DISTRICT COOLING BEST PRACTICE GUIDE

FIRST EDITION

Published to inform, connect and advance the global district cooling industry

Westborough, Massachusetts, USA

Contents

Preface	iii
Acknowledgements	iv
1. Introduction	1
1.1 Purpose 1.2 Overview and Structure of the Guide	1
1.2 Overview and Structure of the Guide	Z
2. Why District Cooling?	2
2.1 Customer Benefits	2
2.1.1 Comfort	2
2.1.2 Convenience	2
2.1.3 Flexibility	2
2.1.4 Reliability	2
2.1.5 Cost-effectiveness	2
Fundamental cost advantages	2
Load diversity	2
Optimized operations	2
Advanced technologies	3
Better staff economies	3
Customer risk management	3
Cost comparison	3
Capital costs	3
Annual costs	3
2.2 Infrastructure Benefits	3
2.2.1 Peak power demand reduction	3
2.2.2 Reduction in government power sector costs	4
Capital costs of power capacity	4
Power sector operating costs	4
Total costs of electricity	5
Power utility recognition of district cooling benefits	5
2.3 Environmental Benefits	7
2.3.1 Energy efficiency	7
2.3.2 Climate change	7
2.3.3 Ozone depletion	8
3. Business Development	9
3.1 District Cooling as a Utility Business	9
3.1.1 Engineering design	9
3.1.2 Organizational design	9
3.2 Marketing and Communications	9
3.2.1 Positioning	9
3.2.2 Customer value proposition	10
Value proposition summary	10
Building chiller system efficiency	10
Structuring the cost comparison	10
Communicating with prospective customers	11
3.3 Risk Management	11
3.3.1 Nature of district cooling company	11
3.3.2 Capital-intensiveness	11
3.3.3 Will visions be realized?	11
3.3.4 District cooling company risks	12
Stranded capital	12
Temporary chillers	12

