DISTRICT COOLING BEST PRACTICE GUIDE

FIRST EDITION

Published to inform, connect and advance the global district cooling industry

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

Westborough, Massachusetts, USA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Overview and Structure of the Guide</td>
<td>2</td>
</tr>
<tr>
<td>2. Why District Cooling?</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Customer Benefits</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1 Comfort</td>
<td>2</td>
</tr>
<tr>
<td>2.1.2 Convenience</td>
<td>2</td>
</tr>
<tr>
<td>2.1.3 Flexibility</td>
<td>2</td>
</tr>
<tr>
<td>2.1.4 Reliability</td>
<td>2</td>
</tr>
<tr>
<td>2.1.5 Cost-effectiveness</td>
<td>2</td>
</tr>
<tr>
<td>2.1.5.1 Fundamental cost advantages</td>
<td>2</td>
</tr>
<tr>
<td>2.1.5.2 Load diversity</td>
<td>2</td>
</tr>
<tr>
<td>2.1.5.3 Optimized operations</td>
<td>2</td>
</tr>
<tr>
<td>2.1.5.4 Advanced technologies</td>
<td>3</td>
</tr>
<tr>
<td>2.1.5.5 Better staff economies</td>
<td>3</td>
</tr>
<tr>
<td>2.1.5.6 Customer risk management</td>
<td>3</td>
</tr>
<tr>
<td>2.1.5.7 Cost comparison</td>
<td>3</td>
</tr>
<tr>
<td>2.1.5.8 Capital costs</td>
<td>3</td>
</tr>
<tr>
<td>2.1.5.9 Annual costs</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Infrastructure Benefits</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Peak power demand reduction</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 Reduction in government power sector costs</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2.1 Capital costs of power capacity</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2.2 Power sector operating costs</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2.3 Total costs of electricity</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2.4 Power utility recognition of district cooling benefits</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Environmental Benefits</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Energy efficiency</td>
<td>7</td>
</tr>
<tr>
<td>2.3.2 Climate change</td>
<td>7</td>
</tr>
<tr>
<td>2.3.3 Ozone depletion</td>
<td>8</td>
</tr>
<tr>
<td>3. Business Development</td>
<td>9</td>
</tr>
<tr>
<td>3.1 District Cooling as a Utility Business</td>
<td>9</td>
</tr>
<tr>
<td>3.1.1 Engineering design</td>
<td>9</td>
</tr>
<tr>
<td>3.1.2 Organizational design</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Marketing and Communications</td>
<td>9</td>
</tr>
<tr>
<td>3.2.1 Positioning</td>
<td>9</td>
</tr>
<tr>
<td>3.2.2 Customer value proposition</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2.1 Value proposition summary</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2.2 Building chiller system efficiency</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2.3 Structuring the cost comparison</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2.4 Communicating with prospective customers</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Risk Management</td>
<td>11</td>
</tr>
<tr>
<td>3.3.1 Nature of district cooling company</td>
<td>11</td>
</tr>
<tr>
<td>3.3.2 Capital-intensiveness</td>
<td>11</td>
</tr>
<tr>
<td>3.3.3 Will visions be realized?</td>
<td>11</td>
</tr>
<tr>
<td>3.3.4 District cooling company risks</td>
<td>12</td>
</tr>
<tr>
<td>3.3.4.1 Stranded capital</td>
<td>12</td>
</tr>
<tr>
<td>3.3.4.2 Temporary chillers</td>
<td>12</td>
</tr>
</tbody>
</table>
Construction risks
- Underground congestion
- Community relations
- General construction issues

Revenue generation risks
- Inadequate chilled-water delivery
- Delays in connecting buildings
- Metering
- Reduced building occupancy

3.4 Rate Structures
3.4.1 Capacity, consumption and connection rates
- Capacity rates
- Consumption rates
- Connection charges
- Regional rate examples

3.4.2 Rate structure recommendations
- Capacity rates
- Connection charges
- Initial contract demand
- Rate design to encourage optimal building design and operation

3.5 Performance Metrics

4. Design Process and Key Issues
4.1 Load Estimation
- Peak demand
- Peak-day hourly load profile
- Annual cooling load profile

4.2 Design Temperatures and Delta T
- Delta T is a key parameter
- Limitations on lower chilled-water supply temperature
 - Chiller efficiency
 - Evaporator freezeup
 - Thermal energy storage
- Limitations on higher chilled-water return temperature
 - Dehumidification and coil performance
 - Heat exchanger approach temperature
- Best practice recommendation

