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Abstract

Forecast combinations have proven valuable in diverse predictive contexts. Yet, their application to stock return
classification remains underexplored. This paper extends the model combination framework of Roccazzella et al. (2022)
from regression to classification tasks, with a focus on its integration into investment decision-making. Using NASDAQ-100
constituents from 2007 to 2024 in a rolling window setting, multiple machine learning classifiers are trained to predict weekly
stock outperformance relative to the index. The continuous ensemble outputs are converted into trading signals through an
optimized classification threshold, whose calibration explicitly accounts for asymmetric error costs. The methodology is
evaluated across 544 portfolio configurations, spanning 4 distinct investment strategies, 4 threshold strategies, 21 ensemble
methods and accounting for realistic transaction costs. All of them are evaluated through a comprehensive and robust
statistical framework measuring both predictive and financial performance. Empirical results indicate that the proposed
combination approach improves classification accuracy and portfolio efficiency. In particular, we find that a filtered
mean–variance allocation with Ledoit–Wolf shrinkage and a precision-optimized threshold achieved a Sharpe ratio of 1.11
and an APY of 19.29%, compared with 0.74 and 14.72% for the benchmark. These findings highlight the practical relevance
of machine learning ensemble methods with adaptive thresholding in the context of investment strategies.

1 Introduction

Predicting financial markets is known to be a major challenge. For instance, among large-cap funds, 75.25% underperformed
the S&P 500 over five-year horizons, rising to 84.34% and 89.5% over ten- and fifteen-year periods (S&P Global, 2024).
These results highlight the challenges of financial forecasting and the need for models capable of managing the vast and
dynamic data of modern financial markets. Traditional statistical methods often fail to capture this complexity. With the rapid
growth in data availability, machine learning techniques have become powerful tools to improve forecasts accuracy (Graf
et al., 2020). Financial markets provide an especially rich testing ground; they produce enormous streams of heterogeneous
data whose complexity and non-linearity are well suited for advanced machine learning models. However, performance
varies considerably across models: Each captures certain patterns while overlooking others, and single models often lack
robustness when used in isolation (Htun et al., 2024).

Ensemble learning offers a way to overcome these limitations by combining different models, capturing diverse signals
in financial data and improving stability and accuracy, ultimately leading to a form of ”model consensus” (Atiya, 2020).
Intuitively, this reduces model risk through diversification, similar to modern portfolio theory, offering a familiar rationale for
model combination (Markowitz, 1952). Building on Roccazzella et al. (2022), this paper extends regression-based ensembles
to a classification setting, where aggregated outputs are continuous probabilities of outperformance. This raises the key
question of how to turn such continuous forecasts into binary investment decisions, a crucial step for portfolio construction.

Our purpose is to use ensemble machine learning models as a stock selection mechanism that identifies assets with a high
probability of near-term outperformance, and to compare portfolio strategies built on this reduced set to those based on the
full index. Specifically, we consider the NASDAQ-100 as investment universe and proceed as follows. Multiple classifiers
featuring a large set of 34 technical indicators are fitted to each NASDAQ-100 constituent i. Each classifier j yields a binary
output ŷ(j)i ∈ {0, 1} indicating whether asset i is expected to outperform or not its index. Second, we aggregate the m binary
signals through a weighted average scheme, where the vectors of combining weights w are optimized as described above.
Third, we convert this average into a binary variable using a well-chosen cut-off threshold, and use it as a membership
indicator for the asset. Fourth, having done this for each asset of the index, we apply well-known investment strategies (such
as equally-weighted or mean-variance) that will assign an investment weight (γi) to each selected asset.

This design enables a comprehensive evaluation of ensemble-based stock selection, comparing 544 portfolio con-
figurations to a benchmark index in realistic trading conditions. The paper is organized as follows. First we introduce
forecast combination methods in Section 2. Section 3 presents the thresholding approach. Section 4 describes the portfolio
optimization framework. Section 5 details the methodology. Section 6 reports the empirical results, and Section 7 concludes.

2 Ensemble Modeling Approaches

Forecast combination methods can be classified according to how they group individual forecasts, assign weights, and
whether learning takes place. In this thesis, the combination problem follows the optimization framework of Roccazzella
et al. (2022), treating forecasts analogously to risky assets in a portfolio. While originally designed for regression tasks, we
extend this to classification, where aggregated probabilities are binarized via a threshold τ .

To formalize our idea, let Ŷ = [ŷ(1), . . . , ŷ(m)] ∈ RN×m be the forecast matrix, w ∈ Rm the non-negative weight
vector with

∑m
j=1 wj = 1;wj ≥ 0 ⇐⇒ wj ∈ W+, and ŷagg = Ŷw the combined forecast. M = {1, . . . ,m} is the set of
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all individual models and W+ is the non-negative weights space. The goal is to find w minimizing forecast error over a set
of observations. The strategies described below differ in their weights selection.

The forecast combination methods applied in this paper can be grouped into several categories. A first group consists of
averaging-based methods. The Simple Average (SA) assigns equal weights wj = 1/m to all models, providing a robust
benchmark against overfitting (Genre et al., 2013; Smith & Wallis, 2009). A weighted variant, the Inverse-Loss (IL), assigns
weights proportional to 1/ēj , where ēj is the mean classification error (0–1 loss) over a validation set. This approach favors
models with lower misclassification rates and maintains consistency with the covariance-based methods described later. A
second group includes trimming and screening-based methods, which remove poor or redundant models before averaging.
In Fixed Trimming (T-SA-p), the p worst models according to mean error are excluded. The Cross-Validated Trimming
(T-SA-cv) variant selects p through validation, while the Model Confidence Set (T-MCS-α) retains only models statistically
different from the best at a given confidence level α (Hansen et al., 2011), using a bootstrap-based simplification (Roccazzella
et al., 2022). Another important category is Constrained Optimization (CO), which, comparable to minimum-variance
portfolio allocation, minimizes w⊤Σw under simplex constraints, where Σ is the empirical covariance matrix of forecast
errors. This framework is extended in Penalized Constrained Optimization (COP), which shrinks w toward a reference
weight vector wref (either equal or inverse-loss weights) via a penalty term d(w,w0), implemented as L1, L2, elastic net, or
cross-entropy penalties (Roccazzella et al., 2022). This improves robustness, particularly in small-sample settings. Finally,
Covariance Shrinkage Optimization (COS) stabilizes Σ by shrinking it toward a structured target Σ0. In the COS-E variant,
Σ0 = σ2I assumes equal, uncorrelated errors. In COS-IL, Σ0 is a diagonal matrix with entries σ2

j given by the individual
model error variances, approximating inverse-loss weighting. Final weights are obtained by solving minw∈W+w⊤Σλw,
with the shrinkage intensity λ tuned via cross-validation. Table 1 summarizes the 17 unique combinations methods.

Combination methods Acronym Weights computation

Standard methods
Simple average forecast SA wE

Loss-based weighted average forecast IL wIL

Constrained optimization CO ψ(Σ)

Trimmed averages
Trimmed simple average T-SA-p 1/card(Mp) if i ∈ Mp, 0 otherwise
Trimmed simple average via cross-validation T-SA-CV 1/card(Mp) if i ∈ Mp, 0 otherwise
Trimmed-MCS simple average T-MCS-α 1/card(Mα) if i ∈ Mα, 0 otherwise

CO with shrinkage to wE

COP with L1 penalty COP L1E argminw w⊤Σw + δ∥w −wE∥1
COP with L2 penalty COP L2E argminw w⊤Σw + δ∥w −wE∥22
COP with EN penalty COP ENE argminw w⊤Σw + δ

[
α∥w −wE∥1 + (1− α)∥w −wE∥22

]
COP with EN penalty + Shrinkage to 0 COP EN argminw w⊤Σw + δ

[
α∥w∥1 + (1− α)∥w∥22

]
COP with cross-entropy COP CEE argminw w⊤Σw + δ

∑m
i=1 wi ln

(
wi

wE
i

)
CO shrinkage with reference wE COSE ψ(ΣE

λ̂∗)

CO with shrinkage to wIL

COP with L1 penalty COP L1IL argminw w⊤Σw + δ∥w −wIL∥1
COP with L2 penalty COP L2IL argminw w⊤Σw + δ∥w −wIL∥22
COP with EN penalty COP ENIL argminw w⊤Σw + δ

[
α∥w −wIL∥1 + (1− α)∥w −wIL∥22

]
COP with cross-entropy COP CEIL argminw w⊤Σw + δ

∑m
i=1 wi ln

(
wi

wIL
i

)
CO shrinkage with reference wIL COSIL ψ(ΣE

λ̂∗)

Table 1: List of the considered forecast combination methods. Minimization is performed over W+. The notation card(·) denotes
the cardinality of a set. Σ denotes the covariance matrix of the errors, computed trough the 10% combination test set. For the elastic
net divergence measure, we set α = 0.8 based on Roccazzella et al. (2022). We estimate the penalties δ via 5-fold cross-validation.
p ∈ {1, 2, 3, 4} and α ∈ {0.2, 0.5}

.

3 From Regression-Based Ensembles to Classifier Ensembles: A Thresholding Approach
Most of the forecast combination literature, including the framework of Roccazzella et al. (2022), has been developed
in a regression setting, where models output continuous point forecasts. In such contexts, aggregation produces another
continuous value that can be directly compared to the target, with no post-processing step.

In this paper, the framework is extended to a classification setting, where each model predicts the outperformance of
future stock returns relative to the index. Individual predictions ŷ(j)i ∈ {0, 1} are aggregated as: ŷaggi =

∑m
j=1 wj ŷ

(j)
i This

yields a continuous score in [0, 1]. To produce final binary trading signals, a classification threshold τ ∈ [0, 1] is applied:

ŷclass
i =

{
1 if ŷaggi ≥ τ

0 otherwise
(1)
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A fixed τ = 0.5 is common in classification, assuming balanced classes and calibrated probabilities. However, these
assumptions rarely hold in financial prediction, where data is often imbalanced and the cost of false positives and false
negatives might be asymmetric. An unsuitable threshold can reduce predictive power and harm portfolio performance.

To address this, we treat threshold selection as a post-combination optimization problem. Four strategies are implemented:

• Naı̈ve Threshold (naive): Default τ = 0.5, as used in (Simonis, 2021), appropriate only under balanced and
symmetric conditions.

• Direct Optimization (OPTI): Selects τ∗ = argmaxτ CM(τ), where CM is a chosen metric (e.g., F1-score, accuracy)
computed on a validation set.

• Cross-Validated Thresholding (CV): Applies TimeSeriesSplit cross-validation to choose τ that maximizes average
metric performance across folds, reducing overfitting in small validation sets.

• Quantile-Based Thresholding (QTL): Sets τ based on the empirical distribution of aggregated scores (e.g., 75th
percentile), useful when no ground truth is available for tuning.

By explicitly optimizing τ , classification ensembles can be better aligned with financial decision-making goals, adapting
to imbalanced datasets and asymmetric risk preferences.

4 Portfolio Optimization

We adopt a classification-based approach: Each year, machine learning models predict stocks likely to outperform the
index the following week. Capital is then allocated among selected assets using four strategies: equal weight (EW), mean
variance(MV), shrinkage (SHRINKAGE) and hybrid shrinkage–filtering (FILTERING).

The EW portfolio assigns γi = 1/N to each asset (where N is the number of asset predicted as out-performer), a
robust benchmark often beating optimized portfolios (DeMiguel et al., 2009). In MV (Markowitz, 1952), variance γ⊤Σ̂γ is
minimized using µ̂ = 1

T

∑T
t=1 rt and Σ̂ = 1

T−1

∑T
t=1(rt − µ̂)(rt − µ̂)⊤, the empirical covariance of forecast returns rt,

where T is the number of periods, applied only to predicted outperformers. As these estimates are noisy and unstable when
N is large (Jagannathan & Ma, 2003; Michaud, 1989), we apply two regularizations based on the empirical covariance of
the returns:

(i) Shrinkage (Ledoit & Wolf, 2004) blends Σ̂ with a structured target Θ: Σ̂LW = δΘ+ (1− δ)Σ̂, with δ minimizing
MSE (Ledoit & Wolf, 2003).

(ii) Filtering (Bun et al., 2017; Pafka et al., 2004) uses RMT to remove noise eigenvalues in [λ−, λ+] from Ĉ =

D−1Σ̂D−1, retaining Ĉ(s) and reconstructing Σ̂filtered = DĈ(s) D.

The Hybrid method shrinks Σ̂filtered toward Σ̂LW : Σ̂final = (1− δ)Σ̂filtered + δΣ̂LW , with δ = 0.3. This choice
keeps the filtered covariance predominant, while allowing the Ledoit–Wolf shrinkage to absorb residual noise, thus combining
spectral noise reduction and regularization for stable covariance estimation. Since we do not forecast returns, the empirical
covariance of the returns are estimated with 5-years past data.

5 Methodology
We focus on the NASDAQ-100 index from January 2007 to December 2024 using the actual historical composition year by
year to avoid survivorship bias, leading to T = 936 periods. Constituents are fixed at the start of each year, and only stocks
with sufficient historical data are included. All market and composition data are sourced from Bloomberg L.P. (2024).

Technical analysis features are based solely on price and volume, computed from weekly data aggregated from daily
closes and volumes. In total, 34 technical indicators are used (Table 4), covering moving averages, momentum measures,
volatility proxies, regression slopes, skewness and volume-based indicators, all previously identified in seminal papers
(Kakushadze, 2016; Wolff & Echterling, 2022).

A walk-forward procedure with rolling five-year windows is used: 70% training, 10% validation (ensemble tuning
and post-computation of threshold τ ), 20% testing (Figure 5). The set of m = 10 individual models comprises Ridge,
Lasso, ElasticNet, DecisionTree, RandomForest, GradientBoosting, XGBoost, SVM, KNN and MLP. Hyperparameters are
tuned via randomized grid search over 10 parameter sets with 2-fold time-series CV on the training portion. Each year, the
window advances by one year, producing 52 evaluations per stock each year from 2007–2024. All preprocessing steps,
standardization and a principal component analysis retaining 95% of variance, are applied strictly within each rolling training
window to avoid look-ahead bias. The resulting transformed dataset, denoted X̃, is then used as model input. Computations
leverage GPU acceleration via CuML.

Concretely, our approach proceeds as following. First, individual ML classifiers are trained on the technical features of
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each asset to predict whether its weekly return will outperform the benchmark, yielding binary buy/no-buy signals. Second,
these signals are aggregated through various ensemble and thresholding strategies to produce a consolidated selection.
Third, assets flagged with a positive signal are allocated using alternative portfolio construction rules (equal-weighting,
mean–variance with Ledoit–Wolf shrinkage, filtering, etc.), while accounting for transaction costs at each rebalancing
(Interactive Brokers’ commission schedule Interactive Brokers (2024): $0.005 per share with minimum $1 and maximum
1% of trade value). Since we do not forecast returns directly, the covariance matrix Σ̂ is estimated from the past five years of
realized returns. Performance is then benchmarked against a NASDAQ-100 ETF (Invesco, 2024), with the 3-month Euribor
as risk-free rate. Robustness is assessed by varying sample periods, transaction costs, and hyperparameters criteria. Full
results of those robustness tests are reported in Appendix.