Community relations12General construction issues12Revenue generation risks12Inadequate chilled-water delivery12Delays in connecting buildings13Metering13Reduced building occupancy133.4 Rate Structures133.4.1 Capacity, consumption and connection rates13Consumption rates13Consumption charges13Regional rate examples133.4.2 Rate structures14Connection charges14Connection charges14Regional rate examples14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Load Estimation164.1.2 Peak-day hourly load profile184.2.Design Trocess and Key Issues164.1.2 Peak-day nourly load profile184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water return temperature19Chiller efficiency19Evaporator freezup20Thermal energy storage20Thermal energy action end profile124.3 Master Planning214.4 Permiting (Way Leaves)224.5.1 Growth and infrastructure stresses224.5.1 Growth and infrastructure stresses224.5.1 Growth and infrastructure stresses224.5.1 Growth and infrastructure stresses22	Construction risks	12
General construction issues12Revenue generation risks12Inadequate chilled-water delivery12Delays in connecting buildings13Metering13Reduced building occupancy133.4 Rate Structures133.4.1 Capacity rates13Consumption rates13Consumption rates13Consumption rates13Consumption rates13Connection charges133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rete design to encourage optimal building design and operation153.5 Performance Metrics164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.2.2 Design Trocess and Key Issues164.2.2 Design Temperatures and Delta T184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Themal energy storage20Themal energy storage204.2.3 Limitations on ligher chilled-water return temperature20Pelay Trick and the profile134.2.4 Best practice recommendation214.2.5 Limitations on ligher chilled-water return temperature20Dehumidification and coil performance20Dehumidification and coil performance20Limitations on ligher chilled-water return temperature21 <trr< td=""><td>Underground congestion</td><td>12</td></trr<>	Underground congestion	12
Revenue generation risks12Inadequate chilled-water delivery12Delays in connecting buildings13Metering13Reduced building occupancy133.4.8 Ret Structures133.4.1 Capacity, consumption and connection rates13Consumption rates13Consumption rates13Consumption rates13Consumption rates13Connection charges133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20A.2.4 Best practice recommendation214.3 Master Planning214.4.2 Hearning214.4.3 Hest retice coommendation214.5 Integration on District Cooling With Other Utility Infrastructure224.5 Integration of District Cooling With Other Utility Infrastructure224.5 Integration of District Cooling With Other Utility Inf	Community relations	12
Inadequate chilled-water delivery12Delays in connecting buildings13Metering13Reduced building occupancy133.4 Rate Structures133.4.1 Capacity, consumption and connection rates13Capacity rates13Connection charges13Consumption rates13Consumption rates13Consumption rates13Consection charges14Capacity rates14Connection charges14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Load Estimation164.1.1 Peak demand164.1.2 Design Process and Key Issues164.1.2 Design process on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Delumidification and coil performance20A.2.3 Limitations on higher chilled-water return temperature20Delumidification and coil performance20A.2.3 Limitations on higher chilled-water return temperature20A.2.4 Best practice recommendation214.3 Master Planning214.2.4 Best practice recommendation214.3 Master Planning214.4.4 Best practice recommendation214.5.2	General construction issues	12
Delays in connecting buildings13Mettering13Reduced building occupancy133.4 Rate Structures133.4.1 Capacity consumption and connection rates13Capacity rates13Consumption rates13Consumption rates13Consumption rates13S.4.2 Rate structure recommendations14Capacity rates14Connection charges14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Deak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezup20Thermal energy storage204.2.3 Limitations on lower chilled-water return temperature204.2.4 Best practice recommendation214.3 Master Planning214.2.4 Set practice recommendation214.3 Master Planning214.4 Rest practice recommendation214.3 Master Planning214.4 Rest practice recommendation214.3 Master Planning214.4 Rest practice recommendation214.5 I Growth and infrastructure stresses224.5 I Structure stresses224.5 I Structure stres	Revenue generation risks	12
Metering 13 Reduced building occupancy 13 3.4.8 Rate Structures 13 3.4.1 Capacity, consumption and connection rates 13 Capacity rates 13 Consumption rates 13 Consumption charges 13 Regional rate examples 13 3.4.2 Rate structure recommendations 14 Capacity rates 14 Connection charges 14 Initial contract demand 14 Rate design to encourage optimal building design and operation 15 3.5 Performance Metrics 15 4.1 Load Estimation 16 4.1.1 Peak day hourly load profile 17 4.1.3 Annual cooling load profile 18 4.2.1 Detla T is a key parameter 18 4.2.2 Limitations on lower chilled-water supply temperature 19 Chiller efficiency 19 Evaporator freezeup 20 Thermal energy storage 20 4.2.3 Limitations and coil performance 20 4.2.4 Set practice recommendation 21 4.2.5 Abst practice recommendation 21 <t< td=""><td>Inadequate chilled-water delivery</td><td>12</td></t<>	Inadequate chilled-water delivery	12
Reduced building occupancy133.4 Rate Structures133.4.1 Capacity, consumption and connection rates13Capacity rates13Consumption rates13Connection charges13Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1.1 Deak demand164.1.2 Peak-day hourly load profile174.1.2 Alt and Delta T184.2.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20A.2.3 Limitations on bilper chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24	Delays in connecting buildings	13
3.4 Rate Structures 13 3.4.1 Capacity consumption and connection rates 13 Capacity rates 13 Consumption rates 13 Add the examples 13 3.4.2 Rate structure recommendations 14 Capacity rates 14 Connection charges 14 Initial contract demand 14 Rate design to encourage optimal building design and operation 15 3.5 Performance Metrics 15 4.1 Load Estimation 16 4.1.1 Peak demand 16 4.1.2 Peak-day hourly load profile 17 4.1.3 Annual cooling load profile 17 4.1.4 Design Temperatures and Delta T 18 4.2.1 Delta T is a key parameter 18 4.2.2 Limitations on lower chilled-water supply temperature 19 Chiller efficiency 19 Chiller efficiency 20 Heat exchanger approach temperature 20 4.2.3 Limitation and coil perfo	Metering	13
3.4.1 Capacity, consumption and connection rates 13 Capacity rates 13 Consumption rates 13 Connection charges 13 Regional rate examples 13 3.4.2 Rate structure recommendations 14 Capacity rates 14 Connection charges 14 Initial contract demand 14 Rate design to encourage optimal building design and operation 15 3.5 Performance Metrics 15 4. Design Process and Key Issues 16 4.1.1 Peak demand 16 4.1.2 Peak-day hourly load profile 18 4.2 Design Temperatures and Delta T 18 4.2.1 Delta T is a key parameter 18 4.2.2 Limitations on lower chilled-water supply temperature 19 Chiller efficiency 19 Evaporator freezeup 20 Thermal energy storage 20 Heat exchanger approach temperature 20 Loiller efficiency 21 4.2.1 Mitations on higher chilled-water return temperature 20 Dehumidification and coil performance 20 Dehumidification on doil perform	Reduced building occupancy	13
