2017 AAIM Research Directors Summit and the Need to Move Forward

Melvin Blanchard, MD
PSTP training directors impact

• Society and trainees have great expectations
 • Create 25% of the physician-scientists
 • Who utilize and inform research to advance:
 • Health of patients & communities
 • Efficiency of healthcare
 • Prosperity of the US and world
Outline

• Why be concerned about how we train physician-scientists?

• How best to train physician scientists
 • Curriculum and infrastructure
 • Recruitment and selection of trainees
 • Mentorship
 • Funding of PSTPs and their trainees
 • Tracking success

• Where do we go from here?
Why are we concerned about how we train?
Why be concerned about training?

• Training is about value for society

• Training is about value for our trainees

• Training is about bridging basic discoveries and clinical medicine
Value for Society

• Benefit
 • Patients, communities, population
 • Feeling and functioning
 • Living longer
 • Cost savings in healthcare

• Cost
 • Cost of training and research

Government provides support for research training and research and Society expects something in return
Value of Biomedical Research

<table>
<thead>
<tr>
<th>Period</th>
<th>Annual NIH Expenditure [today’s dollars]</th>
<th>Biomed Publications/yr</th>
<th>Gain in life-expectancy Mo/yr in period (age ➞ age)</th>
<th>Cost per extra month of life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900 – 1950</td>
<td>$7,900,000.00</td>
<td>18,866</td>
<td>5.16 (48.0 to 69.5)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>1951 – 2000</td>
<td>$9,936,000,000.00</td>
<td>83,181</td>
<td>1.76 (69.5 to 76.9)</td>
<td>$5,645,000,000</td>
</tr>
<tr>
<td>2001 – 2016</td>
<td>$34,750,000,000.00</td>
<td>298,928</td>
<td>1.27 (76.9 to 78.6)</td>
<td>$27,362,000,000</td>
</tr>
</tbody>
</table>

CDC Life expectancy tables
Value for Trainee

- **Benefit**
 - Grant funding
 - Publications
 - Faculty position
 - Promotion and tenure
 - Career advancement
 - Patents

- **Cost**
 - Time investment in training
 - Cost of education and opportunity costs

Trainees invest time in training (missed opportunities) and expect something in return
<table>
<thead>
<tr>
<th>Year</th>
<th>Pic</th>
<th>Career Step</th>
<th>Cum Time</th>
<th>Personal $</th>
<th>Societal$</th>
<th>Societal benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-22</td>
<td></td>
<td>Undergrad</td>
<td>4 yrs</td>
<td>$70,000.00</td>
<td></td>
<td>Peer reviewed pubs: 76 Rev/ch/ed: 23</td>
</tr>
<tr>
<td>22-30</td>
<td></td>
<td>MD/PhD</td>
<td>12 yrs</td>
<td>$35,500</td>
<td>$234,500</td>
<td>H-Index: 43 I10-index: 69</td>
</tr>
<tr>
<td>30-32</td>
<td></td>
<td>Residency</td>
<td>14 yrs</td>
<td></td>
<td>$78,407</td>
<td></td>
</tr>
<tr>
<td>32-37</td>
<td></td>
<td>Fellowship Heme/Onc</td>
<td>19 yrs</td>
<td></td>
<td></td>
<td>$170,871 T32, NIH Loan repayment, ASCO</td>
</tr>
<tr>
<td>37-43</td>
<td></td>
<td>RO1</td>
<td>25 yrs</td>
<td></td>
<td></td>
<td>Citations: 12,725 New approaches to activate NK cells, CMI.</td>
</tr>
<tr>
<td>43-65</td>
<td></td>
<td>Faculty – Medicare Salary range</td>
<td>22 years remaining</td>
<td></td>
<td></td>
<td>Clinical studies led to adoption of Lenalidomide for Hodgkin lymphoma</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>Retirement and Medicare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retirement age 62
Some trainees not so fortunate

Xx% leak from pipeline
Narrowing the chasm

8 bytes core memory
8 billion bytes semiconductor
Bottleneck – need physician scientists
Best Practices for Training Physician Scientists
Conceptualization of PSTP Process

Recruitment
- Educational background
- Publication record
- Personal characteristics

Infrastructure
- Mentoring
- Culture
- Funding
- Curriculum
- Administration

Trainee achievements & Impact
- Publications
- Grant funding
- Patents
- Promotion, tenure retention, AAP, ASCI

Success Predictors

Success Outcomes

Continuous Improvements

Incoming Recruits

Training Environment

Graduate Outcomes

Washington University in St. Louis
School of Medicine
We had benefit of variation
Curriculum and Infrastructure

• Combined residency and fellowship training

 • Most desirable program feature\(^1\)
 • Requires integration between core IM, subspecialty, PSTP director

 • Contingent on satisfactory performance

 • Incorporate flexibility for undecided trainees

\(^1\)Todd Acad Med 2013 Nov;88(11):1747-53
Curriculum and Infrastructure

• Need a core curriculum

• Delivery via:
 • Didactics
 • Panel discussions
 • Use existing offerings
 • Alumni events
 • VPs
 • Near to peer mentoring

