Methodology for the Evaluation of the National Science Foundation’s Experimental Program to Stimulate Competitive Research (EPSCoR)

American Evaluation Association
Session 616, October 17, 2014

Brian Zuckerman
Rachel Parker
Thomas Jones
Brian Rieksts
EPSCoR Origins

• “Balance” built into NSF’s authorizing statute (42 U.S.C. §1862e)
 – “an objective of the Foundation to strengthen research and education in the sciences and engineering... throughout the United States, and to avoid undue concentration of such research and education” [emphasis added]

• 1977-8: NSF establishes EPSCoR as limited-time experiment (NSB resolution 78-12)

• 1988 EPSCoR enacted into law as part of NSF reauthorization (Pub. L. 100-570, title I, Sec. 113)
Original Legislative Authorization

National Science Foundation Authorization Act of 1988 Section 113 [emphasis added]:

(a) The Director shall operate an Experimental Program to Stimulate Competitive Research, the purpose of which is to assist those States that

(1) historically have received relatively little Federal research and development funding; and

(2) have demonstrated a commitment to develop their research bases and improve science and engineering research and education programs at their universities and colleges.
EPSCoR-Eligible States, by Year of Entry

- Gray = not eligible
- Red = 1980 cohort: AR, ME, MT, SC, and WV
EPSCoR-Eligible States, by Year of Entry

- Gray = not eligible
- Red = 1980 cohort: AR, ME, MT, SC, and WV
- Orange = 1985 cohort: AL, KY, ND, NV, OK, PR, VT, and WY
EPSCoR-Eligible States, by Year of Entry

- Gray = not eligible
- Red = 1980 cohort: AR, ME, MT, SC, and WV
- Orange = 1985 cohort: AL, KY, ND, NV, OK, PR, VT, and WY
- Yellow = 1987 cohort: ID, LA, MS, and SD
EPSCoR-Eligible States, by Year of Entry

- **Gray** = not eligible
- **Orange** = 1985 cohort: AL, KY, ND, NV, OK, PR, VT, and WY
- **Yellow** = 1987 cohort: ID, LA, MS, and SD
- **Green** = 1992 cohort: NE and KS
EPSCoR-Eligible States, by Year of Entry

- Gray = not eligible
- Red = 1980 cohort: AR, ME, MT, SC, and WV
- Orange = 1985 cohort: AL, KY, ND, NV, OK, PR, VT, and WY
- Yellow = 1987 cohort: ID, LA, MS, and SD
- Green = 1992 cohort: NE and KS
- Blue = entries into EPSCoR 2000+: AK, DE, GU, HI, IA*, MO, NH, NM, RI, TN*, UT*, and VI

* Iowa, Tennessee, Utah above current threshold of 0.75% of NSF R&RA
EPSCoR Uses Multiple Approaches

• Research Infrastructure Improvement (RII) awards:
 – Track-1 Awards. Currently $4M/yr for 5 yrs. One award per state funds academic research infrastructure based on state S&T plan
 – Track-2 Awards. $2M/yr for 3 yrs for collaborative, multi-state research (started in 2009)
 – C2 Awards. $500K/yr for 2 yrs for cyber-infrastructure (2009-2010)
 – Track-3 Awards. $150K/yr for 5 yrs for education (started in 2013)

• Co-Funding of Research Projects:
 – EPSCoR co-invests with NSF Directorates and Offices in proposals that have been merit reviewed and recommended for award, but could not be funded without joint support

• Workshops and Outreach Activities
EPSCoR Timeline

1978 NSF establishes EPSCoR
1979 Eligibility criteria: < $1M NSF funds, 5 secondary indicators
1980 First RII Track-1 awards: $3M/5 years, 100% match
1984 Eligibility criteria: < $3M NSF funds, 6 secondary indicators
1985 cohort
1987 cohort
1991 Eligibility criteria: < 0.5% NSF funds to universities, 6 secondary indicators
1988 Congress first authorizes EPSCoR
1991 cohort
1992 RII Track-1 awards: $4.5M/3 years, 100% match
1998 NSF initiates formal ESfCoR co-funding
2000
2003
2009 RII Track-1 awards: $20M/5 years, 20% match
First RII Track-2 awards
2010 First RII C2 awards
2013 First RII Track-3 awards
2014