Capacity rates13Consumption rates13Connection charges13Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Load Estimation164.1 Load Estimation164.1.2 Peak-day hourly load profile174.1 Besign Process and Key Issues164.1.1 Peak demand164.1.2 Peak-day hourly load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on dijer chilled-water return temperature204.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5.1 Integration of District Cooling With Other Utility Infrastructure224.5.2 Paths for utility integration23Heat rejection23Desalination24Heat rejection23Desalination24	3.4 Rate Structures	13
Consumption rates13Connection charges13Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics154.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitation and coil performance20Heat excharger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5.1 Integration of District Cooling With Other Utility Infrastructure224.5.2 Paths for utility integration23Heat rejection23Legionic for utility integration23Heat rejection23Desalination24Natural gas24	3.4.1 Capacity, consumption and connection rates	13
Connection charges13Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Terces and Deta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature204.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination23Heat in gas24	Capacity rates	13
Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics154. Design Process and Key Issues164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on lower chilled-water return temperature204.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Heat inges of utility integration23Heat inges of utility integration23Heat rejection23Heat rejection23Heat inges of utility integration24	Consumption rates	13
Regional rate examples133.4.2 Rate structure recommendations14Capacity rates14Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics154. Design Process and Key Issues164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on lower chilled-water return temperature204.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Heat inges of utility integration23Heat inges of utility integration23Heat rejection23Heat rejection23Heat inges of utility integration24	Connection charges	13
3.4.2 Rate structure recommendations 14 Capacity rates 14 Connection charges 14 Initial contract demand 14 Rate design to encourage optimal building design and operation 15 3.5 Performance Metrics 15 4. Design Process and Key Issues 16 4.1 Load Estimation 16 4.1.1 Peak demand 16 4.1.2 Peak-day hourly load profile 17 4.1.3 Annual cooling load profile 18 4.2.1 Delta T is a key parameter 18 4.2.2 Limitations on lower chilled-water supply temperature 19 Chiller efficiency 19 Evaporator freezeup 20 Thermal energy storage 20 4.2.3 Limitations on higher chilled-water return temperature 20 Dehumidification and coil performance 20 Heat exchanger approach temperature 21 4.3 Master Planning 21 4.4 Permitting (Way Leaves) 22 4.5.1 Growth and infrastructure stresses 22 4.5.2 Paths for utility integration 23 Heat rejection 23 Desalination <td>-</td> <td>13</td>	-	13
Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics15 4. Design Process and Key Issues16 164.1 Load Estimation164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2. Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	-	14
Connection charges14Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics15 4. Design Process and Key Issues16 164.1 Load Estimation164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2. Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	Capacity rates	14
Initial contract demand14Rate design to encourage optimal building design and operation153.5 Performance Metrics154. Design Process and Key Issues164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.2 Paths for utility integration23Heat rejection23Desalination24		14
Rate design to encourage optimal building design and operation153.5 Performance Metrics154. Design Process and Key Issues164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Defta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Desalination24Matural gas24The challenge of utility integration24	-	14
3.5 Performance Metrics15 4. Design Process and Key Issues16 4.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		15
4. Design Process and Key Issues164.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24The challenge of utility integration24		
4.1 Load Estimation164.1.1 Peak demand164.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24The challenge of utility integration24	4. Design Process and Key Issues	16
4.1.2 Peak-day hourly load profile174.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.2 Paths for utility integration23Heat rejection23Desalination24Astural gas24The challenge of utility integration24		16
4.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	4.1.1 Peak demand	16
4.1.3 Annual cooling load profile184.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	4.1.2 Peak-day hourly load profile	17
4.2 Design Temperatures and Delta T184.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		18
4.2.1 Delta T is a key parameter184.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.2.2 Limitations on lower chilled-water supply temperature19Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Chiller efficiency19Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Evaporator freezeup20Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Thermal energy storage204.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24The challenge of utility integration24	-	
4.2.3 Limitations on higher chilled-water return temperature20Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Dehumidification and coil performance20Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Heat exchanger approach temperature214.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.2.4 Best practice recommendation214.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.3 Master Planning214.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.4 Permitting (Way Leaves)224.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.5 Integration of District Cooling With Other Utility Infrastructure224.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	-	
4.5.1 Growth and infrastructure stresses224.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
4.5.2 Paths for utility integration23Heat rejection23Desalination24Natural gas24The challenge of utility integration24	5 5 5	
Heat rejection23Desalination24Natural gas24The challenge of utility integration24		
Desalination24Natural gas24The challenge of utility integration24		
Natural gas24The challenge of utility integration24	-	
The challenge of utility integration 24		
4.6 Designing for Operations 25	4.6 Designing for Operations	25
		25
5. Building HVAC Design and Energy Transfer Stations (ETS) 26	5. Building HVAC Design and Energy Transfer Stations (ETS)	26
5.1 Building System Compatibility 26		
5.1.1 Cooling coil selection 26		
-	5.1.2 Bypasses and three-way valves	27

