Payback: Achieving Health Impact from Investments in Public Health Research

Presented at the 2007 American Evaluation Association Conference
November 10, 2007

Trevor Woollery, PhD,1 John Araujo, PhD, MHSA,1 Robin M. Wagner, PhD, MS,1 Guijing Wang, PhD,1 Jerald O’Hara,1 Catherine Pepper, MLIS, MPH,2 Mona Choi, PhD3

1Office of Public Health Research, Office of the Chief Science Officer
2Coordinating Center for Infectious Diseases
3National Center for Public Health Informatics
Centers for Disease Control and Prevention
Atlanta, GA
Overview

- Context
- Why the need for payback?
- The payback model
- Examples: Payback in action
- Utility of the model
- Summary
Context
Relevance

- CDC Health Protection Goals
  - Alignment with Agency Mission
  - Improve Health and Quality of Life

- Excellence in Science
  - Translate Knowledge into Action
  - Achieve Health Impact
Why the Need for Payback?
What if CDC Could Improve How It …

- Measures the impact of its research investments?
- Gains greater insight into the research investment process?
- Objectively assesses when to terminate investments?
- Reinforces research and public health practice for health impact?
Then CDC Could...

- Improve research investment business decisions with:
  - Forethought
  - Real time data
  - The bottom-line in mind: Improving health

Hence the VALUE of PAYBACK
The Payback Model
Buxton and Hanney Payback Model*

- Payback concept encompasses 5 main categories of benefit from research:
  - Knowledge benefits
  - Benefits to future research and research use
  - Political and administrative benefits
  - Health sector benefits
  - Broader economic benefits
- Different measures may be appropriate for each category
- Model used: Input-output applied to case studies

Payback Is...

- Health outcomes (HO) realized within a planned time frame, accounting for cost

\[
\text{Payback} = \text{HO Benefits} - \text{HO Costs}
\]

Monetary values transformed into health benefits lost (opportunity costs) in order to finance potentially beneficial research investment activities
The amount of health-related quality of life sacrificed or obtained from applications of research discoveries or findings covers both costs and rewards of public health investments.

Cash-flow is related to profit in private sector, health outcome flow is related to payback in public health!
Opportunity Costs

“The true cost of investing in one kind of medical care [or a public health intervention] is not money, nor even the resources the money represents.

- It is the health benefits - longer life, better functioning, and freedom from pain - that could have been achieved if the dollars had been spent on something else.”*
Cost-Effectiveness

- Cost-effectiveness (CE) studies show the opportunity costs of [public health] medical choices*
- Restatement of CE ratios in terms of life-years per dollar spent brings out the opportunity costs involved
  - by focusing on the amount of health that could [have been] “purchased” if the same money was used for different interventions

### Transforming Dollars to Health Outcomes

<table>
<thead>
<tr>
<th>Description of Variable</th>
<th>Variable</th>
<th>Numerical Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cost-effectiveness ratio:</strong> Influenza vaccination [Infant 6 - 23 months*]</td>
<td>$ / Health Outcomes Saved (HS)</td>
<td>$12,000 / Quality-adjusted Life Year (QALY)</td>
</tr>
<tr>
<td>Investment for research venture</td>
<td>$</td>
<td>$1.2 Million</td>
</tr>
<tr>
<td><strong>Calculation of Outcome</strong></td>
<td>$ ÷ [$ / HS]</td>
<td>$1.2M ÷ [$12,000 / QALY]</td>
</tr>
<tr>
<td>Outcome: Opportunity - cost of the research venture</td>
<td>HS</td>
<td>100 QALYs given up</td>
</tr>
</tbody>
</table>

Payback Model

3 Phases
- Idea to research knowledge output: Phase 1
- Knowledge to application: Phase 2
- Realization- Achievement of payback: Phase 3

4 Factors Affect Payback
- Start-up costs, or pre-launch investment
- Speed, or time to launch
- Scale, or time to volume
- Support costs, or post-launch investment
Health Outcome Curve

