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BACKGROUND

• Bayesian causal methods that follow a parametric specification of the joint likelihood
of treatment, outcome and covariates, are analytically intractable when face with high-
dimensional confounders.

• One possible approach for dimensionality reduction is to model the set of confounders
as class indicators in a latent class analysis.

• This approach mimics the treatment assignment process often seen in observational
studies with administrative data that contain a large number of variables which are
indicative of the patient’s disease and health status.

• We aim to provide a Bayesian latent class approach to estimate causal effects.

OBJECTIVES
• In this paper, we consider a causal effect that is confounded by an unobserved, visit

specific, latent class in a longitudinal setting.

• We formulate the joint likelihood of the treatment, outcome and latent class models
conditionally on the class indicators, which permits a full Bayesian causal inference.

CAUSAL FRAMEWORK
1. NOTATIONS

• n subjects indexed by i, i = 1, . . . , n and k number of visits for each subject indexed by
j, j = 1, . . . , k.

• Yi, Xij , Uij and Zij are random variables representing an end-of-study outcome, time-
dependent class indicators (a vector of p elements), time-dependent latent class and
time-dependent treatment for i at visit j.

• There are a treatment categories available at each visit and c number of class member-
ships at each visit.

• History up to visit j are denoted as Ũij = {Ui1, . . . , Uij}, X̃ij = {Xi1, . . . , Xij} and
Z̃ij = {Zi1, . . . , Zij}.

• Let θ, α, β and γ characterize the outcome model, the latent class model, the class indi-
cator model and the treatment model respectively.
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Figure 1. Longitudinal causal DAG between latent class, indicators, treatment and outcome

3. ASSUMPTIONS

• Stable unit treatment value assumption

• Consistency, Y ã
i | (zi1 = a1, . . . , zik = ak) = Yi | (zi1 = a1 . . . , zik = ak)

• Positivity, at each visit, every possible treatment sequence which is compatible with treatment
history up till that visit have positive probability of occurring.

• Sequential latent unconfoundedness , Zij ⊥ (U
ãj

ij , X
ãj

ij , Y
ã
i ) | (U ãj−1

ij−1 , Zij−1), for j = 1, . . . , k.

• Conditional independence between class indicators , P (Xij | Uij) =
∏p

l=1 P (Xlij | Uij).

BAYESIAN CAUSAL INFERENCE WITH LATENT CLASS

1. Causal parameter of interest - Average potential outcome (APO)

E[Y ãi ] =
C∑

uik=1

. . .
C∑

ui1=1

E(yi | z̃i = ã, ũi = c̃k, θ)

[ k∏
j=1

P (uij = cj | z̃ij−1 = ãj−1, ũij−1 = c̃j−1, αj)
]

(1)

2. Joint likelihood

P (yi, z̃i, ũi, x̃i | θ, α, β, γ) = P (yi | z̃i, ũi = c̃k, θ)
[ k∏
j=1

P (zij | z̃ij−1, ũij = c̃j , γj)

× P (uij = cj | ũij−1, z̃ij−1, αj)P (xij | uij = cj , βj)
]

(2)

3. Posterior Distribution

P (θ, α, β, γ | yi, z̃i, ũi, x̃i) =
P (yi, z̃i, ũi, x̃i | θ, α, β, γ)P0(θ, α, β, γ)∫

{θ,α,β,γ} P (yi, z̃i, ũi, x̃i | θ, α, β, γ)P0(θ, α, β, γ)dθdαdβdγ
(3)

We assume a prior independence P0(θ, α, β, γ) = P0(θ)P0(α)P0(β)P0(γ).

4. Posterior Predictive Inference on APO We predict the potential outcome of a given
treatment sequence for a new observation drawn from data distribution {Y, Z, U,X},

P (ỹãi | yi, z̃i, ũi, x̃i) =
∫
{θ,α,β,γ}

P (ỹãi | yi, z̃i, ũi, x̃i)P (θ, α, β, γ | yi, z̃i, ũi, x̃i)dθdαdβdγ. (4)

SIMULATION STUDY

1. SIMULATED DATASET

• We simulated 1000 iterations of a simple two-visit (k = 2) longitudinal dataset
with n = 250 and n = 500.