27

35 36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40
36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40
36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40
36 36 37 37 38 38 38 38 39 39 39 40 40 40 40 40 40 40 40 40 40 41 41 41 42 42
36 36 37 37 38 38 38 38 39 39 39 40 40 40 40 40 40 40 40 40 41 41 41 42
36 36 37 37 38 38 38 38 38 39 39 39 40 40 40 40 40 40 40 40 41 41
36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40 40 40 40
36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40 40
36 36 37 37 38 38 38 38 39 39 39 39 40 40 40 40 40
36 36 37 37 38 38 38 38 38 39 39 39 40 40 40
36 36 37 37 38 38 38 38 38 39 39 39 40 40
36 36 37 37 38 38 38 38 38 38 39 39 39 39 40
36 36 37 37 38 38 38 38 38 39 39 39 39
36 36 37 37 38 38 38 38 38 38 39 39
36 36 37 37 38 38 38 38 38 38 38 38
36 36 37 37 38 38 38 38 38 38
36 36 37 37 38 38 38
36 36 37 37 38 38
36 36 37 37
36 36 37 37
36 36 36
36 36
36
35
35
35
34
34
33
33
32
31
30
29
29
29

. Chiled-Water Distribution Systems	45
6.1 Hydraulic Design	45
6.1.1 Hydraulic model	45
6.1.2 Customer loads and system diversity	45
6.1.3 Startup and growth	46
6.1.4 Piping layout	46
6.1.5 Delta T	46
6.1.6 Pipe sizing	47
6.2 Pumping Schemes	47
6.2.1 Variable primary flow	48
Special considerations for district cooling systems	49
Design considerations	49
When to use variable primary flow	50
6.2.2 Primary-secondary pumping	50

When to use primary-secondary pumping	51
6.2.3 Distributed pumping	51
6.2.4 Booster pumps	52
6.3 Pump and Pressure Control	52
6.3.1 Distribution pumps	52
6.3.2 Variable-frequency drives	53
6.3.3 Differential pressure control	53
6.3.4 Pump dispatch	53
6.3.5 System pressure control and thermal storage	54
6.4 Distribution System Materials and Components	55
6.4.1 Pipe materials	55
Welded-steel pipe	55
HDPE pipe	56
Ductile-iron pipe	57
GRP pipe	58
Pipe material selection summary	58
Steel pipe	58
HDPE pipe	58
Ductile-iron pipe	59
GRP pipe	59
6.4.2 Isolation valves	59
Valve chambers	59
Direct-buried isolation valves	59
Cost considerations	61
6.4.3 Branch connections/service line takeoffs	62
6.4.4 Insulation	62
Evaluating insulation requirements	62
Pre-insulated piping insulation considerations	63
6.4.5 Leak-detection systems	64
Sensor-wire leak detection	64
Acoustic leak detection	65
Software-based leak detection	65

7. Chilled-Water Plants

hilled-Water Plants	66
7.1 Chilled-Water Production Technologies	66
7.1.1 Compression chillers	66
Reciprocating	66
Rotary	66
Centrifugal	66
Centrifugal-chiller capacity control	66
Inlet guide vanes	66
Variable-speed drive (VSD)	66
Hot-gas bypass	67
Meeting low loads	67
7.1.2 Natural gas chillers	67
7.1.3 Absorption chillers	68
Pros and cons	68
Efficiency	69
Capacity derate	69
Capital costs	69
Equipment manufacturers	69
Operating costs	70
7.1.4 Engine-driven chillers	70

