terms of logics and tree patterns; second,
they study closure properties, focusing on the ability to perform basic Boolean
operations while remaining into the fragment. To our knowledge, our work is
the first one to address the problem of different fragments of XQuery, with the
aim of discovering different degree of expressive power.

34

Chapter 5

Conclusion

This work investigates the expressive power of XQuery, trying to focus on frag-
ments of the language itself in order to outline which features really add ex-
pressive power and which ones simplify queries already expressible. The main
results of this paper outline that, using six attributes (count, sum, to, at, ctr
and recursion), we can define 64 XQuery fragments, which can be divided into
17 equivalence classes, i.e., classes including fragments with the same expres-
sive power. We proved the 17 equivalence classes are really different and own a
different degree of expressive power. As future work, we want to compare the
expressive power of our XQuery fragments with other languages such as Rela-
tional Algebra, SQL and XPath in order to better understand the expressive
power of this XML query language.

35

Bibliography

[1] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath
fragments. In International Conference on Database Theory, 2003.

[2] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML query language. W3C Working Draft
(http://www.w3.org/TR/xquery/), 2003.

[3] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming
with complex objects and collection types. Theoretical Computes Science,
149(1):3–48, 1995.

[4] D. Draper, P. Frankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal seman-
tics. W3C Working Draft (http://www.w3.org/TR/xquery-semantics/),
2004.

[5] M. Felleisen. On the expressive power of programming languages. In 3rd
European Symposium on Programming, volume 432, pages 134–151. 1990.

[6] P. Graham. Beating the averages. Franz Developer Symposium, Cambridge
(http://paulgraham.com/avg.html), 2001.

[7] J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but
formal introduction to XQuery. In Second International XML Database
Symposium, 2004.

[8] H. Katz, editor. XQuery from the Experts, chapter 5 (Introduction to the
Formal Semantics), pages 299–302. Addison Wesley, 2003.

[9] M. Kay, N. Walsh, and H. Zongaro. XSLT 2.0 and XQuery
1.0 serialization. W3C Working Draft http://www.w3.org/TR/
xslt-xquery-serialization/, 2004.

[10] L. Libkin. Expressive power of SQL. Theoretical Computer Science, 2003.

[11] J. Paredaens. On the expressive power of the relational algebra. Information
Processing letters, vol. 7, number 2, 1978.

36