6 Empirical Results
We now assess the practical value of the predictive models by evaluating their performance in portfolio construction. The
key question is whether better classification can translate into superior financial gains. We test four allocation strategies,
Equal Weight (EW), Mean–Variance Optimization (MV), shrinkage-based MV, and an hybrid method combining filtering and
shrinkage (FILTERING), applied to both individual and ensemble forecasts, under multiple thresholding rules. We compare
all results with a simple passive investment in the NASDAQ-100 index. In total, the analysis covers 21 ensemble methods,
10 individual classifiers, 6 thresholding methods, and 4 allocation schemes, resulting in 544 distinct portfolio strategies. We
first analyze the classification performance of individual models and model combinations for the naı̈ve thresholding scheme.
Each result is statistically tested against a random baseline, defined as the performance of a model predicting 1 or 0 with
equal probability (50%). Given the dataset’s class imbalance (48.5% of positive cases), the baseline performance naturally
reflects this initial distribution. Next, we investigate the impact of the thresholding strategy on the various classification
metrics. Finally, we discuss the financial performance of the associated setups in light of our Nasdaq Benchmark.

Table 2 reports the performance metrics of our combination schemes when adopting the naive classification threshold
(τ = 0.5). One can see that many ensemble methods outperform the simple average (SA) in accuracy, though SA remains
among the top in F1-score, consistent with literature on the robustness of equal weights (DeMiguel et al., 2009; Goyal &
Welch, 2008). Rankings vary by metric: T-SA-4, for example, is the only method above statistical significance thresholds
for all four metrics, reflecting balance and robustness.

Model Accuracy Precision Recall F1 McNemar

T-SA-3 50.97%∗∗∗ 49.17%∗∗∗ 44.67% 46.82% ***
IL 50.82%∗∗∗ 49.01%∗∗∗ 43.78% 46.25% ***
T-SA-1 50.88%∗∗∗ 48.99%∗∗ 43.51% 46.09% **
T-SA-CV 50.78%∗∗∗ 49.01%∗∗∗ 45.69% 47.29% ***
COP L1E 50.77%∗∗∗ 48.99%∗∗ 45.69% 47.29% ***
COSE 50.76%∗∗∗ 48.97%∗∗ 44.90% 46.85% **
COP L1IL 50.71%∗∗∗ 48.89%∗ 43.87% 46.24% ***
COP EN 50.71%∗∗∗ 48.92%∗∗ 45.22% 47.00% ***
COSIL 50.70%∗∗∗ 48.86% ∗ 43.67% 46.12% ***
COP L2E 50.69%∗∗∗ 48.89%∗ 44.54% 46.61% ***
COP L2IL 50.69%∗∗∗ 48.88%∗ 44.53% 46.61% **
COP CEIL 50.69%∗∗∗ 48.86%∗ 43.89% 46.25% **
COP ENIL 50.67%∗∗∗ 48.85%∗ 44.06% 46.33% **
CO 50.67%∗∗∗ 48.88%∗ 45.63% 47.20% **
COP CEE 50.66%∗∗∗ 48.83%∗ 43.90% 46.23% **
COP ENE 50.64%∗∗∗ 48.81%∗ 44.16% 46.37% /
SA 50.64%∗∗∗ 48.92%∗∗ 48.77% 48.84% **
T-SA-2 50.63%∗∗∗ 48.93%∗∗ 49.50% 49.21% ***
T-SA-4 50.61%∗∗∗ 48.97%∗∗ 52.09%∗∗∗ 50.48%∗∗ *
T-MCS-50 50.47%∗∗ 48.79%∗ 50.02% 49.39% **
T-MCS-20 50.35%∗ 48.51% 44.61% 46.48% /

Model Accuracy Precision Recall F1 McNemar

RandomForest 50.89%
∗∗∗

49.13%
∗∗∗ 45.64% 47.32% ***

Elasticnet 50.89%∗∗∗ 49.10%∗∗∗ 43.76% 46.27% ***
Lasso 50.89%∗∗∗ 49.09%∗∗∗ 43.77% 46.28% ***
Ridge 50.89%∗∗∗ 49.09%∗∗∗ 43.76% 46.27% ***
MLP 50.58%∗∗∗ 48.84%∗ 47.91% 48.38% ***
GradientBoosting 50.52%∗∗ 48.78%∗ 47.41% 48.08% **
SVM 50.42%∗∗ 48.58% 44.32% 46.35% *
KNN 50.34%∗ 48.57% 46.84% 47.69% -
DecisionTree 50.19% 48.45% 48.14% 48.29% -
XGBoost 50.18% 48.44% 48.13% 48.29% -

Table 2: Performance metrics and statistical tests for each individual and ensemble model using a naive threshold strategy, based
on aggregated out-of-sample predictions. Statistical significance stars (‘***’, ‘**’, ‘*’) indicate results that are statistically significant
at the 0.1%, 1%, and 5% levels respectively, based on one-sided binomial tests against a random baseline classifier (accuracy = 50%,
precision = 48.5%, recall = 50%, directly due to proportion of ones and zeros in the initial dataset (48.5% of 1)). The final column reports
McNemar test significance, evaluating whether each model’s prediction pattern significantly differs from random guessing.

Interestingly, looking beyond average scores reveals an important risk associated with relying only on individual models.
Despite strong average performance, individual models display pronounced year-to-year variability. The results shown in
Figure 1 reveal a marked dispersion in annual performance: A model that excels in one year may underperform in the next,
likely reflecting shifts in market dynamics or data structure. This illustrates what is commonly referred to as model risk: The
danger that relying on a single model may lead to poor outcomes if that model happens not to be the appropriate one at
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a given time. Such variability highlights the value of combining forecasts, which mitigates the dependence on any single
specification.
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Figure 1: Boxplot of classification metrics for each individual model. The models are evaluated over all out-of-sample periods using a
walk-forward validation scheme. This representation highlights both the central tendency and the dispersion of predictive performance
across models and time. Indeed, more information about the dispersion of the metrics in front of the years are available in Figure 8.

Acknowledging this dispersion, Figure 2 illustrates how the average weight assigned to each individual model evolves
over time across ensemble strategies. While the relative importance of individual models shifts drastically from year to
year, the overall distribution of weights remains relatively balanced and close, but different, to the equal–weight benchmark.
This suggests that the ensemble framework not only adjusts dynamically to evolving patterns, but also preserves a level of
stability that prevents over–reliance, hence over confidence, on any single classifier.
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Figure 2: Average weights assigned by the ensemble models to each individual model. (left) Year-by-year profiles: Each axis is a base
model and each colored polygon is one year (2007–2024); larger radii indicate higher average weights. (right) Robust summary: Median
profile with interquartile band (25–75%) and, when shown, outliers beyond Q1 − 1.5 IQR and Q3 + 1.5 IQR.

Before moving to the portfolio construction stage and the analysis of financial performance, we examine the role of
threshold selection. Rather than limiting the evaluation to the naive τ = 0.5 rule, we explore more informed strategies
to understand how this choice can influence classification outcomes and, ultimately, the quality of the signals feeding
into our portfolio models. Our findings confirm that threshold selection is far from a trivial detail, it’s a key factor in
improving classification results for ensembles. While the naive threshold of τ = 0.5 offers a convenient baseline, our results
demonstrate that more informed strategies can lead to meaningful performance gains. Figure 3 shows that OPT, QTL, and
CV generally outperform the naive strategy in terms of accuracy and precision. However, this improvement often comes at
the cost of significantly reduced recall, and consequently, a lower F1 score.
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Figure 3: Performance of thresholding strategies across ensemble models and evaluation metrics. Each cross indicates the score of a
method under a specific threshold. Dashed vertical lines show significance levels (5%, 1%, 0.1%) from a one-sided binomial test under the
null hypothesis of a random classifier (accuracy = recall = 50%, precision = 48.5%). CV and OPTI denote accuracy-optimized versions.

In terms of portfolios performances, Table 3 lists the 15 highest Sharpe Ratio portfolios. All are ensemble-based
and above all, we note that no individual models, under any portfolio allocation strategy, manage to outperform the
benchmark. Our Hybrid-filtering (FILTERING) strategy dominates the top rankings, reflecting its ability to stabilize
covariance estimation and enhance risk-adjusted returns. The best-performing portfolio is T-SA-1 with precision-optimized
threshold (OPTPREC), achieving SR = 1.11 and APY = 19.29%. The simple average (SA) ranks third, confirming again
that literature findings that equal-weight ensemble can rival complex weighting schemes. COP ENE completes the top
three. Threshold choice is decisive: Among the top eight portfolios, all use a strategy where the threshold is optimizing
precision (OPTPREC). Figure 4 evaluates thresholding schemes in portfolio performance. While naive τ = 0.5 yields the
highest proportion of SR outperformance cases, precision-optimized thresholds (OPTPREC) achieve the highest absolute APY
outperformance cases. Recall-optimized thresholds (OPTREC) lead in win rate, but at the cost of lower precision and returns.

All of our findings reinforce the financial relevance of ensemble methods as a ”model consensus”, which aggregate
complementary signals and mitigate the weaknesses of single predictors. In addition to being a decisive driver of ensemble
performance, thresholding strategy is also a key factor in enhancing financial performance results.
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Figure 4: Percentage of portfolios beating the NASDAQ-100 by thresholding method.
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Portfolio Ensemble
Method Threshold SR APY

[%]
Vol.
[%]

DD
[%]

VaR
[%] CVaR WR

[%]

FILT. T-SA-1 OPTIPREC 1.11 19.29 16.26 -29.30 -3.19 -5.02 59.59

FILT. COP ENE OPTIPREC 1.10 19.07 16.24 -29.68 -3.17 -4.98 58.96

FILT. SA OPTIPREC 1.08 18.34 15.86 -29.64 -3.07 -4.71 57.14

FILT. IL OPTIPREC 1.08 18.53 16.10 -30.19 -3.16 -4.81 57.36

FILT. COP ENIL OPTIPREC 1.00 16.78 15.84 -30.32 -3.24 -4.87 57.78

FILT. COP L1IL OPTIPREC 1.00 17.25 16.34 -31.17 -3.42 -4.96 57.68

FILT. T-SA-3 OPTIPREC 0.99 16.75 16.00 -38.91 -3.18 -5.02 58.21

FILT. T-SA-CV OPTIPREC 0.97 16.80 16.47 -38.90 -3.36 -5.18 58.53

FILT. IL OPTIACC 0.97 17.08 16.81 -35.37 -3.28 -5.30 58.21

MV T-SA-1 OPTIPREC 0.95 15.74 15.59 -36.19 -3.09 -5.06 59.17

FILT. T-SA-3 NAIVE 0.95 15.60 15.54 -38.12 -3.06 -4.95 58.42

FILT. SA OPTIACC 0.95 16.73 16.79 -34.69 -3.35 -5.29 57.68

FILT. T-SA-2 NAIVE 0.93 14.72 14.99 -31.61 -3.03 -4.71 59.06

SHRINK. T-SA-1 OPTIPREC 0.93 15.24 15.61 -36.56 -3.26 -5.16 59.81

MV COP ENE OPTIPREC 0.92 15.25 15.68 -37.43 -3.32 -5.08 59.17

INDEX NASDAQ-100 0.74 14.72 19.7 -51.53 -4.66 -6.79 61.73

Table 3: Top 15 of portfolios ranking by their Sharpe Ratio.

7 Conclusion
This papers examined how a regression-based ensemble learning framework could be adapted to classification tasks
aimed at predicting stock returns and building portfolios that outperform the market. Using NASDAQ-100 data and only
technical indicators, we implemented individual classifiers and ensemble methods in a walk-forward setting, introducing
post-combination threshold selection as a central methodological element. The results show that although some individual
models did well in classification performance, none managed to deliver portfolios that beat the NASDAQ-100 due to their
high perfromance dispersion across the years. Precision-optimized thresholds yielded the best financial results, with the
top strategy (a mean-variance allocation with filtering and Ledoit–Wolf shrinkage and a one-trimmed ensemble) reaching
a Sharpe Ratio of 1.11 and APY of 19.29%, compared to 0.74 and 14.72% for the benchmark. The choice of threshold
turned out to be a key factor, affecting both prediction quality and portfolio performance. Fewer than 20% of all portfolios
outperformed the benchmark in APY, underscoring market noise and difficulty of signal extraction. Different thresholds
aligned with different objectives: OPTIPREC maximized APY, while τ = 0.5 yielded more Sharpe Ratio outperformance.
Risk metrics like maximum drawdown and volatility are less affected by thresholding than by the choice of portfolio
allocation method. In sum, ensembles generally surpassed individual models by providing greater robustness and stability
over time.

While our results are promising, several limitations point to areas for future research. First, our models rely solely on
technical indicators and could benefit from the integration of fundamental or alternative data, as well as more diversified
architectures (e.g., LSTMs). Second, backtests simplify real-world constraints by assuming fractional shares, no taxation on
profits, and perfect execution at closing prices, which are the standard “academic” setup. Third, we adopt a classification
framework leading to aggregate forecasts that need thresholds strategies. A comparison with a regression-based approach,
which would predict returns directly and computing signal relative to the benchmark returns then (and so bypassing the need
of a threshold strategy) remains an important avenue for future researches. Finally, our asset pre-selection is performed
independently for each stock, considering only marginal features at this stage. As shown by Vanderveken et al. (2024),
simply reducing the investment universe, even by random selection, can already improve performance by mitigating the
risk associated with high-dimensional covariance matrix estimation. Future work should therefore compare forecast-based
selection with random sub-sampling of the universe in order to distinguish the advantages of informative signals from those
due solely to the dimension reduction.

Overall, this paper highlights that, in a classification framework, ensemble learning when combined with carefully
calibrated thresholds and robust portfolio design can lead to significant improvements in both statistical and financial terms.
Among the various design choices, the threshold mechanism stands out as one of the most influential factors, as it directly
determines how predictive signals are translated into investment actions, which ultimately impacts portfolio performance.
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Appendix

Indicator (daily data, pre-resampling) Period (Days)

log(Price / SMA50,100,200) 50, 100, 200
log(Price / EMA50,100,200) 50, 100, 200
MACD level and signal -
MACD crossover binary indicator -
Relative Strength Index (RSI) 14
log(Price / Upper Bollinger Band) 20
log(Price / Lower Bollinger Band) 20

Indicator (weekly data, post-resampling) Period (Weeks)

Weekly return 1
Excess return (vs index) 13 & 26
Lagged stock return 13 & 26 & 52
Price momentum 13 & 26 & 52
Beta (stock vs index) 13 & 26
Rolling return volatility 13 & 26
Return / Volatility (Sharpe proxy) 13
Return-volume correlation 13
Regression slope (linear trend of price) 13 & 26
Weekly RSI 13
Return skewness 13 & 26

On-Balance Volume (OBV) -
Dollar trading volume -

Table 4: Description of the technical indicators. Indicators with a specified period are computed using a backward-looking rolling
window covering the stated number of weeks. Indicators without a defined period are computed using the available data at the time of
observation. All indicators based on daily data are computed prior to resampling the data to a weekly frequency. The computations are
performed using the TA-Lib Python library.
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Figure 5: Walk-forward strategy for model training. Each
window is split chronologically into 70% for training base models,
10% for calibrating the threshold τ and tuning ensemble methods,
and 20% for out-of-sample evaluation.
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Figure 6: Detail of the hyperparameter tuning stage.A random-
ized grid search over 10 sampled parameter combinations with
2-fold time-series cross-validation performed on the 70% training
segment. Each training fold is composed of 2 years of observa-
tions.
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# Step Details
1 Load historical prices and compute weekly returns.
2 Compute technical indicators (momentum, moving averages, RSI, etc.).
3 Build features matrix X and binary target y (outperform / not).
4 Split data into training, validation, and test sets (walk-forward).
5 Train individual classifiers (Logistic Regression, SVM, RF, XGBoost, NN, ...).
6 Generate outperformance forecasts for each stock and each week.
7 Combine forecasts through ensemble methods (average, trimmed, optimization, ...).
8 Apply thresholding rule to convert probabilities into binary buy/no-buy signals.

