Developing Faculty in Emerging Areas of Interdisciplinary Research

David L. Coleman, MD,a Lisa R. Tannock, MD,b Michael Pignone, MD, MPH,c Alpesh N. Amin, MD, MBA,d Patricia W. Finn, MD*e

aBoston University School of Medicine and Boston Medical Center, Mass; bUniversity of Kentucky College of Medicine, Lexington; cDell Medical School, The University of Texas at Austin; dUniversity of California, Irvine, School of Medicine; eUniversity of Illinois College of Medicine, Chicago.

ABSTRACT

The availability of new techniques and technologies to answer important medical questions is accelerating at a breathtaking pace. In response to these exciting new opportunities, clinical departments, in general, and departments of medicine, in particular, have broadened their research portfolios. Organization of the traditional structures of clinical departments, research infrastructure, training programs, and rewards for faculty has only begun to catalyze emerging research areas such as artificial intelligence, bioinformatics, bioengineering, cell and tissue engineering, cost effectiveness, health services, implementation science, integrative epidemiology, medical informatics, nanomedicine, and quality improvement. Success in these emerging areas of research requires interdisciplinary collaboration on a much larger scale than in the past. The effectiveness of efforts to recruit, develop, mentor, and promote faculty in these exciting areas will be critical to the success of departmental and institutional research programs. We describe examples of initiatives from our 5 departments of medicine designed to develop and promote faculty conducting research in emerging interdisciplinary areas. We focus on core resources, training, organizational structures, and recognition and promotion. Faculty have a compelling opportunity and obligation to pursue emerging research areas that have the potential to further improve the prevention, diagnosis, and treatment of disease. As departments prepare to meet this exciting opportunity in the future, the lessons learned must inform investments in faculty development. Although many of the strategies outlined herein could and should expand beyond any individual department, departments of medicine have a distinct obligation and opportunity to lead this effort.

© 2018 Alliance for Academic Internal Medicine. All rights reserved. • The American Journal of Medicine (2018) 131:1257–1262

INTRODUCTION

Clinical departments, particularly departments of medicine, traditionally have been organized in organ-based sections or divisions that align training requirements for graduate medical education, clinical practice, and research. Historically, the research programs in
Departments of medicine have been conducted primarily by faculty in laboratory-based research, often related to the clinical specialty. The traditional model has been highly successful—indeed, the development and accomplishments of physician scientists working on fundamental mechanisms of disease have led to critically important improvements in the prevention, diagnosis, and treatment of disease. Because new approaches and opportunities for discovery are accelerating and physician scientists are essential for their success, research-intensive clinical departments have reviewed the traditional organizational approach to program development and to the needs of their faculty.1-3

The research opportunities for faculty in departments of medicine have evolved in response to the evolution of science and technology, research methods, and funding priorities. First, the growth of artificial intelligence, bioinformatics, epidemiology, health services, implementation science, medical informatics, and quality improvement has created novel and important opportunities for faculty and trainees. Second, interdisciplinary approaches to medically important research questions have become increasingly powerful and necessary. Third, the wide gap between discovery and successful implementation has created an urgent need to improve the practice of medicine and combat persistent health disparities and poor outcomes among substantial segments of the American population. Fourth, despite the impact of social determinants of health, successful strategies and partnerships necessary to recognize and mitigate these factors have not been developed adequately.4,5 Finally, clinical departments and their respective academic health systems increasingly have become focused on jointly providing high-value clinical care in a dynamic healthcare marketplace.

To fully respond to these exciting opportunities, faculty in departments of medicine are working across disciplines and departments. Because the effective development of faculty will be the crucial determinant of institutional success, we provide suggestions herein for how departments can facilitate the success of faculty working in new interdisciplinary research areas. Examples of these new research areas are listed in Table 1. Based on our experience in 5 different departments of medicine, we describe what we believe are key elements in helping faculty fully realize the potential of interdisciplinary research: enabling core resources, training, organizational structures, and recognition and promotion (Table 2). Our goal is to assist clinical departments, especially departments of medicine, in successfully developing faculty in these continuously evolving interdisciplinary areas of research.