7.1.5 Combined heat and power (CHP)	70
7.1.6 Choosing chiller type in the Middle East	71
7.2 Thermal Energy Storage (TES)	71
7.2.1 Thermal energy storage (TES) types	72
Chilled-water thermal energy storage	72
Ice thermal energy storage	72
Low-temperature fluid thermal energy storage	72
7.2.2 Thermal energy storage benefits	72
Peak-load management	72
Energy efficiency	72
Capital avoidance	72
Operational flexibility	73
7.2.3 Thermal energy storage challenges	73
Sizing	73
Siting	73
Timing	74
7.3 Plant Configuration	74
7.3.1 Chiller sizing and configuration	74
7.3.2 Series-counterflow configuration	74
7.4 Major Chiller Components	75
7.4.1 Motors	75
Enclosure types	75
Standard motor enclosure costs	76
Inverter-duty premium	76
Motor efficiency	76
Motor physical size	76
Voltage options for chiller motors	76
7.4.2 Heat exchanger materials and design	77
7.5 Refrigerants	78
7.6 Heat Rejection	79
7.6.1 Overview of condenser cooling options	79
7.6.2 Optimum entering condenser-water temperature	80
7.6.3 Cooling tower considerations	80
Cooling tower sizing	81
Cooling tower basins	82
7.6.4 Condenser-water piping arrangement	83
7.7 Water Treatment	83
7.7.1 Water supply	83
Potable water	83
Treated sewage effluent	83
Seawater in a once-through arrangement	84
Seawater as tower makeup	84 84
Seawater treated using reverse osmosis or other desalination technologies	84 85
-	85
7.7.2 Treatment approaches Chilled water	85
	85
Treatment approach	86
Dosing and control Condenser water	
	86 86
Treatment approach	86 86
Dosing and control	86 87
Legionella control	87
7.7.3 Zero liquid discharge	87
7.7.4 Service standards	87

7.8 Balance of Plant	88
7.8.1 Piping design for condenser water	88
7.8.2 Sidestream filters	88
7.8.3 Cooling tower basin sweepers	90
7.8.4 Transformer room cooling	90
7.8.5 Equipment access	90
7.8.6 Noise and vibration	90
7.9 Electrical Systems	91
7.9.1 Short-circuit study	91
7.9.2 Protective device coordination study	91
7.9.3 Arc flash hazard study	91
8. Controls, Instrumentation and Metering	92
8.1 Introduction	92
8.2 Definitions	92
8.3 Overview	92
8.3.1 Typical DCICS functions	92
8.3.2 General design factors	93
8.3.3 DCICS evaluation performance	93
8.4 Physical Model	93
8.4.1 Sites	93
8.4.2 Plants	93
8.4.3 Local plant I&C system	93
Local plant controllers	93
Field devices	95
Local operator interface terminals	95
Local workstations	95
8.4.4 Command centers	95
Data server	95
Historical server	95
Command center workstations	96
Terminal server	96
Other servers and workstations	96
8.5 Logical Model	96
8.5.1 Level 0	96
8.5.2 Level 1	97
8.5.3 Level 2	98
8.5.4 Level 3	99
8.5.5 Level 4	99
8.5.6 Level 5	100
8.6 Sample DCICS	101
8.7 Level 0 – Best Practices	101
8.7.1 Point justification	101
8.7.2 Criteria for device selection	102
8.7.3 Redundant Level 0 equipment	102
8.7.4 Local instrumentation	106
8.7.5 Localized overrides for each controlled component	106
8.7.6 Good installation practices	106
8.8 Level 1 – Best Practices	106
8.8.1 Level 1 field instrumentation	106
8.8.2 I/O modules and racks	106
8.8.3 Onboard chiller controllers	107
8.8.4 Variable-frequency drives	108