Table 5: Prediction process prior to portfolio construction.

# Step Details

1 Load signals Retrieve current week’s buy/no-buy signals.
2 Exit positions Sell holdings without renewed buy signal.
3 Select tickers Keep all flagged as buy for this week.
4 Estimate risk Compute covariance from 4 years of weekly returns.
5 Optimize weights

• EW: Equal Weight
• MV: Minimum Variance
• SHR: Ledoit–Wolf shrinkage
• FILT: RMT filter, shrunk 30% to

Ledoit–Wolf
6 Rebalance Weekly, including Interactive Brokers’ commissions

(June 2024).

Table 6: Portfolio construction process.
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Figure 7: Cumulative returns of individual classifier portfolios by allocation strategy Each subplot shows the evolution of the portfolio
value over time for one of the four allocation methods: Equal Weight (EW), Mean-Variance Optimization (MV), Shrinked MV, and Filtering.
All individual models are included in each allocation scheme. Results highlight that no individual model under any allocation strategy is
able to consistently outperform the Nasdaq-100 benchmark (black dashed line), further reinforcing the need for ensemble-based forecasts
to extract financial value. To reminder threshold techniques without any subscripts take the accuracy metric as reference.
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Figure 8: Yearly evolution of classification metrics. The figure shows the yearly out-of-sample performance of each model for four key
metrics: accuracy, precision, recall, and F1-score. Each line corresponds to a specific model, allowing a visual assessment of its temporal
behavior. Individual models exhibit fluctuations over time, reflecting the challenges of maintaining consistent classification performance in
financial time series.
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Robustness tests

Hyperparameters

Portfolio Ensemble
Method Threshold SR APY

[%]
Vol.
[%]

DD
[%]

VaR
[%] CVaR WR

[%]
FILT. T-SA-CV QUANTILE 0.88 14.03 15.21 -33.72 -3.12 -4.83 58.85
FILT. T-SA-CV NAIVE 0.87 13.99 15.23 -33.68 -3.11 -4.83 58.74
FILT. T-SA-CV OPTIrecall 0.87 13.96 15.23 -33.68 -3.11 -4.83 58.74
FILT. T-SA-CV CV 0.87 13.94 15.23 -33.72 -3.11 -4.83 58.74
FILT. T-SA-CV OPTIPRECISION 0.87 13.93 15.23 -33.72 -3.11 -4.83 58.74
FILT. T-SA-4 CV 0.86 13.74 15.12 -29.75 -3.06 -4.67 58.10
FILT. T-SA-CV OPTI 0.86 13.79 15.20 -33.72 -3.13 -4.82 58.85
FILT. T-SA-4 QUANTILE 0.86 13.67 15.12 -29.75 -3.06 -4.67 58.10
FILT. T-SA-4 OPTI 0.86 13.67 15.15 -29.75 -3.06 -4.70 58.10
FILT. T-SA-4 NAIVE 0.86 13.66 15.15 -29.75 -3.06 -4.70 58.10
FILT. T-SA-4 OPTIrecall 0.86 13.66 15.14 -29.75 -3.06 -4.70 58.10
FILT. T-SA-4 OPTIPRECISION 0.86 13.65 15.15 -29.71 -3.06 -4.70 58.10
FILT. T-SA-2 NAIVE 0.85 13.54 15.07 -36.30 -3.13 -4.80 59.17
FILT. T-SA-2 OPTIrecall 0.85 13.52 15.07 -36.30 -3.13 -4.80 59.17
FILT. T-SA-2 QUANTILE 0.85 13.51 15.07 -36.37 -3.13 -4.80 59.17

INDEX NASDAQ-100 0.74 14.72 19.7 -51.53 -4.66 -6.79 61.73

Table 7: Robustness test around hyperparameters optimization. This table shows the top 15 portfolio rankings when hyperparameter
optimization is performed using precision score instead of accuracy.

In this robustness test, we changed the evaluation metric used for hyperparameters tuning from accuracy to precision. This
modification had a significant impact on the model selection and final portfolio rankings. Unlike the previous configuration,
most portfolios in the top 15 are now based on trimmed simple average (T-SA) combination methods, with T-SA-CV
emerging as the best-performing custom ensemble. This suggests that T-SA strategies are particularly consistent and resilient
in financial forecasting tasks, even when the optimization criterion is modified.

Despite these changes, one key element remains stable: the FILT.-based portfolio optimization method (FILT.) consis-
tently dominates the top rankings. This highlights its robustness across different model configurations and confirms its
contribution to the overall performance of the strategies.

However, it is important to note that, although some portfolios still outperform the benchmark in terms of Sharpe ratio,
none of them surpass it in terms of absolute performance (APY). This result suggests that optimizing models based solely on
precision may not fully capture the opportunity cost or the magnitude of return differences, especially in a financial context
where ranking errors have asymmetric impacts.

Fees

As expected, the increase in transaction costs has a significant impact on portfolio performance. Given the high frequency of
reallocations in our strategy (weekly), these costs accumulate quickly and significantly reduce returns. This robustness test
clearly shows that most portfolios underperform the benchmark index and that almost all of them have a negative annualized
performance (APY).

These results highlight a major limitation of high-turnover strategies in realistic market conditions. While some models
may generate good signals in theory, their profitability can be entirely offset by frictions such as transaction costs. This
underscores the need to well incorporate cost considerations into model and portfolio design, particularly in cases of frequent
rebalancing.
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Portfolio Ensemble
Method Threshold SR APY

[%]
Vol.
[%]

DD
[%]

VaR
[%] CVaR WR

[%]
EW CO OPTIrecall 0.13 1.59 19.89 -56.06 -4.67 -7.03 57.78
EW COP EN OPTIrecall 0.07 0.32 19.92 -59.05 -4.78 -7.08 57.78
EW COP L2 E OPTIrecall 0.02 -0.71 19.90 -55.75 -4.73 -7.06 57.04
EW COP L2 IL OPTIrecall -0.05 -2.05 19.93 -59.14 -4.76 -7.08 56.72
EW COP CE E OPTIrecall -0.14 -3.84 19.97 -63.30 -4.83 -7.15 54.80
EW COP CE IL OPTIrecall -0.17 -4.28 19.98 -67.19 -4.80 -7.14 55.01
EW COS IL OPTIrecall -0.19 -4.77 19.94 -66.75 -4.76 -7.13 55.44
EW COP EN IL OPTIrecall -0.23 -5.42 19.93 -71.18 -4.83 -7.18 54.80
EW COP EN E OPTIrecall -0.24 -5.63 19.95 -66.79 -4.83 -7.16 54.37
EW COS E OPTIrecall -0.26 -6.02 19.93 -74.40 -4.81 -7.16 55.22
EW COP L1 IL OPTIrecall -0.30 -6.70 19.89 -76.97 -4.80 -7.19 54.37
Shrinked MV CO OPTIrecall -0.32 -3.87 12.79 -54.75 -3.30 -4.44 51.60
MV CO OPTIrecall -0.38 -4.51 12.79 -60.26 -3.23 -4.41 50.85
EW COP L1 E OPTIrecall -0.38 -8.21 19.85 -79.20 -4.83 -7.18 53.30
Shrinked MV COP EN OPTIrecall -0.43 -5.20 12.91 -64.79 -3.34 -4.54 50.53

INDEX NASDAQ-100 0.74 14.72 19.7 -51.53 -4.66 -6.79 61.73

Table 8: Robustness test around fees. This table shows the top 15 portfolio rankings when fees are changed and constantly is 1% of
traded value.

Time period

Portfolio Ensemble
Method Threshold SR APY

[%]
Vol.
[%]

DD
[%]

VaR
[%] CVaR WR

[%]
FILT. T-SA-3 QUANTILE 0.96 13.34 12.86 -20.75 -2.50 -4.16 43.18
FILT. T-SA-3 CV 0.96 13.32 12.86 -20.75 -2.50 -4.15 43.18
FILT. T-SA-3 OPTIrecall 0.96 13.31 12.86 -20.75 -2.50 -4.16 43.18
FILT. T-SA-3 NAIVE 0.96 13.31 12.86 -20.75 -2.50 -4.16 43.18
FILT. T-SA-3 OPTI 0.96 13.31 12.86 -20.75 -2.50 -4.16 43.18
FILT. T-SA-3 OPTIPRECISION 0.96 13.28 12.86 -20.75 -2.50 -4.15 43.18
FILT. T-SA-CV QUANTILE 0.92 12.57 12.65 -19.24 -2.51 -4.09 42.75
FILT. T-SA-CV OPTI 0.92 12.56 12.65 -19.24 -2.51 -4.09 42.75
FILT. T-SA-CV CV 0.92 12.55 12.65 -19.24 -2.51 -4.09 42.75
FILT. T-SA-CV NAIVE 0.92 12.55 12.65 -19.24 -2.51 -4.09 42.75
FILT. T-SA-CV OPTIrecall 0.92 12.55 12.65 -19.24 -2.51 -4.09 42.75
FILT. T-SA-CV OPTIPRECISION 0.92 12.53 12.65 -19.24 -2.51 -4.09 42.75
FILT. COP L1 E OPTIrecall 0.91 12.39 12.56 -21.12 -2.71 -4.20 43.60
Shrinked MV T-SA-CV OPTI 0.91 11.67 11.86 -19.04 -2.43 -4.06 44.46
Shrinked MV T-SA-CV QUANTILE 0.91 11.67 11.86 -19.04 -2.43 -4.06 44.56

INDEX NASDAQ-100 0.64 12.48 19.98 -35.24 -4.94 -7.15 62.02

Table 9: Robustness test with 2010–2022 period. This table shows the top 15 portfolio rankings when the time period is adjusted to
2010–2022. The benchmark index is also shifted accordingly.

A final robustness test is performed to assess how results change when the period under consideration is modified.
Naturally, overall returns and volatilities are influenced by specific market conditions during the new period. However, the
main objective is to observe whether the best-performing portfolios remain associated with similar optimization approaches
and threshold choices.

Once again, we find that the best-performing portfolios are systematically constructed using the Filtering (FILT.)
optimization method, confirming its robustness across all periods. In addition, ensemble models based on combinations of
truncated averages continue to dominate the rankings. With regard to threshold selection methods, the results appear to be
more diverse among the top 15. It should be noted that precision-based threshold optimization is no longer overrepresented,
suggesting that its previous dominance may have been specific to the initial period.
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Dynamic Clustering in Multi-Factor Copulas with Hidden

Markov Models

Abstract

This study proposes a dynamic multi-factor copula model with time-varying, data-driven group

assignments. Transitions of firms between groups are modelled using a hidden Markov model,

driven by the distance between clusters and the past likelihood of group membership. Using daily

returns from S&P 100 stocks between 2015 and 2024, the model is evaluated against two static

benchmarks: k-means clustering and industry-based classifications. It was found that the dynamic

clustering approach consistently outperforms the static alternatives. Notably, a model with 15

dynamic groups yields better forecasts than an otherwise identical model with 21 static groups.

The results show that time-varying group assignments enable the model to adapt to changes in

firm characteristics while preserving sufficient persistence in cluster assignments.



1 Introduction

Correlations between asset returns tend to increase significantly during periods of market stress or

economic shocks (Chesnay & Jondeau, 2001). This was evident during the 2007–2008 global financial

crisis, where models that ignored joint extreme events contributed to the collapse of the housing

market (Coval et al., 2009; Zimmer, 2012). This crisis emphasized the need for models that can

capture dynamic dependencies in unstable economic conditions. However, financial markets often

involve more than 50 variables, resulting in high model complexity (Manner & Reznikova, 2012). This

estimation difficulty is reduced by copulas, which separate each variable’s marginal behaviour from

their dependence structure (Smith, 2015).

Previous research on copulas focused on modelling time-varying dependence through dynamic

factor loadings. These loadings represent how strongly each variable is influenced by one or more

underlying latent factors, which capture common sources of variation in returns. Oh & Patton (2017)

extended this approach by introducing multi-factor copulas with pre-specified static clusters based

on SIC industry codes. More recently, Oh & Patton (2023) derived clusters directly from the data

using k-means clustering. Assuming stable group assignments over time, they showed that a model

with just five data-driven clusters outperforms a comparable model using 21 industry-based clusters

in out-of-sample forecasts.

However, no study yet has combined multi-factor copulas with time-varying, data-driven group

assignments. Allowing estimated clusters to change over time may better reflect real-world dynamics,

such as firms shifting industries, changing strategies or making acquisitions. This idea is supported by

João et al. (2023), who developed a linear panel model incorporating a hidden Markov process that

allows firms to switch clusters. Their results show that enabling these switches leads to improved model

fit. This study investigates whether incorporating time-varying cluster assignments within multi-factor

copula models similarly improves predictive performance. Therefore, the research question is: ”How

does incorporating time-varying cluster assignments in a high-dimensional multi-factor copula model

affect predictive performance relative to static clusters based on industry classifications or k-means

clustering?”

To answer this research question, initial clusters were estimated using the k-means algorithm, with

group transitions over time modelled via a hidden Markov model. This dynamic clustering approach

was compared to two benchmark methods: clustering based on Standard Industrial Classification

codes and static k-means clustering. In an empirical analysis, the proposed model was applied to

daily returns from stocks in the S&P 100 index over the period 2015–2024 to evaluate its real-world

performance. Several copula types were considered, including Gaussian, t, and skewed t, along with

both static and dynamic factor loadings.

2 Data and Methodology

2.1 Data

The empirical analysis investigates the daily returns of constituents in the S&P 100 index. The

sample period is January 2, 2015, to December 31, 2024, including T = 2515 trading days. The

dataset contains N = 98 stocks that were included in the index as of December 31, 2024, and that

were continuously traded throughout the full sample period. A list of all included firms can be found

in Appendix A.
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2.2 A Dynamic Multi-Factor Copula Model

This study builds on the skewed-t copula model proposed by Oh & Patton (2023). Their approach uses

a multi-factor copula model with G clusters of variables, each with a market and group-specific factor

loading. In addition, it includes a skewness parameter to capture the asymmetric dependence patterns

frequently observed in asset returns. The model is estimated in two stages. First, univariate marginal

distributions are fitted to each time series using an AR(1) process for the conditional mean and a

GJR-GARCH(1,1) model of Glosten et al. (1993) for the conditional variance. In the second stage of

the estimation, conditional on these marginals from the previous stage, the joint dependence among

the transformed variables is modelled using a skewed t copula. Time variation in the copula is captured

by modelling the factor loadings with Generalized Autoregressive Score (GAS) dynamics (Creal et al.,

2013), which updates parameters based on the gradient of the conditional copula log-likelihood.

