THE PIPELINE FOR PHYSICIAN-INVESTIGATORS: MAINTENANCE OR OPPORTUNITY FOR GROWTH?

November 12, 2015 James Marsh MD Talmadge E. King, Jr. MD

Workforce Calculations

- 14,000 physician-scientists in the US
- 8000 have NIH grants
- ~1000 individuals will need to enter the pipeline each year, assuming 50% will not succeed.
- Currently, 500 enter the pipeline with MD-PhD
 They have a much higher success rate

They have a much higher success rate.

http://acd.od.nih.gov/reports/PSW Report ACD 06042014.pdf

Three Pathways for Physician-Scientists

- Major pathways not the only pathways
- Data from private foundations and nonprofits hard to obtain and confirm.
- MD-PhD Programs
- Research Intensive Residencies
- K Award Programs -- then K to R transitions

MD-PhD Programs

- NIGMS started funding MSTP in 1964.
- 44 institutions currently have MSTP funding
- 111/131 medical schools offered a joint MD-PhD program in 2011
- \$127M in funding in 2011 for MD-PhD programs

Jeffe DB et al Acad Med 89:1; 2014

Analysis 1995-2000 MD-PhD Matriculants:

n = 2582

- □ 73% PhD degree completion rate compares to 42-57% for PhD only candidates in biomedical science.*
- □ MD-PhD program enrollment has increased (2002-2012) from 3632 to 5097.#
- ☐ Currently approximately 520 receive an MD-PhD/year.

*http://grants.nih/training/biomedical_sciences.pdf # https://aamc.org/download/321554/data/2012factstables36-2.pdf

ABIM Physician-Scientist Pathway

- 2 years of medical residency
- 1-2 years of subspecialty clinical training
- 3 years of research training (or just research training without subspecialty clinical training)
- Total period of training after medical school: 5-7 years

Demographics

- ☐ Survey under the auspices of Association of Academic Internal Medicine
- □ Response rate 47%
- ☐ For those who completed in 1995-2007
 - 880 completed (~67/year)
 - 23.8% women; 76.2% men

From Todd RF et al. Academic Med 88:1747-1753, 2013

NIH K AWARDS

Number of K Awardees:

- Awardees 1999-2008:
 - 3240 MDs;
 - 2978 PhDs
- Average ~622 per year

http://acd.od.nih.gov/reports/PSW_Report_ACD_06042014.pdf

K Awardees: Prime entrants into the Physician-Investigator pipeline

- In this cohort (1999-2008): ~85% applied for RPG (R01 or similar)
- First time applicant pool for R01:
 - Only ~14% are MD or MD-PhD with prior K award.
 - Their success rate on first application is ~ 60%

http://acd.od.nih.gov/reports/PSW_Report_ACD_06042014.pdf

Current K-R transition: K08 and K23 All Institutes and Centers

- Funding initiated 2006
- Stratified by award type
- Queried by NIH Reporter
- 3 years following award completion (2014)

Marsh JD and Todd RF, Am. J. Med 2015; 128(4):431-6

Current K-R transition: K08 and K23 All Institutes and Centers

- K08 awardees: 37.5% received independent NIH funding
- K23 awardees: 21.3% received independent NIH funding
- NOTE: these rates are lower than reported in 1999-2008 cohort

Marsh JD and Todd RF, Am. J. Med 2015; 128(4):431-6

WHAT IS SUCCESS FOR PHYSICIAN-SCIENTIST TRAINING PROGRAMS

What is success for physician-scientist training programs?

- Outcomes that are easily measured are too narrow.
 e.g., receiving an R01 grant as PI.
- What about team science?
- Major research institutions now have <50% of their research portfolio from NIH (E. Nabel, personal communication)
- Outcomes data from foundations are often closely held (Sarnoff, Doris Duke, AHA)
- Ultimately we are training physician-scientists not to get grants but to make and publish high impact discoveries.

Is getting an R01 too generous a measure of success?

- Some get an R01 and go on to 25 years of continuous funding
- Some spend 24 years of preparation, from entering medical school to average age (46) for first R01.
- They get the first R01 and work on it for 4 years. And then that is the end.
- Is that success?
- A comparison jet fighter pilot training.24 years of training and 4 years active duty. Success?

K award cost to a Department

AAMC salaries	25 th percentile	Median
Cardiology (NI)	\$203	\$253
Pulmonary	\$163	\$191
Heme-Onc	\$170	\$201

- Discount 10%; break even on clinical time
- Salary deficit/year:
 - \$35-\$72K/year;
 - Avg: \$53.5K
- Salary deficit for 5 years = \$267

Investment by the Department Start up costs

- \$50,000/year x 3 years: \$150K
- Assume lab space no marginal cost
- Three years of 70% salary+ fringe support after K award concludes = \$468K

Total: ~\$885,000 invested per K awardee

Investment by the Department Potential Total Costs & Risks

- Chance of successful K to R transition: 35% perhaps 60% for MD-PhD
- If ~50% success rate in getting R01, the direct cost is \$1.77M for each K start up and successful transition (a most conservative estimate!).
- For 10 faculty: \$17-\$20M

FUTURE NIH FUNDING PROSPECTS

Future NIH Funding Prospects

21st Century Cures Act

- Bill passed by House 7-10-2015 by 344 to 77 vote with wide bipartisan support (HR 6)
- The House Energy and Commerce Committee unanimously approved H.R. 6, the "21st Century Cures Act," on May 21, 2015, after reaching a bipartisan agreement to fund the legislation (Cures bill)

Future NIH Funding Prospects

21st Century Cures Act

- Importantly, the bill (Title I, Subtitle A) proposes to **increase funding** for the National Institutes of health, starting with \$31.8 billion in 2016, and increasing to \$33.3 billion and \$34.8 billion in 2017 and 2018, respectively.
- NIH is presently <u>funded at \$30.3 billion</u>.
 (14.8% increase over 3 years)

Future NIH Funding Prospects

21st Century Cures Act

- In addition, the bill establishes what is to be called the "NIH Innovation Fund," which would be funded with \$2,000,000 each year from 2016 through 2020.
- The innovation money would be used to advance several as-yet undefined programs, including ones supporting precision medicine and "young emerging scientists."

KEY CONSIDERATIONS

Is it time for a more focused strategy for physician-scientist development?

- Consider setting the tough filter at the beginning of the pipeline (not after 20 years of preparation to see funding at the 8th percentile).
- How about MD-PhD for <u>all</u> aspiring bench-scientists and MD-MS for <u>all</u> aspiring clinical scientists?
- How about a clinical fast track residency for all who are clinically capable?
- How about a K08/K23/R00 for physician-scientists?
- These approaches may be cost-effective.

THE PROBLEMS

- 1. There will be no real growth in NIH or Foundation funding for physician-investigators for the foreseeable future. Industry support for training is negligible.
- 2. The input to the pipeline will likely sustain but not grow the cadre of physician-investigators.
- 3. The success of our current processes for selecting and sustaining physician-investigators is at best mediocre; this is where we may have a major opportunity for increasing the number and durability of physician investigators.

SOME QUESTIONS

- 1. What is the expected/optimal success rate (since it can't be 100%?)
- 2. Can we identify the characteristics of the individuals most likely to succeed? Can this inform who we pick?
- 3. What are the forces that make even the right people prone to failure?
- 4. Is training needed for mentors to help trainees succeed?