8.8.5 Energy monitoring equipment	108
8.8.6 Metering and submetering	108
8.8.7 Redundant Level 1 field instrumentation	110
8.8.8 Level 1 network best practice considerations	110
8.8.9 Level 1 data considerations	110
8.9 Levels 0 & 1 – Choosing Points to Monitor and Control	110
8.9.1 Example equipment segments	111
Primary-secondary systems	111
Variable primary systems	113
Chiller evaporators	115
Condenser-water systems	116
Cooling towers	117
Centrifugal chiller condensers	118
Constant-speed pumps	119
Variable-speed pumps	120
Heat exchangers	121
8.9.2 Level 0 vs. Level 1 – field instrumentation	122
8.10 Level 2 – Best Practices	122
8.10.1 Types of controllers	122
8.10.2 Selection criteria	123
8.10.3 Distributing controllers	123
8.10.4 Controller redundancy	123
8.10.5 Critical data integrity	124
8.10.6 Time-of-day synchronization between controllers	124
8.10.7 Controller power requirements	124
8.11 Level 3 – Best Practices	125
8.11.1 Connecting local OITs to local controllers	125
8.11.2 Displaying metering data on local OITs	125
8.11.3 Environment	125
8.11.4 Local OIT power requirements	125
8.12 Level 4 – Best Practices	125
8.13 Networking Best Practice Considerations	125
8.13.1 DCICS network categories	125
8.13.2 Level 2+ network infrastructure	129
Fiber optics	129
Wireless	129
Internet	130
8.13.3 Remote control vs. manning individual plants	130
8.13.4 Sophistication	130
8.13.5 Performance	130
8.13.5 Ferrormance 8.13.6 Security	130
8.13.7 Physical network topologies	130
8.13.8 Network monitoring via OPC	
	131
8.13.9 Network bridging and controller pass-through	131
8.13.10 DCICS network and Level 4 equipment ownership	132
8.13.11 DCICS Level 2+ network component power requirements	132
8.14 Control Functions	133
8.15 Human-Machine Interface Functionality	133
8.16 Standardization	133
8.17 Standard Design Documents	134
8.18 Standard Testing Documents	135

9. Procurement and Project Delivery	136
9.1 Design/Bid/Build (DBB)	136 137 137
9.2 Engineer/Procure/Construct (EPC)	
9.3 Packaged Plants	
10. Commissioning	140
Appendix	
A – Abbreviations and Definitions	A-1
B – Conversion Factors	B-1
2 – Arc Flash	C-1

Tables

- Table 2-1Combined-cycle power plant operation cost factors
- Table 2-2 Conversion of fuel prices in US\$ per barrel oil equivalent (BOE) to US\$ per MMBtu
- Table 3-1 Summary of customer value
- Table 5-1 Typical coil (and delta T) performance as entering-water temperature varies
- Table 5-2
 Sample heat exchanger differences with colder supply-water temperature and common building-side conditions
- Table 5-3Tonnage capacity per heat exchanger
- Table 5-4
 Recommended maximum chloride content (ppm)
- Table 5-5Control-valve applications and control points
- Table 6-1Impact of delta T on 990 mm (36") pipe capacity
- Table 6-2Impact of delta T on capacity of 1000 hp pump set
- Table 7-1
 Summary of packaged chiller types and capacities (ARI conditions)
- Table 7-2
 Impact of delta T in operation on chilled-water storage capacity
- Table 7-3
 Inputs to series-counterflow example
- Table 7-4
 Performance results for series-counterflow example
- Table 7-5
 Example dimensions and weights of motor types
- Table 7-6
 Corrosion resistance and performance of condenser tube material options
- Table 7-7 Refrigerant phaseout schedule (Montreal Protocol, Copenhagen Amendment, MOP-19 adjustment)
- Table 7-8Inputs to low condenser flow example
- Table 7-9
 Performance results for low condenser flow example (3 gpm/ton vs. 2.3 gpm/ton)
- Table 7-10
 Recommended monthly tests
- Table 7-11
 Corrosion-coupon standards
- Table 7-12 Performance characteristics of sand filters vs. cyclone separators
- Table 8-1PLC vs. DCS pros and cons
- Table 8-2Level 0 best practice specifications
- Table 8-3
 Energy meter best practice specifications
- Table 8-4Key to instrument tagging symbols
- Table 8-5 Function identifier key
- Table 8-6
 Level 0 vs. Level 1 field instrumentation selection criteria
- Table 8-7Level 4 componentry best practice tips
- Table 8-8 DCICS network categories
- Table 9-1
 Example detailed outline of Owner's Requirements Documents (ORDs) for engineer/procure/construct (EPC) procurement

Figures

- Figure 2-1 Peak power demand reductions with district cooling
- Figure 2-2 World oil prices during the past 10 years
- Figure 2-3. Oil prices in US\$ per MMBtu
- Figure 2-4 Projected impact of oil price on price of delivered liquefied natural gas
- Figure 2-5 Long-run marginal costs of delivered electricity from new combined-cycle plant at a range of fuel prices