2.3 Time-Varying Clusters with Markov-switching

The multi-factor copula model assumes G clusters of firms. Clusters can be pre-assigned using industry

classifications. Alternatively, Oh & Patton (2023) estimated them from the data using k-means

clustering, obtaining static groups fixed over the entire sample period. This study extends their

method by modelling cluster memberships as Markov states. Firms can then switch clusters over

time, while temporal dependence is preserved (Frühwirth-Schnatter, 2011). The implementation of

this method is based on João et al. (2023), who combine a hidden Markov model (HMM) with a linear

panel model. Here, their approach is adapted for compatibility with a copula model.

Specifically, the cluster membership of firm i is described by the latent process γit, where γit = g

if firm i belongs to cluster g at time t. The initial cluster assignments are set equal to those obtained

by static k-means clustering, as described by Oh & Patton (2023). Let πgkt := P{γi,t+1 = k | γit = g}
denote the probability of transitioning from state g to state k at time t. These transition probabilities

are assumed to be homogeneous across firms and are collected in the transition matrix Πt. Assuming

transitions are more likely between nearby clusters, transition probabilities πgkt are modelled as a

function of distance between clusters:

πgkt =
exp(−δdgk,t−1)∑G
q=1 exp(−δdgq,t−1)

g, k = 1, . . . , G, (1)

where dgk,t denotes the distance between clusters g and k at time t and δ ≥ 0 is a parameter that

controls how fast the transition probability decays as the distance increases. Distances are based on

the common market factor:

dgk,t =| λMg,t − λMk,t | . (2)

Since cluster memberships are unobserved, they are inferred using filtered probabilities. These prob-

abilities, denoted by τig,t|t := P[γit = g | Ft; θ], contain the probability that unit i belongs to cluster g

at time t, conditional on the observed data up to time t, Ft. The copula likelihood at time t is then

computed by summing over the likelihood of all possible cluster states, weighted by their predicted

probabilities τig,t|t−1. Note that the copula defines a joint distribution over all units simultaneously

and thus does not allow decomposition into individual likelihoods. To address this, the conditional

mixture likelihood is defined (DeSarbo & Cron, 1988). This likelihood accounts for uncertainty in the

cluster assignment of a single unit i, while keeping the cluster assignments of all other units fixed at
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their previously estimated values:

c(i)(ut | Γ̂t−1,Ft−1;θ) =
G∑

g=1

τig,t|t−1 · c(ut | Γ̃i,g,t−1,Ft−1;θ), (3)

where c(·) is the likelihood of the static Gaussian copula, Γ̂t is the vector of estimated cluster assign-

ments at time t and Γ̃i,g,t is identical to Γ̂t except that variable i is reassigned to cluster g.

The predicted cluster probabilities τig,t+1|t are updated recursively using the forward algorithm

(Hamilton, 1989). The Markov property implies that the probability that firm i is in cluster g at time

t+1 depends on the probability that it is currently in cluster k, and on the probability of transitioning

from cluster k to g:

τig,t+1|t = P[γi,t+1 = g | Ft;θ] =

G∑
k=1

πkgtP[γit = k | Ft;θ] =

G∑
k=1

πkgtτik,t|t. (4)

The second step of the forward algorithm is updating the filtered probabilities τig,t|t via Bayes’ rule.

The predicted probabilities are combined with the conditional likelihood of the observed data under

each potential cluster assignment for firm i, while keeping the cluster assignments of all other firms

fixed:

τig,t|t = P[γit = g | Γ̂t−1,Ft;θ] =
τig,t|t−1 c(ut | Γ̃i,g,t−1,Ft−1;θ)

c(i)(ut | Γ̂t−1,Ft−1;θ)

=
τig,t|t−1 c(ut | Γ̃i,g,t−1,Ft−1;θ)

τi1,t|t−1 c(ut | Γ̃i,1,t−1,Ft−1;θ) + · · ·+ τiG,t|t−1c(ut | Γ̃i,G,t−1,Ft−1;θ)
.

(5)

The forward filtering algorithm described in Eqs.(4)-(5) is performed for each variable, after which

each unit is assigned to the cluster with the highest posterior probability:

γi,t = argmax
g
τig,t|t. (6)

For robustness, the forward filtering algorithm is run repeatedly for all firms, updating their cluster

assignments until no firm switches clusters between iterations. In practice, convergence is typically

achieved after just one iteration.

Regarding the out-of-sample forecasts, each variable is assigned to the cluster with the highest

predicted probability from Eq.(4), after which the probabilities are updated using Bayes’s rule for use

in the next time period.

2.4 Model Estimation and Evaluation

Joint estimation of the dynamic copula parameters and time-varying group assignments is compu-

tationally demanding. Therefore, a three-stage estimation procedure is used. A description of this

procedure is provided in Appendix B. After estimation, model performance is assessed using the Akaike

Information Criterion, the economic relevance of the clusters, and forecast accuracy.

Forecast accuracy is assessed using two scoring rules: the log-likelihood and the conditional like-

lihood score. The log-likelihood scoring rule of Amisano & Giacomini (2007) measures predictive

performance over the full support of copula model Mi, and is defined as

Sl,t(ût,Mi) = log ct(ût | θ̂C,t,Mi), (7)
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where ct(·) denotes the copula density at time t, and ût is the vector of estimated uniform marginals.

Dependence in the joint lower tail is especially important in risk management and finance, as extreme

losses often occur simultaneously. Therefore, the copula is evaluated using the conditional likelihood

score proposed by Diks et al. (2014), which focuses on the lower tail:

Scl,t(ût,Mi) =
(
log ct(ût | θ̂C,t,Mi)− logCt(q | θ̂C,t,Mi)

)
× I[ût < q], (8)

where q is an N × 1 threshold vector, Ct(· | θ̂C,t,Mi) is the copula distribution, and I[ût < q] =∏N
i=1 I[ûi,t < qi] indicates joint threshold exceedance. Equation (8) thus measures the log-likelihood

of modelMi conditional on the event ût < q, corresponding to the lower tail region [0, q1]×· · ·×[0, qN ].

To allow for time variation, the threshold vector is defined as qt = (q̄t, . . . , q̄t), where q̄t satisfies

1

1000

1000∑
j=1

I[ût−j < qt] = q,

for a specified tail probability q, such as 0.05. To compare predictive accuracy across models while

controlling for multiple testing, the Diebold & Mariano (2002) test is combined with the Model Confid-

ence Set procedure of Hansen et al. (2011), which iteratively eliminates the worst-performing models

until a subset of statistically indistinguishable models remains.

3 Results

3.1 Marginal Model

The marginal model is estimated for each individual return series, with detailed results reported Table

3 in Appendix C. Summary statistics show heavy tails and slight negative skewness in the returns (see

Figure 1 in Appendix C), while standardized residuals retain mild skewness and substantial excess

kurtosis, supporting the skewed t model. Heterogeneity in pairwise correlations further motivates a

copula model to capture non-linear and asymmetric dependencies across stock returns.

3.2 In-sample Evaluation of Dynamic and Benchmark Clusters

Using transformed residuals from the marginal model, the copula model is estimated to capture de-

pendence between return series. Time-varying clusters are benchmarked against k-means and industry-

based clusters (one- and two-digit Standard Industry Classification (SIC) codes), using a Gaussian

copula with static factor loadings. Model fit is evaluated with the Akaike Information Criterion (AIC),

where lower values indicate better performance. The optimal value of the transition decay parameter

δ (see Eq. (1)) is found by grid search to be 20.

The results show that time-varying clusters achieve significantly better AIC values than static

clustering methods, confirming the potential of data-driven dynamic group assignments as suggested

by João et al. (2023). Figure 2 in Appendix D shows AIC values across different numbers of clusters G,

indicating that 21 is the optimal number of groups for both static and dynamic clusters. Additionally,

a model with only six estimated groups outperforms the 21 two-digit SIC groups, consistent with the

findings of Oh & Patton (2023).
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3.3 Estimated Cluster Assignments

To investigate the economic relevance of cluster transitions, the initial static clusters are compared

with the clusters at the end of the sample period. A complete overview of these clusters is provided in

Table 4 and Table 5 in Appendix D, respectively. Factor loadings for the model with dynamic cluster

assignments, estimated for Gaussian, t, and skewed t copulas with GAS dynamics, are reported in

Table 6. The static groups show strong alignment with two-digit SIC classifications and generally show

meaningful coherence, although some inconsistencies remain. Allowing for time-varying transitions

via the hidden Markov model resolves several of these inconsistencies. For example, General Electric,

initially clustered with financial firms, is reassigned to group 4 with industrial companies such as

General Dynamics, better reflecting its core business. Improvements are also seen in within-group

correlations, with Figure 3 in Appendix D showing that time-varying clusters yield higher correlations

for General Electric’s group and two other cases.

Across the full sample, 183 transitions are observed, with around 4% of stocks switching each

quarter. Figure 4 and Figure 5 in Appendix E report the fraction of stocks switching each quarter and

the number of transitions per stock, respectively. Transition rates are low early in the sample but rise

from 2020, peaking in early 2021 during the COVID-19 crisis. Elevated rates are also observed in the

second and fourth quarters of 2024, possibly linked to geopolitical and economic uncertainty. About

42.9% of firms never change clusters. A small number of stocks switch repeatedly (“flickering”), likely

reflecting proximity to multiple cluster boundaries. Some groups do not experience changes, such as

groups 12 and 13 (energy and utilities, and oil and gas), which may be related to the steady and

clearly defined nature of these industries.

3.4 Out-of-sample Forecast Performance

Next, the dynamic model is evaluated out-of-sample using a rolling estimation window of 1,000 obser-

vations, resulting in 1,515 out-of-sample observations, ranging from December 21, 2018 to December

31, 2024. Model parameters are re-estimated every 250 observations, and a one-step-ahead copula

density forecast is constructed for each day. For the dynamic clustering model, the transition para-

meter is set to the optimal in-sample value δ = 20, which also demonstrated robust performance in

the out-of-sample evaluation.

Table 1 presents the results of the copula density forecast evaluation across different group sizes

for SIC, static k-means, and dynamic clustering. It reports the time-averaged log-likelihood scores

Sl,t, 5% left-tail conditional log-likelihood scores Scl,t, and p-values from the Model Confidence Set

(MCS). The left panel shows results for static factor loadings, and the right panel for GAS dynamic

loadings. The table shows three interesting results. First, dynamic clustering consistently outperforms

static clustering across all group sizes under the log scoring rule, in line with in-sample results. In

both panels, the model with 21 dynamic groups achieves the highest average log-likelihood, with an

average log-likelihood of 31.44 under static loadings and 31.94 with GAS dynamics. In addition,

both 21-group models achieve an MCS p-value of 1.00, indicating statistically superior predictive

performance relative to all other models. Second, dynamic clustering improves the 5% conditional

log score relative to the static clusters, suggesting better performance in capturing joint downside

risk. However, the improvement is smaller than for the full log-likelihood, and the MCS includes some

static models. Third, allowing for time-varying factor loadings through GAS dynamics leads to further

improvements in both the overall and conditional left-tail log-likelihood, even when combined with
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dynamic clustering.

Table 1
One-step ahead copula density forecasts

Static loadings GAS loadings

Full 5% tail Full 5% tail

Sl,t(p-val) Scl,t(p-val) Sl,t(p-val) Scl,t(p-val)

SIC 1-digit static 24.80(0.00) 2.395(0.00) 24.89(0.00) 2.297(0.00)
SIC 2-digit static 27.48(0.00) 2.424(0.00) 27.62(0.00) 2.289(0.00)
3 static groups 24.14(0.00) 2.401(0.00) 24.47(0.00) 2.363(0.00)
6 static groups 26.80(0.00) 2.417(0.00) 27.24(0.00) 2.413(0.00)
9 static groups 27.86(0.00) 2.417(0.00) 28.14(0.00) 2.415(0.00)
12 static groups 28.88(0.00) 2.422(0.01) 29.29(0.00) 2.414(0.00)
15 static groups 28.96(0.00) 2.443(0.07) 29.38(0.00) 2.428(0.00)
18 static groups 30.00(0.00) 2.447(0.14) 30.54(0.00) 2.439(0.00)
21 static groups 30.24(0.00) 2.453(0.31) 30.59(0.00) 2.456(0.00)
24 static groups 28.62(0.00) 2.334(0.03) 28.97(0.00) 2.438(0.00)

SIC 1-digit dynamic 27.40(0.00) 2.401(0.00) 27.93(0.00) 2.374(0.00)
SIC 2-digit dynamic 29.95(0.00) 2.436(0.00) 30.22(0.00) 2.418(0.00)
3 dynamic groups 24.93(0.00) 2.289(0.00) 25.58(0.00) 2.405(0.00)
6 dynamic groups 27.48(0.00) 2.348(0.00) 27.95(0.00) 2.417(0.00)
9 dynamic groups 28.14(0.00) 2.412(0.00) 28.62(0.00) 2.418(0.00)
12 dynamic groups 29.06(0.00) 2.419(0.00) 29.43(0.00) 2.421(0.00)
15 dynamic groups 30.30(0.00) 2.451(0.28) 30.76(0.00) 4.497(0.08)
18 dynamic groups 30.56(0.00) 2.453(0.31) 31.02(0.00) 2.509(0.72)
21 dynamic groups 31.44(1.00) 2.459(0.76) 31.94(1.00) 2.516(1.00)
24 dynamic groups 29.68(0.00) 2.464(1.00) 29.89(0.00) 2.483(0.00)

Note: This table reports the accuracy of one-step-ahead copula density forecasts for daily returns of S&P 100 stocks,
using a multi-factor copula model with Student’s t distribution and transition decay δ = 20. The mean log score (Sl,t)
and the 5% conditional log-likelihood score (Scl,t) for the lower tail are shown. p-values from the Model Confidence Set
(MCS) procedure of Hansen et al. (2011) are reported in parentheses, with bold numbers indicating models that belong
to the MCS of their column at a significance level of 5%. The out-of-sample period runs from December 21, 2018, to
December 31, 2024, including 1,515 observations. Note that the 1-digit SIC clusters consist of 8 groups and the 2-digit
SIC clusters contain 21 groups.

To further evaluate out-of-sample forecasting performance, alternative copula specifications were

compared, considering both static versus dynamic (GAS) factor loadings and different copula families

(Gaussian, t and skew t). The significance of differences in out-of-sample likelihoods is assessed using

the Diebold & Mariano (2002) test, with standard errors computed with the Newey & West (1987)

estimator based on 10 lags. All DM-test results can be found in Table 7 and 8 in Appendix F for

static and dynamic clustering, respectively.

Three main findings were obtained. First, all test statistics comparing static and GAS versions of

the HMM models were found to be positive and highly significant, indicating that the incorporation of

GAS dynamics improves the fit across all copula types and group sizes. The effect was observed to be

particularly strong for the skewed t copula relative to the Gaussian and Student’s t copulas. Second,

when copula families were compared under GAS dynamics, the Student’s t copula was consistently

found to outperform both the Gaussian and skewed t copulas across all group sizes. This outcome is

consistent with the findings of Oh & Patton (2023). Third, the skewed t copula was shown to perform

substantially worse in out-of-sample forecasts, in some cases performing even worse than the Gaussian

copula. The poor performance of the skewed t copula may be due to the inherent penalty that forecast

evaluations impose on estimation uncertainty. Unless additional parameters differ significantly from
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zero and are estimated with sufficient accuracy, the model may achieve better predictive accuracy by

excluding them altogether. Finally, Table 7 shows that, in general, the patterns observed for dynamic

clusters also hold for static clusters. However, while the skewed t copula still performs poorly, it is

not consistently outperformed by the Gaussian copula across all group sizes.