TRAINING AND MENTORING

Training Programs

The emergence of research opportunities such as those listed in Table 1 has created a need for a more diverse array of training programs for faculty and trainees. For example, training programs in implementation science and health services research, such as those offered by the Department of Veterans Affairs National Quality Scholars Fellowship Program or the Robert Wood Johnson Clinical Scholars Program,6,7 and training programs in community partnerships and community-based participatory research have been developed. Institutional Clinical and Translational Science Awards programs, schools of medicine, and schools of public health have developed research training in epidemiology, bioinformatics, biostatistics, medical informatics, development of clinical research and institutional review protocols, design of new clinical trial methods, regulatory compliance, and quality improvement.8 Institutions can develop these resources locally or in partnership with other local, regional, or national partners, including health systems and payers.

The evolution of a health system into a Learning Health System (LHS) requires a growing cadre of faculty skilled in Patient-Centered Outcomes Research methods. The LHS core competencies include data integrity and integration of research findings into operations and policy.9 The Agency for Healthcare Research and Quality has developed an ambitious

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Examples of Emerging Areas of Research in Departments of Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health services</td>
<td>Nanomedicine</td>
</tr>
<tr>
<td>Integrative epidemiology</td>
<td>Medical informatics</td>
</tr>
<tr>
<td>New forms of clinical trials</td>
<td>Natural language processing</td>
</tr>
<tr>
<td>Quality improvement</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Implementation science</td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td>Cost effectiveness</td>
<td>Cell and tissue engineering</td>
</tr>
<tr>
<td>Patient-centered outcomes</td>
<td>Bioinformatics</td>
</tr>
</tbody>
</table>
Mentoring Programs

Because mentorship has been shown to improve faculty productivity, retention, job satisfaction, and sense of “fit,” proactive and sustained efforts to mentor faculty in emerging areas are critically important. The interdisciplinary nature of these areas may require paying further attention to mentoring teams and individual development plans. Providing adequate mentoring, especially mentoring across traditional units such as divisions and departments, can be challenging. A holistic approach to mentoring programs should include oversight of the program to ensure the use of best practices and alignment with institutional priorities, explicit ground rules for participation in the program, training for both mentees and mentors, incentives for mentors, careful matching of mentors and mentees, establishment of joint goals and expectations in the mentoring relationship, clear mentoring processes and outcomes, and incorporation of the program in institutional processes such as awards, promotions, and determinants of programmatic success.

RESEARCH CORES

Instrumentation Cores

The success of research instrumentation cores is highly dependent on conducting an assessment of potential needs, the suitability of commercial alternatives, whether or not a sound business plan has been developed, the ability to use cutting-edge technology, current staff support and analytics, and the availability of robust training functions. Failure to address each of these elements will greatly limit the effectiveness of the cores.

The training capacity of onsite instrumentation cores can influence the successful uptake of new technologies. Many faculty and trainees benefit from symposia that describe the principles of the technology and provide user-friendly hands-on examples of potential applications. In addition, research stipends for new core users seeking preliminary data for grant applications can also be very helpful to faculty and cost effective for the institution. Additionally, these stipends can be used for commercially available services but may be less flexible and convenient in meeting this need.

Biostatistics

Access to biostatistical support for development of valid approaches to research design and analysis is critical for individuals working in all research areas, particularly in complex interdisciplinary research involving human subjects. Although many institutions have biostatistics departments, the faculty in these departments may be obligated to conduct training and research within their own departments, and therefore, be less available for consultation, especially at the pilot or unsupported stage. Although many Clinical and Translational Science Award programs support services in study design and biostatistics, access may be limited. Additional approaches to ensure adequate access for faculty within departments of medicine can include funds to buy time for biostatisticians to work with departmental faculty, cross-appointment of biostatistical faculty to departments of medicine, and nonsalaried financial support such as co-sponsorship of biostatistics trainees or postdoctoral fellows. Although these approaches may require initial resources, the return on investment can be significant.