• Core curriculum
 • Study design
 • Biostatistics
 • Team science
 • Ethics
 • Scientific regulatory requirements
 • IRB application
 • Grant writing
 • Time management
 • Leadership
 • Work/life balance
 • Mentor/mentee relations
Curriculum and Infrastructure

- Directors of PSTPs should organize nationally
 - Regular national meetings
 - Host a shared database to track outcomes

- Share best training practices
 - Curriculum
 - Garnering funding for training
 - Keeping trainees engaged

- National database of trainees
 - Identify success factors
 - Continuous improvement

- Develop scouts for sourcing IMGs

- Address clinical training time

- How to be an effective PSTP director
Curriculum and Infrastructure

- PSTP directors should have protected time
 - ~ 10-20% of FTE

<table>
<thead>
<tr>
<th>Annual compliment</th>
<th>Duration of PSTP training</th>
<th>Sub-specialty similar size (fellows/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td><5 7</td>
<td>GI (3), Rheum (2), Endocrine (2), ID (2), Renal (2)</td>
</tr>
<tr>
<td>1</td>
<td>5 7</td>
<td>Cardiology (3), Pulm/Crit Care (3)</td>
</tr>
<tr>
<td>2</td>
<td>10 14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15 21</td>
<td>Heme/Onc (4)</td>
</tr>
<tr>
<td>4</td>
<td>20 28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25 35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30 42</td>
<td></td>
</tr>
</tbody>
</table>
Recruitment & Selection of Trainees

• Best candidates will have significant research experience and a balanced commitment to both science and medicine.
 • Should have multiple “on-ramps” into PSTPs
 • MSTP graduates
 • Combined MD/PhD programs
 • Graduate level degrees prior to MD
 • Late bloomers, identified in categorical residency
Recruitment and Selection of Trainees

- Increasing diversity must be a priority
 - Effort required to **identify qualified** candidates
 - Women (38%)
 - URM (13%)
 - Research observerships
 - URM mentors

Recruitment and Selection of Trainees

• Recruit qualified IMGs as trainees
 • Untapped pool of applicants
 • Problem: Green card or citizenship required for T-32 & K training grants
 • Determine quality of international research mentorship
 • Determine quality of UME clinical training and readiness for US hospitals
Mentorship Practices

• Mentors need training and recognition

• Effective mentoring plays a critical role in success of trainees

• Must have an organized approach to developing mentors
 • Providing feedback to mentors
 • Train-up mentors
 • Mentor accomplishments should be considered in promotions
 • Protected time for mentoring
 • Awards for mentoring
Mentorship Practices

• Mentoring teams are essential for PSTP trainees and should be carefully crafted.
 • Formal process
 • Mentoring contract
 • Individual development Plans
 • Mentoring biosketch
 • Help choose mentor
 • Clinical mentorship
 • Avoid overburdening mentors
Funding of PSTPs and their trainees

• The success of PSTPs and their trainees is highly dependent on strong institutional support
 • AMCs should articulate the value placed on training PSTP
 • Provide uninterrupted funding
 • 3 years on T-32 often insufficient
 • Bridge funding

• Sharing programmatic resources across PSTPs
 • Leading from Deans office
 • (we integrated with Peds, now path and Rad/Onc joining)
Funding of PSTPs and their trainees

• Trainees should be strongly encouraged to apply for individual career development awards, since receipt of these awards has been correlated with future career success.
 • NIH institutional and individual awards
 • VA Career development awards
 • Howard Hughes awards
 • DDCF Clinical scientist development awards
 • RWJ clinical scholars awards
 • Damian Runyon (sp)
 • Subspecialty societies
 • Burroughs Welcome
Tracking Success of PSTPs and Their Graduates

- Success factors of PSTPs and their graduates should be tracked
 - Number of applicants easily obtained
 - Completion rates, diversity, length of time to complete
 - % who pursue academics
 - External research funding
 - Publication record
 - Promotion and tenure
 - Honors and awards
 - Impact on society?
Sustaining PSTPs & Employing Continuous Improvement Practices

• A PSTP’s sustainability is contingent on institutional support and an adequate census of qualified applicants.
 • Programs should consider closing (or changing PD) if not viable
 • Lack of institutional support
 • Declining applicants
 • Lack of mentors
 • Failure to attract qualified applicants in 3 consecutive years
Where do we go from here?
Organize as a community

• Create a space for learning, sharing and professional development for PDs

• Be the generator of innovation in effective physician-scientist training

• Create national standards for structure, resources/funding, and program leadership (with ABIM)

• AAIM is considering a communication platform

• Meetings once per year like this during AAIM Week, under the Research Committee
Build a national database of trainees

- Track trainees success and impact
- Use tracking data to drive continuous improvement and effectiveness of training
Work to increase the pool of applicants

- Advance diversity
 - Women
 - URM

- Scout international sources of applicants
 - Advocate for training grants
Provide Value

• To:
 • Society
 • Trainees
And Do so with the leverage afforded by learning how to do this together!