- Plots cumulative health outcome flow over time
  - To assess total investment commitment and bottom-line impact at any point in time
The Health Outcome Curve

Cumulative Net-Health Outcome

Time

Idea to Research Output: Phase 1

Knowledge to Application: Phase 2

Start-up (pre-launch investment)

Launch

Speed (time to launch)

Scale (time to volume)

Support (post-launch investment)

Realization - Achievement of Payback: Phase 3
Achieving Impact

“When assessing the outcomes of research it is necessary to identify the impact the research has had on policy and practice even before attempting to assess the benefits in terms of improvements in [population health] the service provided.”

Achieving Health Impact via Research

- Streams / Channels for Health Impact
  - Health Policy
    - Legislation
    - Regulation
  - Public Health Programs
  - Public Health Practice
  - Direct use of CDC research findings by consumers

- CDC’s research outputs are only as effective as their overall influence on relevant distribution channels
Examples: Payback in Action
Hypothetical Application: Dr. Ho’s Breakthrough in AIDS Research and Treatment

- AIDS caused by virus
- Showed the dynamic nature of HIV replication
- Combination ART w/ protease inhibitors
- Decreased Mortality
- Launch
- Knowledge to Application: Phase 2
- Realization: Phase 3
- Idea to Research Output: Phase 1
Application: Meeting the Mammography Screening Needs of Underserved Women*

- Examined the extent to which the National Breast and Cervical Cancer Early Detection Program helped meet the mammography screening needs of underserved women
- Calculated the percentage of eligible women who received mammograms through the program
- Results
  - Of eligible women, 14.7% received a Program-funded mammogram
  - The percentage of eligible women screened in each state ranged from 2% to approximately 79%
- Assumptions:
  - First-time, multi-million dollar state allocations to screening programs as a result of the research
  - Screening rates may increase

Application: Meeting the Mammography Screening Needs of Underserved Women*

- Does screening program meet the needs of underserved?
  - Program serves small percentage of eligible women

- States review and change screening programs

- Increased screening of eligible women
  - Increased LYS

- Re-Launch

- Idea to Research Output: Phase 1

- Knowledge to Application: Phase 2

- Realization: Phase 3

Hope is not an effective Strategy!
Utility of the Model
Potential Value of the Health Outcome Curve

- Effective management for health outcome payback
- Useful tool which may assist:
  - Research investment decision making
  - Research health impact planning
  - Health impact analysis
  - Communication at all levels of the organization
- Evaluate core research investment strategies
- Evaluate strategies to accelerate each phase
- Assist managers’ thinking about resource allocation
Potential Uses of Payback Model

- Research Investment Planning
  - At all levels of the organization
- Prospective integration into research plans
- Track progress and use of CDC research in Phase 2
- Assess how CDC science influences health outcome payback in Phase 3
- Retrospectively assess past research investment decisions
Summary

- Payback model is useful for many public health investment activities:
  - Different health outcomes, innovation, surveillance, technology transfer, laboratory activities, etc.
- Represents investments for health impact visually
- Sharpens focus on health outcomes
  - And other assets that generate health outcomes
- Strengthens the link between research knowledge generation and public health impact through policy, programs, practice and direct consumer use
- Evaluates cost, resource and phase acceleration strategies
- Facilitates communication for effective decision-making
- Promotes accountability
  - Translation of research and science into practice
  - Could be a useful tool to assess attainment of CDC Health Protection Goals and Organizational Excellence Assessment
- Underscores “What is measured gets achieved”!
Contact Information

Trevor A. Woollery, PhD
Team Leader, Strategy and Evaluation Team
Office of Public Health Research
Office of the Chief Science Officer, Office of the Director
Centers for Disease Control and Prevention

Phone: (404) 639 – 4663
Address: 1600 Clifton Road NE
Mail Stop D-72
Atlanta, GA 30333
E-mail: TWoollery@cdc.gov