3.5 Economic determinants of Forecast Performance

Forecast performance is further evaluated across economic environments using the Conditional Equal

Predictive Ability (CEPA) and Conditional Superior Predictive Ability (CSPA) tests. The CEPA test

of Giacomini & White (2006) examines whether predictive accuracy depends on market conditions,

while the CSPA test proposed by Li et al. (2022) assesses whether any alternative model systematically

outperforms the benchmark. Economic conditions are summarized by market volatility (VIX), cross-

sectional dispersion of returns, and the alpha from the Capital Asset Pricing Model (CAPM).

The detailed results of both tests are shown in Table 9 in Appendix G. The results indicate that

the dynamic clustering model consistently outperforms static benchmarks. Compared to industry-

based clusters, gains are not strongly linked to economic variables. In contrast, when compared to

k-means clusters, improvements in forecasting performance are larger in periods of high volatility, high

dispersion, and greater CAPM alpha, with alpha being most influential. The CSPA test confirms that

dynamic clustering dominates static benchmarks across the entire range of conditions.

4 Conclusion

This paper extends the factor copula model of Oh & Patton (2023) by relaxing the assumption of static

group assignments. Firms often adjust their strategy, enter or exit markets, and engage in mergers

or acquisitions. As a result, the dependence structures among firms may also change over time,

making fixed clusters less realistic. Therefore, this study proposes a copula model that incorporates

time-varying clusters using a hidden Markov model, adapting the approach developed for multivariate

panel data by João et al. (2023).

In the empirical application to daily returns of S&P 100 stocks from 2015 to 2024, the dynamic

clustering model consistently outperforms static benchmarks based on SIC codes and k-means cluster-

ing. The improvement appears to be driven by firms that undergo changes in their business activities

or were initially misclassified. These gains are evident in both in-sample and out-of-sample evaluations

and are particularly strong during periods of high volatility, elevated dispersion, and large CAPM al-

pha values. However, the model introduces additional computational demands, not all clusters are

economically interpretable and some firms switch frequently between clusters.

Future research could address the issue of frequent switching between clusters by incorporating

non-Markovian transitions, which prevent switches if a stock has recently switched. Alternatively,

flickering could be reduced by using the non-parametric method of João et al. (2024), which uses a

modified version of k-means clustering to ensure temporal stability in clusters. A challenge of the

latter is its high computational cost, as it requires running the k-means algorithm for each point in

time. Another potential extension is to explore whether including additional explanatory variables

improves model performance. Variables such as market capitalization or return on equity could be used

to inform the transition probabilities between clusters, an approach shown to enhance performance

by João et al. (2023). Lastly, future work could focus on scaling the model to accommodate larger

datasets containing more firms or other asset classes.

7



References

Amisano, G. & Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests.

Journal of Business & Economic Statistics, 25 (2), 177-190.

Chesnay, F. & Jondeau, E. (2001). Does correlation between stock returns really increase during

turbulent periods? Economic Notes, 30 (1), 53-80.

Coval, J., Jurek, J. & Stafford, E. (2009). The economics of structured finance. Journal of Economic

Perspectives, 23 (1), 3-25.

Creal, D. D., Koopman, S. J. & Lucas, A. (2013). Generalized autoregressive score models with

applications. Journal of Applied Econometrics, 28 (5), 777-795.

DeSarbo, W. S. & Cron, W. L. (1988). A maximum likelihood methodology for clusterwise linear

regression. Journal of classification, 5 , 249-282.

Diebold, F. X. & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business &

economic statistics, 20 (1), 134-144.

Diks, C., Panchenko, V., Sokolinskiy, O. & van Dijk, D. (2014). Comparing the accuracy of multivariate

density forecasts in selected regions of the copula support. Journal of Economic Dynamics and

Control , 48 , 79-94.
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Appendix A

List of Firms Used in the Empirical Analysis

Table 2
Summary of firms in the S&P 100

Ticker Name SIC Ticker Name SIC Ticker Name SIC

AAPL Apple 35 DHR Danaher 50 MS Morgan Stanley 62
ABBV Abbvie 28 DIS Disney 73 MSFT Microsoft 73
ABT Abbott Lab. 50 DUK Duke Energy 49 NEE Nextera Energy 49
ACN Accenture 67 EMR Emerson 35 NFLX Netflix 78
ADBE Adobe 73 F Ford 37 NKE Nike 30
AIG Ame Inter 63 FDX Fedex 45 NVDA Nvidia 36
AMD Adv Micro Dev 36 GD Gen Dynamics 37 ORCL Oracle 73
AMGN Amgen 28 GE Gen Electric 35 PEP Pepsico 20
AMT American Tower 48 GILD Gilead 28 PFE Pfizer 28
AMZN Amazon 73 GM General Motors 37 PG Procter Gamble 28
AVGO Broadcom 36 GOOG Alphabet 73 PM Philip Morris 21
AXP Amex 60 GOOGL Alphabet 73 QCOM Qualcomm 36
BA Boeing 37 GS Goldman Sachs 62 RTX RTX 37
BAC Bank of Am 60 HD Home Depot 52 SBUX Starbucks 58
BH Biglari Holdings 58 HON Honeywell Int 50 SCHW Schwab Charles 62
BK Bank of NY 60 IBM IBM 73 SO Southern 49
BKNG Booking 73 INTC Intel 36 SPG Simon Property 67
BLK Blackrock 62 INTU Intuit 73 T AT&T 48
BMY Bristol-Myers 28 JNJ Johnson&J 28 TGT Target 53
C Citigroup 60 JPM Jpmorgan 60 TMO Thermo Fisher 38
CAT Caterpillar 35 KO Coca Cola 20 TMUS T-Mobile 48
CHTR Charter Comm 48 LLY Lilly Eli 28 TSLA Tesla 37
CL Colgate Palmo 28 LMT Lockheed Mar 37 TXN Texas Instru 36
CMCSA Comcast 48 LOW Lowes 52 UNH Unitedhealth 63
COF Capital One 60 MA Mastercard 73 UNP Union Pacific 40
COP Conocophillips 13 MCD Mcdonalds 58 UPS United Parcel 45
COST Costco 53 MDLZ Mondelez Int 20 USB US Bancorp 60
CRM Salesforce 73 MDT Medtronic 38 V Visa 73
CSCO Cisco Sys 36 MET Metlife 63 VZ Verizon 48
CVS C V S Health 59 META Meta 73 WFC Wells Fargo 60
CVX Chevron 13 MMM 3M 50 WMT Walmart 53
D Dominion En 49 MO Altria Group 21 XOM Exxon Mobil 29
DE Deere 35 MRK Merck 28

SIC Description Num SIC Description Num SIC Description Num

1 Mining, construct. 2 4 Transprt, comm’s 13 7 Services 15
2 Manuf: food, furn. 16 5 Trade 13 9 Non-classifiable 2
3 Manuf: elec, mach 20 6 Finance, Ins 17 Total 98

Note: This table reports the ticker symbol, company name, and the first two digits of the SIC code for the firms included
in the empirical analysis. The sample consists of firms that were constituents of the S&P 100 index as of December 31,
2024, and that were continuously traded throughout the full sample period (2015–2024). Firms that underwent mergers
or splits during the sample period are excluded. SIC codes correspond to those assigned as of the midpoint of the sample
period (December 31, 2019). For firms that changed their ticker symbol or name, the most recent identifiers are reported.
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Appendix B

Estimation procedure

Due to the computational complexity of jointly estimating dynamic copula parameters and time-

varying group assignments, a three-stage estimation procedure is adopted. In the first stage, the

initial cluster assignments and copula parameters are estimated following Oh & Patton (2023). Static

group assignments Γ̂1 are obtained by applying k-means clustering to the full sample using a mis-

specified static Gaussian copula. Conditional on these initial clusters, the copula parameters ψ =

[ωM
1 , . . . , ω

M
G , ω

C
1 , . . . , ω

C
G, α

M , βM , αC , βC , ν, ζ]′ are estimated by maximizing the log-likelihood of the

skewed t copula:

ψ̂ = argmax
ψ

T∑
t=1

log cSkew t,t(ut;ψ | Γ̂1). (9)

The skewed t copula nests both the Gaussian and symmetric t copulas as special cases. In both the

simulation study and the empirical analysis, all three copulas are estimated for comparison.

In the second stage, time-varying cluster assignments are estimated. For each time period t, the

filtered probabilities τig,t|t are updated using the forward algorithm in Eqs. (4)-(5), again based on

the misspecified static Gaussian copula. Each stock is then assigned to the cluster with the highest

posterior probability, yielding the current group assignment Γ̂t.

In the third stage, the dynamic factors loadings are updated using the Generalized Autoregressive

Score dynamics, based on the copula parameters obtained in the first stage. GAS adjusts the load-

ings in response to new information by leveraging the gradient of the log-likelihood function of the

conditional copula. The update equations take the form:

λMg,t+1 = ωM
g + αM ∂ log cSkewt,t(xt;Rt, ν, ζ)

∂λMg,t
+ βMλMg,t, for g = 1, . . . , G (10)

λCg,t+1 = ωC
g + αC ∂ log cSkewt,t(xt;Rt, ν, ζ)

∂λCg,t
+ βCλCg,t, for g = 1, . . . , G (11)

where xt = T−1
skew(ut; ν, ζ), and cSkewt,t(xt;Rt, ν, ζ) denotes the conditional skewed t copula density.

Finally, given the current factor loadings and group assignments, the log-likelihood of each observation

is computed.

With respect to the remaining parameters, the number of clusters G must be chosen. Although

the Akaike Information Criterion (AIC) is commonly used, it may overestimate the number of clusters

(Frühwirth-Schnatter, 2011). Therefore, the optimal number of clusters is also validated based on

out-of-sample forecasting performance. In theory, the number of clusters could vary over time if all

firms were to transition out of a given cluster, implying G = Gmax. However, to preview the results,

this has not occurred in practice, likely because the initial static clustering provides a sufficiently

accurate starting point. Moreover, maintaining a fixed number of clusters over time is common in

literature and appears to be a reasonable assumption (Frühwirth-Schnatter, 2011; João et al., 2023).

The decay parameter δ in Eq. (1), which controls the dynamics of cluster transitions, is selected by

evaluating model performance over a grid of values.
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Appendix C

Summary Statistics and Marginal Model Results

Figure 1. Distribution of S&P 100 returns. The left panel displays the daily value-weighted market returns
over the full sample period from 2015 to 2024. The right panel shows the distribution of the returns, along
with a fitted Gaussian distribution.

Table 3
Summary statistics for the marginal model

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

Panel A: Marginal moments

Mean 0.001 0.000 0.000 0.001 0.001 0.001
Std 0.018 0.012 0.015 0.017 0.020 0.026
Skewness -0.028 -0.786 -0.228 0.079 0.237 0.819
Kurtosis 15.000 8.201 10.676 13.352 17.703 28.429

Panel B: Marginal model parameters

Constant 0.001 0.000 0.000 0.001 0.001 0.001
AR(1) -0.020 -0.052 -0.038 -0.019 -0.004 0.014
ϖ×104 0.009 0.002 0.004 0.006 0.011 0.023
α 0.034 0.001 0.016 0.028 0.043 0.085
κ 0.091 0.016 0.062 0.089 0.119 0.161
β 0.893 0.799 0.871 0.897 0.929 0.957
ξ 4.558 3.555 3.950 4.415 4.941 6.128
ψ -0.035 -0.092 -0.063 -0.036 -0.010 0.025

Panel C: Correlations of standardized residuals

Pearson 0.288 0.127 0.214 0.274 0.347 0.484
Spearman 0.330 0.152 0.251 0.316 0.398 0.535

Note: This table reports the cross-sectional distribution of summary statistics from 98 daily return series spanning
January 2, 2015 to December 31, 2024. Panel A reports the distribution of the first four moments of the returns, Panel B
shows the estimated parameters from the marginal models, and Panel C provides a summary of the pairwise correlations
among the standardized residuals.
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Appendix D

Comparison between Static and Dynamic Clusters

Figure 2. AIC values as a function of the number of groups (G) for static clustering and dynamic clustering
combining k-means with a hidden Markov model. For comparison, AIC values corresponding to the 1-digit
and 2-digit SIC-based groupings, comprising 8 and 21 groups, respectively, are also shown. Lower AIC values
indicate a better model fit. The y-axis is scaled by 10−4.
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Table 4
Estimated group assignments with static clustering

Group Ticker Name SIC Group Ticker Name SIC

1 ABBV Abbvie 28 8 CAT Caterpillar 35
ABT Abbott Lab. 28 EMR Emerson 36

AMGN Amgen 28 FDX Fedex 45
BMY Bristol-Myers 28 UNP Union Pacific 40
GILD Gilead 28 UPS United Parcel 45
JNJ Johnson&J 28
LLY Lilly Eli 28 9 AMZN Amazon 73

MDT Medtronic 38 BKNG Booking 73
MRK Merck 28 META Meta 73
PFE Pfizer 28 NFLX Netflix 78
TMO Thermo Fisher 38
UNH Unitedhealth 63 10 ACN Accenture 73

CSCO Cisco Sys 36
2 BAC Bank of Am 62 IBM IBM 73

BK Bank of NY 60 ORCL Oracle 73
C Citigroup 62

COF Capital One 60 11 COST Costco 53
GS Goldman Sachs 62 CVS C V S Health 59

JPM Jpmorgan 60 TGT Target 53
MET Metlife 63 WMT WalMart 53
MS Morgan Stanley 60

SCHW Schwab Charles 62 12 D Dominion En 49
USB US Bancorp 60 DUK Duke Energy 49
WFC Wells Fargo 60 NEE Nextera Energy 49

SO Southern 49
3 AMT American Tower 67

CL Colgate Palmo 28
KO Coca Cola 20 13 COP Conocophillips 13

MDLZ Mondelez Int 20 CVX Chevron 29
MO Altria Group 21 XOM Exxon Mobil 29
PEP Pepsico 20
PG Procter Gamble 28 14 AIG Ame Inter 63
PM Philip Morris 21 AXP Amex 61
SPG Simon Property 67 GE Gen Electric 35

4 BA Boeing 37 15 BH Biglari Holdings 58
GD Gen Dynamics 37 TMUS T-Mobile 48

HON Honeywell Int 37 TSLA Tesla 37
LMT Lockheed Mar 37

MMM 3M 38 16 MCD Mcdonalds 58
RTX RTX 37 NKE Nike 30

SBUX Starbucks 58
5 ADBE Adobe 73

CRM Salesforce 73 17 F Ford 37
INTU Intuit 73 GM General Motors 37
MA Mastercard 73

MSFT Microsoft 73 18 GOOG Google 73
V Visa 73 GOOGL Google 73

6 AAPL Apple 35 19 DE Deere 35
AMD Adv Micro Dev 36 INTC Intel 36

AVGO Broadcom 36
NVDA Nvidia 36 20 BLK Blackrock 62
QCOM Qualcomm 36 DHR Danaher 38

TXN Texas Instru 36
21 HD Home Depot 52

7 CHTR Charter Comm 48 LOW Lowes 52
CMCSA Comcast 48

DIS Disney 48
T AT&T 48

VZ Verizon 48

Note: This table reports the estimated static group assignments for 21 groups, as determined by the AIC-selected
optimal number of clusters. For firms that have changed their ticker symbol or name, the most recent identifiers are
shown. Groups are ordered by the number of stocks.