4.3 Master Planning

4.4 Permitting (Way Leaves)

4.5 Integration of District Cooling With Other Utility Infrastructure
- Growth and infrastructure stresses
- Paths for utility integration
 - Heat rejection
 - Desalination
 - Natural gas
 - The challenge of utility integration

4.6 Designing for Operations

5. Building HVAC Design and Energy Transfer Stations (ETS)
5.1 Building System Compatibility
- Cooling coil selection
- Bypasses and three-way valves
- Control-valve sizing and selection
5.1.4 Building pump control 27
5.1.5 Water treatment and heat-transfer effectiveness 29
5.1.6 Additional economic opportunities 29
5.2 System Performance Metrics at the ETS 29
5.3 Selecting Direct or Indirect ETS Connections 30
 5.3.1 Direct connections 31
 5.3.2 Indirect connections 32
5.4 Heat Exchanger Considerations 33
 5.4.1 HEX temperature requirements 33
 5.4.2 HEX pressure requirements 34
 5.4.3 HEX redundancy requirements 34
 5.4.4 HEX performance efficiency 35
 5.4.5 Other HEX considerations 35
5.5 Control-Valve Considerations 35
 5.5.1 Location and applications 36
 5.5.2 Control-valve types and characteristics 36
 Pressure-dependent control 36
 Pressure-independent control 37
 5.5.3 Control-valve sizing 37
 5.5.4 Actuator sizing and selection 38
 5.5.5 Quality and construction 38
5.6 ETS and Building Control Strategies 38
 5.6.1 Supply-water temperature and reset 38
 5.6.2 Supply-air temperature and reset at cooling coils 39
 5.6.3 Building pump and ETS control-valve control 39
 5.6.4 Capacity control after night setback 39
 5.6.5 Staging multiple heat exchangers 40
5.7 Metering and Submetering 40
 5.7.1 Introduction 40
 5.7.2 Meter types 40
 Dynamic meters 40
 Static flow meters 41
 5.7.3 Designing for meter installation and maintenance 41
 5.7.4 Standards 42
 5.7.5 Other equipment 42
 5.7.6 Submetering 42
 Meter reading 42
 Conclusions about submetering 43
6. Chilled-Water Distribution Systems 45
6.1 Hydraulic Design 45
 6.1.1 Hydraulic model 45
 6.1.2 Customer loads and system diversity 45
 6.1.3 Startup and growth 46
 6.1.4 Piping layout 46
 6.1.5 Delta T 46
 6.1.6 Pipe sizing 47
6.2 Pumping Schemes 47
 6.2.1 Variable primary flow 48
 Special considerations for district cooling systems 49
 Design considerations 49
 When to use variable primary flow 50
 6.2.2 Primary-secondary pumping 50
7.1.5 Combined heat and power (CHP) 70
7.1.6 Choosing chiller type in the Middle East 71
7.2 Thermal Energy Storage (TES) 71
7.2.1 Thermal energy storage (TES) types 72
 Chilled-water thermal energy storage 72
 Ice thermal energy storage 72
 Low-temperature fluid thermal energy storage 72
7.2.2 Thermal energy storage benefits 72
 Peak-load management 72
 Energy efficiency 72
 Capital avoidance 72
 Operational flexibility 73
7.2.3 Thermal energy storage challenges 73
 Sizing 73
 Siting 73
 Timing 74
7.3 Plant Configuration 74
7.3.1 Chiller sizing and configuration 74
7.3.2 Series-counterflow configuration 74
7.4 Major Chiller Components 75
7.4.1 Motors 75
 Enclosure types 75
 Standard motor enclosure costs 76
 Inverter-duty premium 76
 Motor efficiency 76
 Motor physical size 76
 Voltage options for chiller motors 76
7.4.2 Heat exchanger materials and design 77
7.5 Refrigerants 78
7.6 Heat Rejection 79
7.6.1 Overview of condenser cooling options 79
7.6.2 Optimum entering condenser-water temperature 80
7.6.3 Cooling tower considerations 80
 Cooling tower sizing 81
 Cooling tower basins 82
7.6.4 Condenser-water piping arrangement 83
7.7 Water Treatment 83
7.7.1 Water supply 83
 Potable water 83
 Treated sewage effluent 83
 Seawater in a once-through arrangement 84
 Seawater as tower makeup 84
 Seawater treated using reverse osmosis or other desalination technologies 85
7.7.2 Treatment approaches 85
 Chilled water 85
 Treatment approach 85
 Dosing and control 86
 Condenser water 86
 Treatment approach 86
 Dosing and control 86
 Legionella control 87
7.7.3 Zero liquid discharge 87
7.7.4 Service standards 87
7.8 Balance of Plant
- 7.8.1 Piping design for condenser water
- 7.8.2 Sidestream filters
- 7.8.3 Cooling tower basin sweepers
- 7.8.4 Transformer room cooling
- 7.8.5 Equipment access
- 7.8.6 Noise and vibration