- Figure 2-6 Example of time-of-day power rates compared with power demand, per New England Hourly Electricity Price Index
- Figure 2-7 Annual electric energy consumption savings with district cooling
- Figure 3-1 Examples of Middle East district cooling rates
- Figure 4-1 Design dry-bulb and mean-coincident wet-bulb temperatures for selected Middle East cities (ASHRAE 0.4% design point)
- Figure 4-2 Design wet-bulb and mean-coincident dry-bulb temperatures for selected Middle East cities (ASHRAE 0.4% design point)
- Figure 4-3 Example peak-day load profiles for various building types
- Figure 4-4 Illustrative peak-day load profile for district cooling serving mixed building types
- Figure 4-5 Illustrative district cooling annual load-duration curve
- Figure 4-6 Effect of increased delta T on LMTD of cooling coils
- Figure 4-7 Paths for potential utility integration
- Figure 5-1 Expected coil performance over the design flow range for typical coil
- Figure 5-2 Decoupled direct ETS connection
- Figure 5-3 Simplified direct ETS connection
- Figure 5-4 Indirect ETS connection (with combined HEX control valves)
- Figure 5-5 Indirect ETS configuration (with dedicated HEX control valves)
- Figure 5-6 Plate-and-frame heat exchanger installation
- Figure 5-7 Plate-and-frame heat exchanger (courtesy Alfa Laval)
- Figure 5-8 HEX surface area vs. "approach"
- Figure 5-9 Importance of critical customer design
- Figure 5-10 Pressure-dependent "globe" valve
- Figure 5-11 Common control-valve characteristics
- Figure 5-12 Pressure-independent control valve (courtesy Flow Control Industries)
- Figure 5-13 Submetering system via fixed wireless
- Figure 5-14 Submetering system with an RF handheld terminal
- Figure 6-1 Impact of delta T on hydraulic profile
- Figure 6-2 Variable primary flow
- Figure 6-3 Traditional primary-secondary system
- Figure 6-4 All variable primary-secondary system
- Figure 6-5 Distributed primary-secondary system
- Figure 6-6 Thermal storage tank used for maintaining static pressure in system
- Figure 6-7 Weld-end ball valve
- Figure 6-8 Weld-end butterfly valve
- Figure 6-9 Direct-buried valve with mechanical actuation
- Figure 6-10 Direct-buried valve with hydraulic actuator
- Figure 6-11 Sluice plate hot tap
- Figure 6-12 Example of estimated average ground temperatures at various depths
- Figure 6-13 Distribution system supply-water temperature rise for example system at part load
- Figure 7-1 Single-effect absorption cycle (courtesy York/Johnson Controls)
- Figure 7-2 Engine-based CHP with electric and absorption chillers (courtesy York/Johnson Controls)
- Figure 7-3 Turbine-based CHP with electric and steam-turbine-drive chillers
- Figure 7-4 Load-leveling potential with thermal energy storage
- Figure 7-5 Lift in single and series-counterflow chillers
- Figure 7-6 Enclosure premiums above open drip-proof
- Figure 7-7 Inverter-duty motor cost premium
- Figure 7-8 Motor efficiency
- Figure 7-9 Refrigerant environmental impact comparison
- Figure 7-10 Counterflow cooling tower
- Figure 7-11 Crossflow cooling tower
- Figure 7-12 Chiller and tower kW/ton vs. ECWT
- Figure 7-13 Rate of power change for chillers and cooling towers

- Figure 7-14 Pumps dedicated to specific condensers
- Figure 7-15 Condenser pumps with header
- Figure 8-1 DCICS physical model
- Figure 8-2 DCICS logical model
- Figure 8-3 Sample DCICS system
- Figure 8-4 Primary-secondary systems
- Figure 8-5 Variable primary system instrumentation
- Figure 8-6 Chiller evaporator supply and return instrumentation
- Figure 8-7 Condenser-water system instrumentation
- Figure 8-8 Cooling tower instrumentation
- Figure 8-9 Chiller condenser supply and return instrumentation
- Figure 8-10 Constant-speed pump instrumentation
- Figure 8-11 Variable-speed pump instrumentation
- Figure 8-12 Heat exchanger instrumentation