14



Table 5
Estimated final group assignments with dynamic clusters

Group Ticker Name SIC Group Ticker Name SIC

1 ABBV Abbvie 28 9 AAPL Apple 35
ABT Abbott Lab. 28 AMZN Amazon 73

AMGN Amgen 28 COST Costco 53
BMY Bristol-Myers 28 LLY Lilly Eli 28
GILD Gilead 28 META Meta 73
JNJ Johnson&J 28 NFLX Netflix 78
KO Coca Cola 20

MRK Merck 28 10 ACN Accenture 73
PEP Pepsico 20 CSCO Cisco Sys 36
PFE Pfizer 28 HON Honeywell Int 37

IBM IBM 73
2 BAC Bank of Am 62 MMM 3M 38

BK Bank of NY 60
C Citigroup 62 11 CHTR Charter Comm 48

COF Capital One 60 CMCSA Comcast 48
GS Goldman Sachs 62 CVS C V S Health 59

JPM JPMorgan 60 MDLZ Mondelez Int 20
MET Metlife 63 MDT Medtronic 38
MS Morgan Stanley 60 UNH Unitedhealth 63

USB US Bancorp 60
WFC Wells Fargo 60 12 D Dominion En 49

DUK Duke Energy 49
3 AMT American Tower 62 NEE Nextera Energy 49

CL Colgate Palmo 60 SO Southern 49
DIS Disney 62
PG Proctor Gamble 60 13 COP Conocophilips 13
PM Philip Morris 62 CVX Chevron 29
SPG Simon Property 60 XOM Exxon Mobil 29

T AT&T 63
VZ Verizon 60 14 AIG Ame Inter 63

WMT Walmart 60 AXP Amex 61
BA Boeing 37

4 GD Gen Dynamics 37
GE Gen Electric 35 15 BH Biglari Holdings 58

LMT Lockheed Mar 37 TMUS T-Mobile 48
RTX RTX 37 TSLA Tesla 37

5 ADBE Adobe 73 16 BKNG Booking 73
CRM Salesforce 73 NKE Nike 30
INTU Intuit 73 PCLN Priceline 73
MSFT Microsoft 73 SBUX Starbucks 58
ORCL Oracle 73

17 F Ford 37
6 AMD Adv Micro Dev 36 GM General Motors 37

AVGO Broadcom 36
INTC Intel 36 18 GOOG Google 73
NVDA Nvidia 36 GOOGL Google 73
QCOM Qualcomm 36

TXN Texas Instru 36 19 DE Deere 35
MCD Mcdonalds 58

7 DHR Danaher 38
TGT Target 53 20 BLK Blackrock 62
TMO Thermo Fisher 38 MA Mastercard 73

SCHW Schwab Charles 62
8 CAT Caterpillar 35 UNP Union Pacific 40

EMR Emerson 36 V Visa 73
FDX Fedex 45
UPS United Parcel 45 21 HD Home Depot 52

LOW Lowes 52

Note: This table reports the estimated dynamic group assignments for 21 groups at the end of the sample period.
For firms that have changed their ticker symbol or name, the most recent identifiers are shown. Cluster numbers are
consistent with the original numbering assigned in the static clustering.
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Table 6
Estimation results for the optimal 21 group model

Panel A: Parameter estimation accuracy

Gaussian t Skew t

est. s.e. est. s.e. est. s.e.

ωM
1 0.052 0.003 0.007 0.001 0.006 0.001
ωM
2 0.105 0.007 0.016 0.003 0.013 0.001
ωM
3 0.053 0.003 0.007 0.001 0.006 0.001
ωM
4 0.074 0.005 0.011 0.001 0.009 0.001
ωM
5 0.083 0.005 0.012 0.002 0.008 0.001
ωM
6 0.072 0.005 0.010 0.000 0.009 0.001
ωM
7 0.055 0.004 0.008 0.001 0.007 0.001
ωM
8 0.081 0.005 0.012 0.001 0.010 0.001
ωM
9 0.061 0.004 0.009 0.001 0.007 0.001
ωM
10 0.078 0.005 0.011 0.001 0.009 0.001
ωM
11 0.053 0.003 0.008 0.001 0.006 0.001
ωM
12 0.050 0.003 0.007 0.002 0.006 0.001
ωM
13 0.084 0.005 0.012 0.001 0.010 0.001
ωM
14 0.073 0.005 0.011 0.001 0.009 0.001
ωM
15 0.039 0.002 0.005 0.001 0.005 0.001
ωM
16 0.064 0.004 0.009 0.002 0.008 0.001
ωM
17 0.105 0.007 0.016 0.001 0.013 0.002
ωM
18 0.520 0.032 0.076 0.002 0.063 0.008
ωM
19 0.063 0.004 0.011 0.002 0.009 0.001
ωM
20 0.078 0.005 0.009 0.001 0.014 0.002
ωM
21 0.118 0.007 0.017 0.003 0.008 0.001
ωC
1 0.003 0.001 0.002 0.001 0.002 0.000
ωC
2 0.005 0.001 0.002 0.001 0.004 0.001
ωC
3 0.003 0.001 0.003 0.001 0.003 0.000
ωC
4 0.003 0.001 0.002 0.001 0.002 0.000
ωC
5 0.003 0.001 0.003 0.001 0.003 0.000
ωC
6 0.003 0.001 0.003 0.001 0.003 0.000
ωC
7 0.002 0.001 0.002 0.001 0.002 0.000
ωC
8 0.002 0.001 0.002 0.001 0.002 0.000
ωC
9 0.002 0.001 0.003 0.001 0.003 0.000
ωC
10 0.001 0.000 0.002 0.001 0.002 0.000
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Table 6
Estimation results for the optimal 21 group model, continued

Panel A: Parameter estimation accuracy

Gaussian t Skew t

est. s.e. est. s.e. est. s.e.

ωC
11 0.002 0.001 0.002 0.001 0.002 0.000

ωC
12 0.007 0.001 0.006 0.002 0.006 0.001

ωC
13 0.007 0.001 0.007 0.002 0.007 0.001

ωC
14 0.002 0.001 0.002 0.001 0.002 0.000

ωC
15 0.001 0.001 0.001 0.001 0.000 0.000

ωC
16 0.002 0.001 0.002 0.001 0.002 0.000

ωC
17 0.006 0.001 0.005 0.001 0.001 0.001

ωC
18 0.037 0.006 0.034 0.007 0.034 0.004

ωC
19 0.002 0.001 0.001 0.001 0.001 0.001

ωC
20 0.000 0.000 0.000 0.000 0.001 0.001

ωC
21 0.007 0.001 0.006 0.002 0.006 0.002

αM 0.033 0.001 0.011 0.003 0.010 0.001

βM 0.917 0.005 0.987 0.008 0.990 0.002

αC 0.006 0.001 0.008 0.002 0.008 0.001

βC 0.995 0.005 0.995 0.008 0.996 0.001

ν 0.034 0.003 0.034 0.001

ζ -0.398 0.001

Panel B: Estimation details

logL 86643.05 89266.23 87968.92

AIC -173194 -178438 -175841

BIC -172926 -178164 -175562

Time (clustering) (hrs) 1.23 1.23 1.23

Time (copula) (hrs) 2.71 2.98 2.68

EM iterations 95.54 95.54 95.54

Note: This table reports the estimated parameters and standard errors for the multi-factor copula model with dynamic

group assignments, estimated via a Hidden Markov Model. Results are presented for the Gaussian, t, and skew-t copulas.

The model was estimated on the full sample using 21 groups, selected as optimal based on the Akaike Information

Criterion (AIC). Panel B reports model fit measures, computational time, and the number of EM iterations. All

estimations were performed on a machine with an Apple M1 processor (8 cores).
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Figure 3. Model-implied rank correlations over the full sample period. The upper panel displays correlations
for group 4 (from Table 4), comparing static clusters with dynamic clusters from the Markov-switching model.
The middle panel and lower shows the same comparison for group 6 and 10, respectively. The results are
obtained from the model with GAS dynamics and the Gaussian copula.
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Appendix E

Transition Dynamics

Figure 4. Timing of cluster transitions. The black bars indicate the fraction of stocks that are estimated to
change groups for each quarter between 2015Q1 and 2024Q4. The red line reports the average transition
frequency over the full sample.

Figure 5. Histogram of cluster transitions counts per stock.
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Appendix F

Diebold-Mariano test results

Table 7
Comparison of different copulas for static clustering

Static vs. GAS Copula shape

Gaussian t skewt G vs. t G vs. skewt t vs. skewt

SIC 1-digit 3.170 3.704 27.771 12.223 -3.025 -18.945
SIC 2-digit 1.905 3.728 31.834 12.748 10.320 -8.435
3 groups 0.327 1.632 24.721 11.212 9.305 -9.1612
6 groups 3.017 4.294 30.483 12.466 11.088 -6.035
9 groups 3.807 5.172 7.481 12.741 6.647 -17.572
12 groups 3.574 5.117 11.443 13.057 7.085 -17.954
15 groups 3.058 4.528 22.474 12.276 -5.912 -17.475
18 groups 5.412 6.968 34.708 12.238 10.625 -7.451
21 groups 4.218 6.680 35.023 12.582 9.942 -7.051
24 groups 3.532 6.140 20.083 12.996 -5.367 -20.002

Note: This table reports Diebold-Mariano t statistics for pairwise comparisons of models with static clusters using their
out-of-sample log-likelihood. The left panel compares models assuming static factor loadings with those using GAS
dynamics, for a Gaussian, t and skew-t copula and for a variety of choices for the number of groups. The right panel
compares the different copula shapes, using GAS dynamics in all cases, across a variety of choices for the number of
groups. In a comparison labelled “A vs. B,” a positive t-statistic implies that model B outperforms model A, whereas a
negative t-statistic suggests that model A performs better than model B.

Table 8
Comparison of different copula’s for dynamic clustering

Static vs. GAS Copula shape

Gaussian t skewt G vs. t G vs. skewt t vs. skewt

SIC 1-digit 11.497 11.404 30.732 11.858 -8.489 -19.712
SIC 2-digit 5.601 5.605 21.014 12.843 -7.388 -18.094
3 groups 5.129 4.852 21.643 11.879 -5.861 -18.594
6 groups 5.833 5.249 18.869 12.299 -7.487 -19.124
9 groups 6.058 5.424 13.251 12.900 -9.863 -14.459
12 groups 5.121 4.140 20.386 13.246 -6.182 -18.543
15 groups 4.974 4.618 25.893 12.363 -6.521 -17.847
18 groups 5.841 6.795 32.697 12.290 -7.342 -17.624
21 groups 6.767 7.261 31.105 12.906 -6.699 -21.958
24 groups 5.489 6.434 29.453 11.358 -7.231 -21.762

Note: This table reports Diebold-Mariano t statistics for pairwise comparisons of models with dynamic HMM clusters
using their out-of-sample log-likelihood. The left panel compares models assuming static factor loadings with those using
GAS dynamics, for a Gaussian, t and skew-t copula and for a variety of choices for the number of groups. The right
panel compares the different copula shapes, using GAS dynamics in all cases, across a variety of choices for the number
of groups. In a comparison labeled “A vs. B,” a positive t-statistic implies that model B outperforms model A, whereas
a negative t-statistic suggests that model A performs better than model B.

20



Appendix G

Giocomini & White and CSPA test results

Table 9
Economic determinants of forecast performance

Dynamic vs. SIC 2-digit Dynamic vs. static k-means

Intercept 1.716 1.716 1.716 1.716 1.349 1.349 1.349 1.349

(s.e.) (0.107) (0.107) (0.107) (0.106) (0.112) (0.111) (0.103) (0.104)

[t-stat] [16.106] [16.106] [16.058] [16.181] [12.094] [12.182] [13.103] [12.925]

VIX -0.056 -0.142 0.226 -0.016

(s.e.) (0.082) (0.099) (0.104) (0.124)

[t-stat] [-0.683] [-1.437] [2.168] [-1.039]

Dispersion 0.057 0.235 0.657 0.328

(s.e.) 0.090 (0.126) (0.155) (0.130)

[t-stat] [0.631] [1.872] [4.243] [2.528]

Abs. alpha -0.096 -0.188 0.895 0.750

(s.e.) (0.092) (0.105) (0.118) (0.124)

[t-stat] [-1.038] [-1.791] [7.589] [6.043]

R2 (%) 0.030 0.030 0.086 0.368 0.393 3.325 6.164 6.599

GW p-valueALL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GW p-valueSLOPES 0.495 0.528 0.299 0.403 0.000 0.000 0.000 0.000

CSPA p-value 0.000 0.000 0.000 - 0.000 0.000 0.000 -

Note: This table reports the results of the Giacomini & White (2006) tests and the Li et al. (2022) (CSPA) tests.

The benchmark model is the model with 21 time-varying clusters with GAS dynamics and a student t copula. The

conditioning variables are the VIX index, the dispersion (cross-sectional standard deviation of returns) and the absolute

value of the cross-sectional average CAPM alpha. For the GW tests, conditioning variables are standardized to ensure

the comparability of the test statistics.
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Multiscale Inefficiency Index

August 11, 2025

Abstract

This paper investigates the long-term memory and multifractal properties of financial time
series through Hurst exponent estimation techniques, including both the classical R/S statistic
and its modified version (M-R/S). Recognizing the limitations of a single static Hurst exponent
often distorted by trends, sample length, or structural breaks we complement our analysis with
Multifractal Detrended Fluctuation Analysis (MF-DFA), which reveals the local scaling dynamics
and multifractal spectrum of the data. Building on these insights, we introduce a novel inefficiency
index that integrates two key dimensions: the width of the multifractal spectrum, capturing scale-
invariant long-range correlations, and the deviation of a rolling Hurst exponent from the efficient
market benchmark of 0.5, indicating momentum or mean-reversion. To showcase the practical value
of our index, we design a long/short trading strategy that uses it to filter out false signals from the
Hurst exponent, thereby improving performance compared to a traditional long/short Hurst-based
approach.
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1 Introduction

The Hurst exponent is a crucial tool for analyzing long-term memory and self-similarity in
stochastic processes. Originally introduced by Harold Hurst in the 1950s for studying river flows,
this measure has since been widely adopted in various fields such as physics, environmental science
and finance. In financial markets, the Hurst exponent serves as an indicator to determine whether
a time series exhibits long-range dependence (a value greater than 0.5) or mean-reverting behavior
(a value less than 0.5), a value equals to 0.5 indicates that the series follows a pure random walk,
characteristic of standard Brownian motion.

The most common method for estimating the Hurst exponent is through Rescaled Range (R/S)
analysis, introduced by Hurst and later refined by Mandelbrot. However, the traditional R/S
statistic has its limitations, particularly its sensitivity to short-term memory effects, which can
obscure the detection of long-term memory. To mitigate these issues, lo1991 proposed a modified
version of the R/S statistic (M-R/S) that better accounts for short-term autocorrelation.