7.9 Electrical Systems
- 7.9.1 Short-circuit study
- 7.9.2 Protective device coordination study
- 7.9.3 Arc flash hazard study

8. Controls, Instrumentation and Metering

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>92</td>
</tr>
<tr>
<td>8.2 Definitions</td>
<td>92</td>
</tr>
<tr>
<td>8.3 Overview</td>
<td>92</td>
</tr>
<tr>
<td>8.3.1 Typical DCICS functions</td>
<td>92</td>
</tr>
<tr>
<td>8.3.2 General design factors</td>
<td>93</td>
</tr>
<tr>
<td>8.3.3 DCICS evaluation performance</td>
<td>93</td>
</tr>
<tr>
<td>8.4 Physical Model</td>
<td>93</td>
</tr>
<tr>
<td>8.4.1 Sites</td>
<td>93</td>
</tr>
<tr>
<td>8.4.2 Plants</td>
<td>93</td>
</tr>
<tr>
<td>8.4.3 Local plant I&C system</td>
<td>93</td>
</tr>
<tr>
<td>Local plant controllers</td>
<td>93</td>
</tr>
<tr>
<td>Field devices</td>
<td>95</td>
</tr>
<tr>
<td>Local operator interface terminals</td>
<td>95</td>
</tr>
<tr>
<td>Local workstations</td>
<td>95</td>
</tr>
<tr>
<td>8.4.4 Command centers</td>
<td>95</td>
</tr>
<tr>
<td>Data server</td>
<td>95</td>
</tr>
<tr>
<td>Historical server</td>
<td>95</td>
</tr>
<tr>
<td>Command center workstations</td>
<td>96</td>
</tr>
<tr>
<td>Terminal server</td>
<td>96</td>
</tr>
<tr>
<td>Other servers and workstations</td>
<td>96</td>
</tr>
<tr>
<td>8.5 Logical Model</td>
<td>96</td>
</tr>
<tr>
<td>8.5.1 Level 0</td>
<td>96</td>
</tr>
<tr>
<td>8.5.2 Level 1</td>
<td>97</td>
</tr>
<tr>
<td>8.5.3 Level 2</td>
<td>98</td>
</tr>
<tr>
<td>8.5.4 Level 3</td>
<td>99</td>
</tr>
<tr>
<td>8.5.5 Level 4</td>
<td>99</td>
</tr>
<tr>
<td>8.5.6 Level 5</td>
<td>100</td>
</tr>
<tr>
<td>8.6 Sample DCICS</td>
<td>101</td>
</tr>
<tr>
<td>8.7 Level 0 – Best Practices</td>
<td>101</td>
</tr>
<tr>
<td>8.7.1 Point justification</td>
<td>101</td>
</tr>
<tr>
<td>8.7.2 Criteria for device selection</td>
<td>102</td>
</tr>
<tr>
<td>8.7.3 Redundant Level 0 equipment</td>
<td>102</td>
</tr>
<tr>
<td>8.7.4 Local instrumentation</td>
<td>106</td>
</tr>
<tr>
<td>8.7.5 Localized overrides for each controlled component</td>
<td>106</td>
</tr>
<tr>
<td>8.7.6 Good installation practices</td>
<td>106</td>
</tr>
<tr>
<td>8.8 Level 1 – Best Practices</td>
<td>106</td>
</tr>
<tr>
<td>8.8.1 Level 1 field instrumentation</td>
<td>106</td>
</tr>
<tr>
<td>8.8.2 I/O modules and racks</td>
<td>106</td>
</tr>
<tr>
<td>8.8.3 Onboard chiller controllers</td>
<td>107</td>
</tr>
<tr>
<td>8.8.4 Variable-frequency drives</td>
<td>108</td>
</tr>
</tbody>
</table>
8.8.5 Energy monitoring equipment 108
8.8.6 Metering and submetering 108
8.8.7 Redundant Level 1 field instrumentation 110
8.8.8 Level 1 network best practice considerations 110
8.8.9 Level 1 data considerations 110
8.9 Levels 0 & 1 – Choosing Points to Monitor and Control 110
 8.9.1 Example equipment segments 111
 Primary-secondary systems 111
 Variable primary systems 113
 Chiller evaporators 115
 Condenser-water systems 116
 Cooling towers 117
 Centrifugal chiller condensers 118
 Constant-speed pumps 119
 Variable-speed pumps 120
 Heat exchangers 121
 8.9.2 Level 0 vs. Level 1 – field instrumentation 122
8.10 Level 2 – Best Practices 122
 8.10.1 Types of controllers 122
 8.10.2 Selection criteria 123
 8.10.3 Distributing controllers 123
 8.10.4 Controller redundancy 123
 8.10.5 Critical data integrity 124
 8.10.6 Time-of-day synchronization between controllers 124
 8.10.7 Controller power requirements 124
8.11 Level 3 – Best Practices 125
 8.11.1 Connecting local OITs to local controllers 125
 8.11.2 Displaying metering data on local OITs 125
 8.11.3 Environment 125
 8.11.4 Local OIT power requirements 125
8.12 Level 4 – Best Practices 125
8.13 Networking Best Practice Considerations 125
 8.13.1 DCICS network categories 125
 8.13.2 Level 2+ network infrastructure 129
 Fiber optics 129
 Wireless 129
 Internet 130
 8.13.3 Remote control vs. manning individual plants 130
 8.13.4 Sophistication 130
 8.13.5 Performance 130
 8.13.6 Security 130
 8.13.7 Physical network topologies 131
 8.13.8 Network monitoring via OPC 131
 8.13.9 Network bridging and controller pass-through 131
 8.13.10 DCICS network and Level 4 equipment ownership 132
 8.13.11 DCICS Level 2+ network component power requirements 132
8.14 Control Functions 133
8.15 Human-Machine Interface Functionality 133
8.16 Standardization 133
8.17 Standard Design Documents 134
8.18 Standard Testing Documents 135
9. Procurement and Project Delivery