Bioinformatics

Expertise in computer science, machine learning, natural language processing, and artificial intelligence will become increasingly important in the analysis of “-omic” data. Programs or sections of computational biomedicine have been very effective in meeting the computational needs of faculty in clinical departments and, importantly, in designing new analytical tools necessary for personalized approaches to clinical care. Several examples of bringing bioinformatic approaches into departments of medicine are noteworthy. The Section of Computational Biomedicine in the Department of Medicine at Boston University School of Medicine was established in 2009. The faculty in the Computational Biomedicine Section have worked intensively with faculty from other disciplines to develop airway diagnostic biomarkers for identifying patients at risk for lung cancer and to investigate potential therapeutic pathways for breast cancer and emphysematous lung disease. The Department of Medicine at the University of Illinois at Chicago works
collaboratively on joint recruitment, doctoral training, and multidisciplinary grant applications in bioinformatics with the departments of Bioengineering and Biostatistics. The Department of Medicine at the University of California, Irvine, hired a bioinformatician to facilitate translational studies and the integration of data from the electronic health record and biorepositories into clinical trials.

Biorepositories of patient-derived samples are rapidly expanding in a number of institutions. These biorepositories provide exciting opportunities for a broad array of clinical and laboratory scientists to further characterize associations that can improve the prevention, diagnosis, and treatment of disease. The Department of Veterans Affairs’ Million Veteran Program is designed to correlate genotypic information with clinical data in the electronic health records of 1 million patients. These biorepositories will require new bioinformatics resources to make meaningful clinical inferences from the data.

Medical Informatics

Medical informatics typically focus on the analysis of biomedical data in administrative and clinical databases. These databases have enormous potential for characterizing large populations of patients. Associations identified from analyses of electronic health records can guide the development of prospective trials and reveal associations or effects within different clinical subtypes. Pragmatic clinical trials are also facilitated by the use of electronic health records. The Electronic Health Records and Genomics Network (eMERGE) initiative of the National Institutes of Health represents an important example of the use of electronic health records and genomic information to evaluate disease associations.

Collaborative teams of medical informaticians and clinicians are particularly desirable. For example, a team of clinicians and informaticists at the University of Kentucky is working to analyze electrophysiological data for potential causes of sudden death in epilepsy. Another example is a web-based tool that extracts clinical data from multiple sources to match patients to ongoing cancer clinical trials. To further expand the training opportunities for clinical faculty and trainees in medical informatics, a number of institutions, including the Department of Medicine at the University of Illinois at Chicago, have partnered with other departments to create multidisciplinary fellowships in medical informatics.

Another example of the application of medical informatics has been the Translation Technology Enabling High-Quality Care Research Program developed in the Department of Medicine at the University of California, Irvine. A group of investigators with backgrounds in medicine, health policy, technology, hospital medicine, health economics, psychology, and engineering has developed tools to improve clinical outcomes, generate funding, and create interdisciplinary mentorship.

NEW ORGANIZATIONAL STRUCTURES

Development of new organizational structures to foster interdisciplinary research has become increasingly common. These structures may be focused on a specific disease or clinical problem (eg, neuroscience centers, diabetes centers) or, alternatively, on developing methodologic innovation (eg, Robert Wood Johnson Clinical Scholars Program, epidemiology research centers).

Interdisciplinary Research Centers

Interdisciplinary research can be facilitated by supportive infrastructure, sharing core facilities among disease-focused research centers, convening interdisciplinary symposia, and providing pilot funding that requires multiple principal investigator submissions by faculty from different disciplines. The Evans Center for Interdisciplinary Research within the Department of Medicine at the Boston University School of Medicine was established to facilitate interdisciplinary research. The center provides up to 3 years of pilot support for a series of affinity research collaboratives (ARCs) formed by faculty with shared research interests across a broad range of disciplines. The center’s ARCs have generated 145 extramural grants and more than 535 publications since 2009. Key elements in the success of this center have been the bottoms-up funding model in which faculty form the ARCs, up to 3 years of support for pilot studies, internal peer review of the ARCs, social networking in joint symposia and among trainees, seminars and research in progress meetings, and strong scientific mentorship by the leadership of the center. These interdisciplinary research centers can be supported at the departmental or institutional level.