In this study, we apply both the R/S method and the M-R/S to estimate the Hurst exponent
on financial time series and we complement our analysis with Multifractal Detrended Fluctuation
Analysis (MF-DFA), which examines the local behavior of the series and characterizes its multi-
fractal spectrum. That way we can capture the local scaling dynamics and identify the presence of
multifractality, which is often indicative of complex market behaviors possibly inefficient.

The Fractional Brownian motion (fBm) is often used as a benchmark model for processes with
memory, as it embodies the scaling properties and persistence typically observed in long-memory
data. While fBm provides a theoretical framework for understanding these phenomena, our study
focuses on practical estimation methods.

2 Literature Review

Memory diagnostics in finance revolve around R/S and its modified M-RS tests; Mandelbrot and
Wallis pioneered the use of the rescaled range (R/S) statistic to detect long-term memory in geophys-
ical and financial time series, highlighting its sensitivity to persistent and anti-persistent behaviors
mandelbrot1968; mandelbrot1969a; mandelbrot1969b. Mandelbrot further emphasized the
limitations of classical methods and the need for robust estimators in the presence of nonstationarity
and structural breaks mandelbrot1973; mandelbrot1979. Moreover, dimatteo2007 review de-
tails their scope and wavelet refinements. Kwapień show that shuffling kills multifractality, proving
that inefficiency derived from the width of the spectrum stem from temporal correlations rather
than heavy tails kwapien2023.

3 Fractional Brownian Motion

Fractional Brownian motion (fBm) is a generalization of standard Brownian motion that intro-
duces dependence in increments, making it suitable for modeling processes with memory effects. It
is a continuous-time Gaussian process XH(t) where H ∈ [0, 1] corresponds to the Hurst exponent
with the following properties:

— The process exhibits self-similarity, meaning that for any scaling factor c, c ∈ R+, the rescaled
process satisfies:

XH(ct)
d
= cHXH(t). (1)
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where the symbol d
= denotes equality in distribution, meaning that the statistical properties

of XH(ct) and cHXH(t) are identical.
— The increments XH(t)−XH(s) follow a normal distribution with mean zero and variance :

E
[
(XH(t)−XH(s))2

]
= σ2|t− s|2H , (2)

where H is the Hurst exponent.
— When H = 0.5, fBm reduces to classical Brownian motion.
— For H > 0.5, the process exhibits long-term positive autocorrelation, meaning that an increase

in the past tends to be followed by further increases.
— For H < 0.5, the process has anti-persistent behavior, where an increase in the past is more

likely to be followed by a decrease.

The covariance function of fBm is given by (see Section 7.1 for demonstration):

CH(t, s) =
σ2

2

(
t2H + s2H − |t− s|2H

)
, (3)

which accounts for the dependence structure of the process. The Hurst exponent H plays a
critical role in determining the smoothness and correlation properties of fBm:

— For small H values (H < 0.5), the process is highly erratic, with rapid changes and weak
memory effects.

— For large H values (H > 0.5), the trajectory becomes smoother, and the process exhibits
long-range dependence.

3.1 Data

The data used in this analysis is monthly and consists of the historical closing prices of five
major stock market indices: the S&P 500, Russell 2000, FTSE 100, Nikkei 225, and the DAX. The
data spans the period from September 10th, 1987, to February 28th, 2025.

For each index, the closing price time series was transformed using the natural logarithm to
obtain a series of log prices. Additionally, a stationarity test was conducted on the log prices series
using the Augmented Dickey-Fuller (ADF) test. The results indicated that all series were non-
stationary, suggesting the presence of unit roots. To address this, the log prices were differentiated
once, after which they exhibited stationarity (test are available in Table 1).

These differentiated log returns were then used to calculate the R/S and modified R/S statistics
and estimate the Hurst exponent. The purpose of using this data is to evaluate the long-term
memory properties of financial markets, which can indicate persistence or mean-reversion in market
behavior.

3.2 Results

The results of the Hurst exponent estimation using the traditional R/S method are presented
in Table 3.

Based on the results obtained from applying the traditional R/S method, all the series appear
to exhibit long-term memory, as the Hurst exponents are consistently greater than 0.5. However,
the unknown asymptotic distribution of the traditional R/S statistic prevents us from determining
whether these Hurst values are statistically significant. To address this, we use the modified R/S
method, comparing the statistic V to the critical values provided by lo1991 (1.620 at the 10% level
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and 1.747 at the 5% level in a one-tailed test). Our analysis shows that only one series the returns of
the Russell 2000 small and mid cap (US) exhibits statistically significant persistence, for the other
series, despite Hurst exponents greater than 0.5, the null hypothesis of short memory cannot be
rejected.

Since it seems unrealistic to characterize series with only one static Hurst exponent as the series
might be influenced by local trends, periods estimations, frequencies and to gain deeper insight
into the local scaling dynamics of these series, we now turn to Multifractal Detrended Fluctuation
Analysis (MF-DFA). Specifically, MF-DFA allows us to investigate the variety of local behaviors
present in the time series by characterizing its multifractal spectrum. This spectrum reveals how
"rough" or "smooth" different segments of the series are and indicates the prevalence of each level of
irregularity. By examining the multifractal spectrum, we can determine whether the data exhibits
a wide range of scaling behaviors, indicative of multifractality, or if it behaves more uniformly. This
transition to MF-DFA thus provides a complementary perspective that deepens our understanding
of the complex, scale-dependent dynamics governing the indices and how it relates to the Hurst
exponent.

3.3 Generalized Hurst Exponent

The S&P 500 and Russell 2000 are ideal candidates for multifractal analysis. The modified R/S
statistic (M-R/S) for the S&P 500 is approximately 0.501 very close to 0.5 which suggests that its
dynamics are consistent with efficient market behavior. In contrast, the Russell 2000 has a modified
Hurst exponent of approximately 0.588, indicating significant long-range dependencies and a less
efficient market.

These discrepancies between the two series highlight their distinct scaling properties and market
efficiencies. Our aim with the multifractal analysis is to capture and quantify these differences in
local scaling behavior. By analyzing the multifractal spectrum of each index, we hope to match
these structural discrepancies, thereby providing deeper insights into the dynamics of each market.
By analyzing both the S&P 500 and Russell 2000, we gain insight into how differences in efficiency
and persistence affect their multifractal characteristics. For this analysis, we will use the daily
returns of the Russell 2000 index, S&P 500 index from September 10th, 1987, to February 28th,
2025 (about 10 000 data points).
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Russell 2000 S&P 500

Figure 1 – Generalized Hurst exponent h(q) for the S&P 500 returns. Values of q are equally spaced
between -4 and 4. The scale used are logly spaced between 10 and 500.

If we take a closer look at the results from MF-DFA, we observe that the generalized Hurst
exponent, h(q), varies as a function of q. The decrease sloping is a sign that the serie exhibits
multifractal behavior. In a monofractal process, h(q) remains constant, reflecting uniform scaling.
Variation of h(q) with q indicates that small and large fluctuations scale differently. The curvature
of the line indicates the presence of heterogeneity in the distribution of singularities, with different
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regions of the series characterized by varying degrees of irregularity. Lower values of q empha-
size small fluctuations, while higher values highlight high fluctuations. Therefore, this spectrum
showcases that during periods of small fluctuations (q < 0) the series is likely to exhibit long-term
memory as the Hurst exponent is greater than 0.5, whether for drastic changes (q > 0) in the series
behavior the Hurst exponent is likely not to be high. This result is consistent with our simulation
of the fractional Brownian motion (see 7.4), where we can see that the series exhibits smooth and
regular behavior (calm fluctuations) for high Hurst exponent and sharply irregular behavior (high
fluctuations) for low Hurst exponent.

The generalized Hurst exponent for the S&P 500 returns exhibits a similar behavior to that of
the Russell 2000 returns, except that it is less pronounced. At q = -4, the series exhibits a Hurst
exponent of 0.56 compared to 0.7 for the Russell 2000, those series seems to slightly differs in their
behavior. This difference, albeit modest, may hint at distinct market microstructure characteristics
between the two indices. For instance, the S&P 500, with its larger and more liquid companies,
might experience a smoothing effect on return dynamics that could reduce the observable multi-
fractality. In contrast, the Russell 2000, representing smaller-cap stocks, may be subject to greater
fluctuations and market inefficiencies, which could amplify multifractal behavior. Overall, our find-
ings provide an interesting perspective on market behavior, suggesting that although both indices
share similar multifractal characteristics, subtle variations exist that could reflect underlying market
differences.

From the MF-DFA analysis, we can also compute the Hölder exponent and multifractal spec-
trum. Calculating the Hölder exponent and multifractal spectrum extends MF-DFA by detailing
local behavior. This logical continuation deepens insights into the complex, heterogeneous dynamics
of the market.

3.4 Hölder exponent

The Hölder exponent α(q) characterizes the local multifractal strength of a signal and is obtained
using the Legendre transform of h(q):

α(q) = h(q) + qh′(q). (4)

where h′(q) is the derivative of h(q) with respect to q. This exponent quantifies the intensity of
local singularities: lower values of α indicate highly irregular (or sharply singular) behavior, while
higher values correspond to smoother regions of the signal. Thus, the Hölder exponent reveals the
heterogeneity of fluctuations within the signal. This exponent describes the degree of multifractal
in different parts of the series, revealing the heterogeneity of fluctuations.

3.5 Multifractal Spectrum

The multifractal spectrum f(α) provides a measure of the fractal dimension of subsets charac-
terized by a given α:

f(α) = q[α(q)− h(q)] + 1. (5)

This spectrum describes the distribution of singularities in the time series. A wider spectrum
indicates stronger multifractality.
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The analysis using the Hölder exponent and multifractal spectrum is a powerful tool for studying
complex systems. In particular, it enables one to identify and quantify regions of strong multifrac-
tal, which may correspond to extreme events or sudden changes in dynamics and to describe the
distribution and frequency of irregular behaviors in time series. Thus, the multifractal approach
offers a detailed and nuanced description of a signal’s local variability, providing essential insights
for understanding and predicting its underlying dynamics.

We can distinguish two main contributions to the multifractal spectrum:

M(q) ∝ ftail(q)︸ ︷︷ ︸
Strongly non-Gaussian

distribution

and fcorr(q)︸ ︷︷ ︸
Temporal correlations

in the series

Therefore, in the literature, the multifractality is often reffered as two types :
Type I multifractality arises from a broad probability density function of the series values

kantelhardt2002 whereas Type II multifractality stems from long-range correlations within the
time series. This distinction enables us to identify and quantify the type of multifractality present.
By shuffling the series, we effectively eliminate the long-range correlations, retaining only the in-
fluence of the value distribution. By using a phase randomization algorithm we can generate a
surrogate which keeps the long term correlation in the series intact and make the distribution gaus-
sian. The difference in width between spectrums showcase the degree of multifractality and hence
inefficience of both sources.

The multifractal spectrum f(α) for the Russell 2000 (see Figure 5) returns exhibits a bell-shaped
curve, indicating multiple scaling behaviors in the data. Furthermore, the approximate symmetry
of the curve around its maximum implies that both large and small fluctuations are represented,
albeit with varying intensity. Overall, this bell-shaped spectrum underscores the complex, multi-
scale nature of the Russell 2000 returns. Comparing it with the shuffled series, we observe that the
width of the spectrum is lower than the original series, indicating that the shuffled series exhibits
a more uniform behavior with less multifractality. The surrogate version of the series is narrower
meaning that most of the multifractality that we observe are due to the non-gaussian distribution
of returns. The multifractality linked to the non-gaussian distribution cannot be quantified as true
multifractality since it’s due to the finite sample size (kwapien2023). The only true multifractality
comes from the long term correlation therefore, we use the width of the surrogate spectrum to
quantifie for it.

See section 8.4 for the S&P 500 returns.

4 Inefficiency Index

4.1 Proposition of an Inefficiency Index

Market inefficiency is captured by two structural components: the width of the multifractal
spectrum, ∆α = αmax surrogate −αmin surrogate, and the deviation of the rolling Hurst exponent from
the efficient market value, |Hrolling − 0.5|. We define the inefficiency index as

I = ∆αsurrogate × |Hrolling − 0.5|, (6)

where ∆αsurrogate quantifies true multifractality due to long-term correlations, any widening of
this spectrum would imply inefficiency. In an efficient market, H = 0.5; any deviation indicates
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temporal correlations, with H > 0.5 signaling persistence and H < 0.5 indicating anti-persistence.
This approach combines the classical Hurst exponent (order 2) and the multifractal spectrum (all
orders) for a comprehensive measure of inefficiency.

See Figure 9 for the inefficiency index I computed on indexes.

5 Trading Strategy

To emphasize the practical implications of our inefficiency index, we propose a simple trading
strategy based on a rolling hurst and the index’s values. The strategy is based on the ssec since
given the inefficiency plot it seems like the ssec might be the most inefficient series with highest
inefficiency corresponding to crises of 2008 and 2015. If we relied solely on a simple momentum or
mean reversion strategy based on the Hurst exponent, we would encounter numerous false signals
and often hold positions for only one or two days. This would result in high transaction costs and
poor performance. The purpose of our inefficiency index is to act as a filter for the Hurst signal,
allowing us to take positions only when the market is broadly inefficient across all scales. The
strategy is as follows:

1. Calculate the rolling Hurst exponent Hrolling using a window size of 6 months via the Modified
R/S method.

2. Calculate the inefficiency index I using the formula defined in Section 4.1.

3. Set a threshold for the inefficiency index, denoted as Ithreshold. This threshold is set on 1.5
standard deviation based on a rolling 6 months.

4. If I > Ithreshold and Hurst < 0.5, it indicates a potential market inefficiency, and mean reversion
so we take a short position in the asset, otherwise we are long.

The performance can be found in Table 4, the graphical representation respectively in Figure 11 and
Figure 12. The number of position taken is reduced with our index (421 vs 443), which showcases
that our inefficiency index serves as a filter for the Hurst signal, reducing the number of false
signals and drastically improving the overall performance of the strategy in terms of Sharpe ratio,
Annualized return and Max Drawdown.

6 Conclusion

In this paper, we examined the long-term memory and multifractal properties of major stock
market indices using both traditional and modified R/S analysis alongside MF-DFA. Our findings
suggest that, while most series display Hurst exponents greater than 0.5 implying some degree of
persistence the modified R/S approach indicates that only the Russell 2000 exhibits statistically
significant long memory. We introduce an inefficiency index that gauges how far a market de-
parts from efficiency by combining two elements: the width of its multifractal spectrum, which
captures long-range correlations revealed through surrogate analysis, and the deviation of a rolling
Hurst exponent from the benchmark value of 0.5, signalling momentum or mean-reversion effects.
By integrating these components, our index simultaneously quantifies directional inefficiencies and
multifractal complexity across all orders. This index can serve as a filter of the Hurst signal to
reduce the number of false signals and improving performance.
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7 Appendix

7.1 Demonstration of the covariance of fractional Brownian motion (fBm)

The fractional Brownian motion (fBm), denoted by XH(t), is defined as a zero-mean continuous-
time Gaussian process whose increments are correlated. Its covariance function is given by:

CH(t, s) =
σ2

2

(
t2H + s2H − |t− s|2H

)
where H ∈ (0, 1) is the Hurst exponent.
A fractional Brownian motion XH(t) with XH(0) = 0 has increments that are normally dis-

tributed with zero mean, specifically:

XH(t)−XH(s) ∼ N (0, σ2|t− s|2H)

Given that the process is centered (zero mean), the covariance is defined as:

CH(t, s) = Cov(XH(t), XH(s)) = E[XH(t)XH(s)]

Using the following algebraic identity:

XH(t)XH(s) =
1

2

[
XH(t)2 +XH(s)2 − (XH(t)−XH(s))2

]
the covariance becomes:

CH(t, s) =
1

2

(
E[XH(t)2] + E[XH(s)2]− E[(XH(t)−XH(s))2]

)
We have by definition of fBm:

E[XH(t)2] = σ2t2H , E[XH(s)2] = σ2s2H , E[(XH(t)−XH(s))2] = σ2|t− s|2H

Substituting these into our covariance expression, we get:

CH(t, s) =
1

2

(
σ2t2H + σ2s2H − σ2|t− s|2H

)
Factoring out the term σ2, we arrive at the final covariance formula:

CH(t, s) =
σ2

2

(
t2H + s2H − |t− s|2H

)
This covariance function entirely characterizes the dependence structure of fractional Brown-

ian motion, revealing long-term correlation when H > 0.5 (persistence) and anti-correlation when
H < 0.5 (anti-persistence). To comeback where you left off, see Section 3.