Eligibility criteria:
- 1980 cohort
- 1985 cohort
- 1987 cohort
- 1991 cohort
- 1992 cohort
- 1998
- 2000
- 2003

Eligibility criteria:
- $<1M NSF funds, 5 secondary indicators
- $<3M NSF funds, 6 secondary indicators
- < 0.5% NSF funds to universities, 6 secondary indicators
- < 0.7% NSF R&RA funds; no secondary indicators
- < 0.75% NSF R&RA funds; no secondary indicators
- $<0.75M NSF funds to universities, 6 secondary indicators

1992 RII Track-1 awards: $4.5M/3 years, 100% match
Task Origins and Context

- Both internal and external (Office of Management and Budget) drivers for task
- Task initiated August 2011
- Other EPSCoR-related studies previously released
 - EPSCoR community convenes internal workshops (reports issued August 2006 and April 2012)
 - America COMPETES Reauthorization Act requires National Academies to report on all EPSCoR programs (report issued November 2013)
Task Objective

• Perform a two-year, in-depth, life-of-program assessment of NSF EPSCoR activities and their outputs and outcomes
 – Competitiveness for funding
 – Enhanced science and engineering (S&E) research base

• Provide recommendations on better targeting of funding to those jurisdictions for which the EPSCoR investment can result in the largest incremental benefit to their research capacity
Study Methods Overview

- Literature review on EPSCoR and research capacity development
- Developed EPSCoR logic model
- Qualitative data
 - Survey of EPSCoR jurisdictions
 - Interviews of EPSCoR State Committee members
 - Analysis of EPSCoR RII proposals and annual reports
- Quantitative data
 - Analysis of NSF awards data
 - Analysis of National Center for Science and Engineering Statistics (NCSES) survey data
 - Information from journal articles with U.S. authors, as identified through the Thomson Reuters Web of Knowledge
 - Analysis of EPSCoR eligibility criteria and NSF eligibility determinations
EPSCoR Logic Model

INPUTS/CONTEXT
- Resource Base:
 - Number of universities and colleges and quality of their S&T programs
 - State-level policies and institutions supporting S&T
 - Sociodemographic distribution of population in jurisdiction

EPSCoR Eligibility Criteria

NSF EPSCoR Award Types
- Research capacity development (RII Track-1)
- Collaborative research support (RII Track-2)
- Cyberinfrastructure support (RII C2)
- E/O/D support (RII Track-3)
- Co-funding of other NSF single-investigator and small team awards

ACTIVITIES
- Influence university, departmental policies and programs
- Support faculty hiring
- Seed funding, student and post-doc support
- Support thematic/large-scale research
- Support research infrastructure/cyberinfrastructure
- Collaboration development
- State Committee plans and coordination
- Innovation activities and industry support
- Activities to broaden participation in STEM

OUTPUTS
- Policy and program changes
- Faculty hires
- Better funded research staff and research projects
- Collaborations and academic-industry co-funding of research
- New equipment and facilities research services
- Research and innovation plans
- STEM education programs; documents granted; graduates move to STEM careers

SHORT-TERM OUTCOMES
- Added incentives for research
- More faculty submit proposals
- More and higher quality research and publications
- Increased collaboration (cross-university, with industry, and within state)
- Enhanced research capabilities
- Agreement on state S&E priorities
- More STEM workers and demographically broader STEM workforce

INTERMEDIATE OUTCOMES
- New and existing faculty retained
- More awards received
- Increased award success rates
- Larger awards received
- Stronger universities
- State S&E funding programs created or expanded
- Stronger high-technology industry
- Stronger STEM workforce state-wide

CONGRESSIONAL OBJECTIVES/BROADER IMPACTS
- Broader impact: decreased concentration of S&T funding
- Legislative objective: competitiveness for Federal research funding increases
- Legislative objective: state S&E research and education base increases
- Broader impact: enhanced capabilities to support innovation/economic development
Presentations that Follow Describe Methods Used

• Quantitative Analyses/Competitiveness for Funding
 – Change in NSF Funding (per-jurisdiction, per-investigator)
 – Concentration Analyses

• Qualitative Analyses/Enhanced Research Base
 – Institution-Building
 – State Committees
 – Education, Outreach, and Diversity (E/O/D)
 – Academic Development
 – Innovation