9.1 Design/Bid/Build (DBB) 136
9.2 Engineer/Procure/Construct (EPC) 137
9.3 Packaged Plants 137

10. Commissioning 140

Appendix

A – Abbreviations and Definitions A-1
B – Conversion Factors B-1
C – Arc Flash C-1

Tables

Table 2-1 Combined-cycle power plant operation cost factors
Table 2-2 Conversion of fuel prices in US$ per barrel oil equivalent (BOE) to US$ per MMBtu
Table 3-1 Summary of customer value
Table 5-1 Typical coil (and delta T) performance as entering-water temperature varies
Table 5-2 Sample heat exchanger differences with colder supply-water temperature and common building-side conditions
Table 5-3 Tonnage capacity per heat exchanger
Table 5-4 Recommended maximum chloride content (ppm)
Table 5-5 Control-valve applications and control points
Table 5-6 Impact of delta T on 990 mm (36") pipe capacity
Table 5-7 Impact of delta T on capacity of 1000 hp pump set
Table 7-1 Summary of packaged chiller types and capacities (ARI conditions)
Table 7-2 Impact of delta T in operation on chilled-water storage capacity
Table 7-3 Inputs to series-counterflow example
Table 7-4 Performance results for series-counterflow example
Table 7-5 Example dimensions and weights of motor types
Table 7-6 Corrosion resistance and performance of condenser tube material options
Table 7-7 Refrigerant phaseout schedule (Montreal Protocol, Copenhagen Amendment, MOP-19 adjustment)
Table 7-8 Inputs to low condenser flow example
Table 7-9 Performance results for low condenser flow example (3 gpm/ton vs. 2.3 gpm/ton)
Table 7-10 Recommended monthly tests
Table 7-11 Corrosion-coupon standards
Table 7-12 Performance characteristics of sand filters vs. cyclone separators
Table 8-1 PLC vs. DCS – pros and cons
Table 8-2 Level 0 best practice specifications
Table 8-3 Energy meter best practice specifications
Table 8-4 Key to instrument tagging symbols
Table 8-5 Function identifier key
Table 8-6 Level 0 vs. Level 1 field instrumentation – selection criteria
Table 8-7 Level 4 componentry best practice tips
Table 8-8 DCICS network categories
Table 9-1 Example detailed outline of Owner’s Requirements Documents (ORDs) for engineer/procure/construct (EPC) procurement