7.2 Augmented Dickey-Fuller Test
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Ticker P-Value on log prices P-Value on log differentiated return
S&P 500 0.863 0.000

Russell 2000 0.695 0.000
FTSE 100 0.226 0.000
Nikkei 225 0.660 0.000

DAX 0.663 0.000

Table 1 – P-values from the Augmented Dickey-Fuller (ADF) test for stationarity. The P-value of
log prices refers to the Augmented Dickey Fuller test (ADF) on log prices, while the P-value of
log-differentiated prices indicates the ADF test on log-differentiated returns. The null hypothesis is
non-stationarity. To come back where you left off, see Section 3.1

7.3 Definition (Time Domain)

A stationary process Xt is said to exhibit long-range dependence (long memory) if there exist
constants

a ∈ (0, 1), c > 0,

such that its autocorrelation function ρ(k) satisfies

lim
k→∞

ρ(k)

c k−α
= 1 (7)

where ρ(k) is the autocovariance function, c is a constant (V.Mignon 2003). To comeback where
you left off, see Section 3.2.

7.4 Simulation of Fractional Brownian Motion

In this simulation, we aim to generate fractional Brownian motion (fBm) to better understand
how the autocorrelation decays as a function of the Hurst exponent H. By simulating paths for
different values of H, we can observe how the memory and persistence properties of the process
vary. To generate the fractional Brownian motion (fBm), we use a Cholesky decomposition-based
approach. The covariance matrix of fBm is given by (3):

where H is the Hurst exponent, which determines the degree of long-term dependence in the
process.

The steps of the simulation are as follows:

1. Define a time grid of N points between 0 and T .

2. Compute the covariance matrix using (3).

3. Apply Cholesky decomposition to obtain a lower triangular matrix L.

4. Generate a vector W of standard normal random variables.

5. Obtain the fBm path by computing X = LW .

The params used for this simulation are N = 1000 number of points, T = 1 day, Hurst exponents
H = 0.2, 0.35, 0.5, 0.65, 0.8, the number of lag for the autocorrelation is 40.
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Figure 2 – Simulation of fractional Brownian motion with different Hurst exponent and its autocor-
relation function. Value of H = 0.2, 0.35, 0.5, 0.65, 0.8 and 1000 points is simulated over a day.

The behavior of the fractional Brownian motion varies significantly with the Hurst exponent H.
When H is small (close to 0), the fBm exhibits high local variability, resulting in a highly

granular trajectory with frequent fluctuations. The autocorrelation of increments decays rapidly,
indicating that future values are weakly influenced by past values. This suggests a short-memory
process, similar to standard Brownian motion.

As H increases, the autocorrelation decays more slowly, meaning that past values have a more
significant impact on future values. This introduces a form of long-term dependence, where the
process exhibits persistent trends. Consequently, the fBm trajectory appears smoother, with larger
coherent movements and fewer abrupt changes.

In summary, a lower H leads to a more irregular and noisy path, characteristic of short-memory
processes, while a higher H results in a smoother trajectory with stronger persistence.

7.5 R/S and Modified R/S Analysis

The R/S (Rescaled Range) analysis, introduced by Hurst and developed in various works by
Mandelbrot, is certainly the most well-known method for estimating the Hurst exponent H. This
statistic is defined as the range of the partial sums of deviations from the mean of a time series
divided by its standard deviation. Consider a time series Yt, t = 1, . . . , T , with mean Ȳ . The range
R is defined as:

R = max
1≤j≤T

(
Yj − Ȳ

)
− min

1≤j≤T

(
Yj − Ȳ

)
. (8)
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The R/S statistic is then computed by dividing the range by the standard deviation sT of the
series:

QT =
R

sT
=

max1≤j≤T

(
Yj − Ȳ

)
−min1≤j≤T

(
Yj − Ȳ

)
sT

, with sT =

√√√√ 1

T

T∑
j=1

(
Yj − Ȳ

)2
. (9)

Empirical studies by Mandelbrot and Wallis (1969b) have shown that QT scales with the number
of observations T according to

QT ∼ TH , (10)

which implies that by taking logarithms, the Hurst exponent H can be obtained from

H ∼ log(QT )

log(T )
. (11)

Unfortunately, the asymptotic distribution of the R/S statistic is not known, making it diffi-
cult to establish a statistical test for the null hypothesis of short memory against the alternative
hypothesis of long memory. Moreover, the R/S statistic does not explicitly account for short-term
autocorrelation in the data, which can inflate (or reduce) the overall range and misrepresent the true
variability of the series. Standard deviation estimates likewise ignore autocorrelated structure over
short horizons, compounding the bias. As a result, the R/S measure can erroneously detect long
memory when, in fact, short-term effects are responsible. This shortfall motivated Lo’s Modified
R/S procedure.

7.6 Modified R/S Analysis

The modified R/S statistic, denoted by Q̃T , is defined as:

Q̃T =
R

σ̂T (q)
, (12)

where

σ̂T (q) =

√√√√√ 1

T

T∑
j=1

(Yj − Ȳ )2 +
2

T

T∑
j=1

wj(q)

 T∑
i=j+1

(Yi − Ȳ )(Yi−j − Ȳ )

, (13)

and
wj(q) = 1− j

q + 1
. (14)

This statistic differs from the traditional R/S statistic only by its denominator. In the presence
of autocorrelation, the denominator does not solely represent the sum of the variances of the indi-
vidual terms, but also includes autocovariances weighted according to lags q, with the weights wj(q)
suggested by Newey and West (1987). Moreover, Andrews (1991) proposed a rule for choosing q:

q = [kT ] where kT =

(
3T

2

) 1
3
(

2ρ1
1− ρ21

) 2
3

, (15)

where [kT ] is the integer part of kT , and ρ1 is the first-order autocorrelation coefficient.
Unlike the classical R/S analysis, the limiting distribution of the modified R/S statistic is known.

The statistic V , defined by

V =
Q̃T√
T
, (16)
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converges to the range of a Brownian bridge over the unit interval. This convergence allows one to
perform a statistical test for the null hypothesis of short memory against the alternative hypothesis
of long memory by referring to the critical value table provided by Lo (1991), shown in Table 2.
Therefore, accepting the null hypothesis implies that the series lacks the slow-decaying dependencies
characteristic of long memory processes.

7.7 Critical Values for the Modified R/S Test

The critical values for the modified R/S test are provided in the table below. These values are
used to assess whether the series exhibits long memory behavior based on the modified R/S statistic.

Significance Level critical value (modified R/S Statistic)
0.005 2.098
0.05 1.747
0.10 1.620

Table 2 – Critical values for the modified R/S Statistic (Lo, 1991). To come back where you left
off, see Section 3.2

The following table summarizes the results of the R/S statistic, modified R/S statistic, and the
estimated Hurst exponents for each of the five indices analyzed:

Ticker R/S Hurst Exponent Modified Hurst Exponent Critical Value Long Memory
S&P 500 30.166 0.558 0.501 1.007 False

Russell 2000 51.373 0.645 0.588 1.714 True
FTSE 100 40.236 0.605 0.548 1.341 False
Nikkei 225 22.234 0.508 0.508 1.048 False

DAX 26.985 0.540 0.540 1.278 False

Table 3 – Results for R/S, Hurst exponent, modified Hurst exponent, critical value at 10%, and
rejection of the null hypothesis of no long memory from 1987-09-10 to 2025-02-28. The Hurst
exponent can be equal for the R/S and modified R/S methods in the case where the autocorrelation
coefficients are less than zero (refer to Section 7.3), in this case we set q equal to 0 and therefore the
R/S and modified R/S share the same formula. To come back where you left off, see Section 3.2

8 Multifractal Detrended Fluctuation Analysis

The Multifractal Detrended Fluctuation Analysis (MF-DFA) is a generalization of the standard
Detrended Fluctuation Analysis approach designed to detect multifractality in time series (Kantel-
hardt et al., 2002). The procedure can be summarized in five steps, as described below:

1. Profile construction. Given a series {xk}Nk=1, we first compute its mean x̄. Then, we build
the profile

Z(i) =
i∑

k=1

(
xk − x̄

)
, i = 1, 2, . . . , N, (17)

where we use Z(i) instead of Y (i) to avoid confusion with previous definitions. This cumulative
sum helps capture the local fluctuations in the data.
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2. Division into segments. We split the profile Z(i) into Ns ≡ ⌊N/s⌋ non-overlapping seg-
ments, each of length s. Since N may not be a multiple of s, we repeat this procedure starting
from the opposite end, yielding a total of 2Ns segments.

3. Detrending. For each of the 2Ns segments, we fit a polynomial trend (often linear or
quadratic) and subtract it from Z(i) in that segment. Let zν(i) be the fitting polynomial
in segment ν. We then define the local variance as

F 2
(
s, ν
)

=
1

s

s∑
i=1

[
Z
(
(ν − 1)s+ i

)
− zν(i)

]2
. (18)

This detrending step removes possible polynomial trends in the data.
4. Generalized fluctuation function. For each scale s, we compute the qth-order fluctuation

function,

Fq(s) =

{
1

2Ns

2Ns∑
ν=1

[
F 2
(
s, ν
)]q/2}1/q

. (19)

Varying q allows us to emphasize large (q > 0) or small (q < 0) fluctuations.
In the special case q = 0, the fluctuation function is defined by a logarithmic averaging (see
proof in Appendix Section 8.1):

F0(s) = exp

(
1

4Ns

2Ns∑
ν=1

ln
[
F 2
(
s, ν
)])

. (20)

5. Scaling behavior. Finally, on double-logarithmic axes, we examine the dependence of Fq(s)
on s. If

Fq(s) ∼ sh(q), (21)

then h(q) is called the generalized Hurst exponent. In a multifractal series, h(q) varies with
q, indicating different scaling behaviors for large versus small fluctuations.

For monofractal series, h(q) is approximately constant for all q. In contrast, for multifractal
series, h(q) strongly depends on q, revealing heterogeneity in the scaling of fluctuations. For a
graphical representation of the steps used in the MF-DFA, refer to Figure 3.

8.1 Proof of F0(s) as q → 0

Proof of F0(s) as q → 0

Fq(s) =
[

1
2Ns

2Ns∑
v=1

(
F 2
v (s)

)q/2]1/q
=⇒ lnFq(s) =

1

q
lnS(q),

where

S(q) =
1

2Ns

2Ns∑
v=1

e
q
2 lnF 2

v (s).

As q → 0, lnS(q) → 0 and we apply L’Hôpital:

lim
q→0

lnFq(s) = lim
q→0

lnS(q)

q
=

S′(q)

S(q)

∣∣∣∣
q=0

=
1

4Ns

2Ns∑
v=1

lnF 2
v (s).
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Exponentiating:

F0(s) = exp
[

1
4Ns

2Ns∑
v=1

lnF 2
v (s)

]
= exp

[
1

2Ns

2Ns∑
v=1

lnFv(s)
]
.

Thus F0(s) is the geometric mean of the segment fluctuations. To comeback where you left off, see

Section 8.

8.2 MF-DFA Graphical Representation

Figure 3 – Simulation of the MF-DFA steps, the series is the Russell 2000 returns split into segments
of length 880. The blue line represents the cumulative sum of the centered returns, while the coloured
lines represent the polynomial fit for each segment. To come back where you left off, see Section 8.

Figure 4 – Plot of the log scales (10 logly spaced increments from 10 to 500) against the log variance
for each values of q, green line (highest line) represents q = -3 the lowest line represents q = 3. The
slope of the line is the Hurst exponent for each q. The function is increasing with scale because, as
the window size grows, larger fluctuations are aggregated, leading to higher variance.
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8.3 Multifractal Spectrum of Russell Returns
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Figure 5 – Multifractal spectrum f(α) for the Russell 2000 returns. To comeback where you left
off, see Section 3.5.

8.4 Multifractal Spectrum of S&P 500 Returns
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Figure 6 – Multifractal spectrum f(α) for S&P 500 returns.

The multifractal spectrum of the S&P 500 is noticeably narrower (∆α= 0.40) and truncated
on the right compared to the Russell 2000 (∆α = 0.55), pointing to a weaker multifractal sig-
nature; its central peak at α = 0.486 and an M–R/S Hurst exponent of 0.501 both underscore
a near–random–walk dynamic. Unlike the Russell 2000, whose spectrum width shrinks when the
series is shuffled—revealing the role of long-range correlations—the S&P 500’s spectrum remains
essentially unchanged by shuffling, indicating that its multifractality arises almost entirely from the
non-Gaussian distribution of returns (kurtosis = 28.4). In practical terms, this means that extreme
fluctuations in the S&P 500 cluster together but lack persistent temporal dependence, whereas the
Russell 2000 exhibits genuine long-term memory. To come back where you left off, see Section 3.5.
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9 Log Prices and Inefficiency Index

Figure 7 – Top : Log–price trajectory of the SSEC. Bottom : Inefficiency index

Figure 8 – Top : Log–price trajectory of the FTSE. Bottom : Inefficiency index
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Figure 9 – Top : Log–price trajectory of the S&P 500. Bottom : Inefficiency index

Figure 10 – Top : Log–price trajectory of the Russell 2000. Bottom : Inefficiency index

10 Trading Strategy

Strategy Annualized Return Annualized Volatility Sharpe Max Drawdown
Long/Short SSEC with inefficiency 9.521 23.307 0.409 -56.474

Long Only SSEC 3.326 23.316 0.143 -71.985
Long/short SSEC without inefficiency 5.075 23.314 0.218 -62.687

Table 4 – Performance metrics of the trading strategy with and without the inefficiency index on
no transaction costs.
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10.1 Cumulative Returns of the Trading Strategy

Figure 11 – Cumulative returns of the trading strategy with the inefficiency index. The blue line
represents the cumulative returns of the strategy, while the red line represents the cumulative returns
of the ssec. The strategy is based on the inefficiency index, which is used to filter Hurst signal.

Figure 12 – Cumulative returns of the trading strategy without the inefficiency index. The blue
line represents the cumulative returns of the strategy, while the red line represents the cumulative
returns of the ssec. The strategy is long/short depending on the value of the Hurst (long > 0.5,
short < 0.5), no filter are used.
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