Cross-Institutional Linkages

Schools in the health sciences, such as public health, pharmacy, nursing, and dentistry, as well as schools in the arts and sciences (eg, engineering, computer science, mathematics, education), are increasingly important partners for faculty in clinical departments. Establishing joint appointments and leveraging shared interests, technical support, and interdisciplinary teams from these related fields are very useful approaches. Strategies to integrate faculty in these diverse fields with faculty in medicine include co-location of research programs, pilot grant funding that requires interdisciplinary participants, joint seminars and symposia, providing graduate students and postdoctoral fellows with faculty mentors from different disciplines,
and joint or secondary faculty appointments. The social networking among students and fellows can be a particularly effective stimulus to interdisciplinary collaborations.

Recognition

The recognition of faculty working across disciplines, particularly in interdisciplinary research teams, can be challenging. Moreover, the work of these faculty may be slow to be recognized because they may be working outside their typical clinical discipline (e.g., cardiology, pulmonary medicine); therefore, particular effort to support and recognize faculty working in emerging interdisciplinary areas should be made. Recognition of these faculty in the promotions process through awards and honors, appointments to leadership roles, and advocacy in national forums is essential to career advancement.

Promotion

Departments must carefully align processes of recognition and promotion with emerging and interdisciplinary research areas to retain faculty and develop high-impact research. Because senior faculty on promotion committees may not fully represent the breadth of emerging research areas, the committees may be less familiar with the journals and the usual timelines of achievement. For this reason, it is particularly critical to ensure that promotion committees continuously review criteria for achievement in emerging fields and include members with diverse backgrounds.

The importance of team science in determining the success of research initiatives may obscure the contribution of an individual faculty member on the team, thereby making it difficult for promotion committees to fully recognize the achievements of individual faculty members. Therefore, departments must be particularly diligent in providing supporting documentation of the contributions, impact, and accomplishments of individual faculty members working in teams.

Awards and Honors

Faculty recognition in the breadth of academic fields in departments of medicine should include the establishment of departmental and institutional awards for achievement in a range of research methods and content areas. Some departments have also recognized interdisciplinary research through the establishment of awards such as “Collaborator of the Year” or “Innovator of the Year.” As with traditional biologically based investigators, facilitating the recognition of faculty by arranging speaking engagements and regional and national awards can be very helpful.

Leadership Roles

Creation of new programs, sections, divisions, and centers led by individuals working in emerging areas can both accelerate program development and provide important opportunities for individual faculty members. These individuals serve as critically important role models for trainees and faculty. Accordingly, the appointment of individuals working in these areas to traditional departmental leadership positions such as vice chair for research, section chief, or unit director provides an important validation of these new fields. Consideration for joint appointments or cross-departmental appointments will also build recognition; for example, in a department of medicine, a vice chair for research whose home department is outside medicine will exemplify the support and recognition of interdisciplinary research.

Advocacy

The leadership of successful research-intensive departments emphasizes the importance of many forms of discovery and avoids valuing some forms of research achievement over others. If there is a real or perceived hierarchy of what is valued by their leaders, faculty and trainees may be inadvertently deterred from pursuing new areas of research.

SUMMARY

Throughout their history, departments of medicine have tackled new opportunities in discovery and training. The development of new techniques and technologies to answer important medical questions is accelerating at a breathtaking pace. Success in these emerging areas of research requires interdisciplinary collaboration on a much larger scale than in the past. The ability to recruit, develop, and promote faculty in these emerging areas will determine whether departments successfully embrace these exciting opportunities. We emphasize that leveraging new infrastructure and training paradigms, along with novel organizational approaches that catalyze interdisciplinary teams, will continue to be critical to the success of faculty. As departments strive to develop excellence in new research areas, proactively encouraging and recognizing outstanding faculty achievement will continue to be very important. Over the past decade, departments have been aggressively pursuing evolving research areas that have the potential to improve the prevention, diagnosis, and treatment of disease. An intense focus on the lessons learned in faculty development will determine our success in meeting this ongoing challenge. Although many of the strategies outlined must expand beyond any individual department, departments of medicine have both a distinct opportunity and a responsibility to their faculty and patients to lead in this effort.
References