Figures

Figure 2-1 Peak power demand reductions with district cooling
Figure 2-2 World oil prices during the past 10 years
Figure 2-3 Oil prices in US$ per MMBtu
Figure 2-4 Projected impact of oil price on price of delivered liquefied natural gas
Figure 2-5 Long-run marginal costs of delivered electricity from new combined-cycle plant at a range of fuel prices
Figure 2-6 Example of time-of-day power rates compared with power demand, per New England Hourly Electricity Price Index
Figure 2-7 Annual electric energy consumption savings with district cooling
Figure 3-1 Examples of Middle East district cooling rates
Figure 4-1 Design dry-bulb and mean-coincident wet-bulb temperatures for selected Middle East cities (ASHRAE 0.4% design point)
Figure 4-2 Design wet-bulb and mean-coincident dry-bulb temperatures for selected Middle East cities (ASHRAE 0.4% design point)
Figure 4-3 Example peak-day load profiles for various building types
Figure 4-4 Illustrative peak-day load profile for district cooling serving mixed building types
Figure 4-5 Illustrative district cooling annual load-duration curve
Figure 4-6 Effect of increased delta T on LMTD of cooling coils
Figure 4-7 Paths for potential utility integration
Figure 5-1 Expected coil performance over the design flow range for typical coil
Figure 5-2 Decoupled direct ETS connection
Figure 5-3 Simplified direct ETS connection
Figure 5-4 Indirect ETS connection (with combined HEX control valves)
Figure 5-5 Indirect ETS configuration (with dedicated HEX control valves)
Figure 5-6 Plate-and-frame heat exchanger installation
Figure 5-7 Plate-and-frame heat exchanger (courtesy Alfa Laval)
Figure 5-8 HEX surface area vs. "approach"
Figure 5-9 Importance of critical customer design
Figure 5-10 Pressure-dependent "globe" valve
Figure 5-11 Common control-valve characteristics
Figure 5-12 Pressure-independent control valve (courtesy Flow Control Industries)
Figure 5-13 Submetering system via fixed wireless
Figure 5-14 Submetering system with an RF handheld terminal
Figure 6-1 Impact of delta T on hydraulic profile
Figure 6-2 Variable primary flow
Figure 6-3 Traditional primary-secondary system
Figure 6-4 All variable primary-secondary system
Figure 6-5 Distributed primary-secondary system
Figure 6-6 Thermal storage tank used for maintaining static pressure in system
Figure 6-7 Weld-end ball valve
Figure 6-8 Weld-end butterfly valve
Figure 6-9 Direct-buried valve with mechanical actuation
Figure 6-10 Direct-buried valve with hydraulic actuator
Figure 6-11 Sluice plate hot tap
Figure 6-12 Example of estimated average ground temperatures at various depths
Figure 6-13 Distribution system supply-water temperature rise for example system at part load
Figure 7-1 Single-effect absorption cycle (courtesy York/Johnson Controls)
Figure 7-2 Engine-based CHP with electric and absorption chillers (courtesy York/Johnson Controls)
Figure 7-3 Turbine-based CHP with electric and steam-turbine-drive chillers
Figure 7-4 Load-leveling potential with thermal energy storage
Figure 7-5 Lift in single and series-counterflow chillers
Figure 7-6 Enclosure premiums above open drip-proof
Figure 7-7 Inverter-duty motor cost premium
Figure 7-8 Motor efficiency
Figure 7-9 Refrigerant environmental impact comparison
Figure 7-10 Counterflow cooling tower
Figure 7-11 Crossflow cooling tower
Figure 7-12 Chiller and tower kW/ton vs. ECWT
Figure 7-13 Rate of power change for chillers and cooling towers
Figure 7-14 Pumps dedicated to specific condensers
Figure 7-15 Condenser pumps with header
Figure 8-1 DCICS physical model
Figure 8-2 DCICS logical model
Figure 8-3 Sample DCICS system
Figure 8-4 Primary-secondary systems
Figure 8-5 Variable primary system instrumentation
Figure 8-6 Chiller evaporator supply and return instrumentation
Figure 8-7 Condenser-water system instrumentation
Figure 8-8 Cooling tower instrumentation
Figure 8-9 Chiller condenser supply and return instrumentation
Figure 8-10 Constant-speed pump instrumentation
Figure 8-11 Variable-speed pump instrumentation
Figure 8-12 Heat exchanger instrumentation