• Cai ∼ N(10, 3) and Csi from a Bernoulli distribution with P (C2
i = 1) = 0.6

• Zij , a binary treatment assignment. logit(P (Zij = 1)) = −1 + uij − zij−1

• Uij , three class memberships with simulated proportion at 42% : 29% : 29% from
a Multinomial distribution with

log
P (Uij = 2)

P (Uij = 1)
= 0.5− 0.1cai + 0.2csi + I(uij−1 = 2) + 0.5I(uij−1 = 3)− zij−1

log
P (Uij = 3)

P (Uij = 1)
= 0.5− 0.1cai + 0.2csi + 0.5I(uij−1 = 2) + I(uij−1 = 3)− zij−1

• Xij , simulated conditionally independent given Uij from Bernoulli distribution.

- High quality defined as P (Xij = 1 | Uij = c) = 0.88

- Medium quality defined as P (Xij = 1 | Uij = c) = 0.73

- Low quality defined as P (Xij = 1 | Uij = c) = 0.62

• Yi ∼ N(µā, 1), where µā = 0.1 + 0.5I(zi1 = a1) + I(zi2 = a2) − 0.2I(ui1 =
2)− 0.5I(ui1 = 3)− 0.5I(ui2 = 2)− I(ui2 = 3).
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Figure 2. Causal diagram of the simulation dataset.

Table 1. Simulation results from 1000 iterations. Parameter of interest (µ11 − µ00) , treat-
ment effect evaluated between always treated and never treated. RB: Relative Bias; ESE:
Empirical Standard Error; ASE: Average Standard Error; CP: Coverage Probability; U1 and
U2 represent the average proportion of correct imputation under Bayesian estimation.

Setting Estimator Mean RB ESE ASE CP U1 U2
n = 250 Naive 1.18 -29.38 0.24 0.24 46.1

10 indicators Adjust 1.47 -12.21 0.22 0.23 86.4
high quality MSMs Sand. 1.61 -3.47 0.27 0.28 95.8

Bayes 1.67 0.12 0.22 0.23 96.4 0.70 0.70
n = 250 Naive 1.18 -29.38 0.24 0.24 46.1

10 indicators Adjust 1.38 -17.07 0.24 0.24 75.0
med quality MSMs Sand. 1.48 -11.22 0.28 0.28 87.5

Bayes 1.68 0.80 0.26 0.25 95.9 0.60 0.60
n = 250 Naive 1.18 -29.38 0.24 0.24 46.1

10 indicators Adjust 1.28 -23.48 0.24 0.24 61.2
low quality MSMs Sand. 1.32 -20.99 0.26 0.26 71.5

Bayes 1.19 -28.76 0.25 0.24 47.6 0.39 0.39
n = 500 Naive 1.18 -29.59 0.16 0.17 13.6

10 indicators Adjust 1.47 -12.14 0.15 0.16 78.4
high quality MSMs Sand. 1.62 -3.09 0.18 0.20 95.2

Bayes 1.68 0.45 0.15 0.16 96.6 0.78 0.78
n = 500 Naive 1.18 -29.59 0.16 0.17 13.6

10 indicators Adjust 1.38 -17.68 0.15 0.16 54.4
med quality MSMs Sand. 1.46 -12.31 0.17 0.19 82.2

Bayes 1.68 0.70 0.17 0.17 96.4 0.68 0.69
n = 500 Naive 1.18 -29.59 0.16 0.17 13.6

10 indicators Adjust 1.27 -24.12 0.16 0.17 29.8
low quality MSMs Sand. 1.30 -22.33 0.17 0.18 41.8

Bayes 1.31 -21.73 0.28 0.18 35.2 0.40 0.41

CONCLUSION & FUTURE WORKS

• Based on the simulation study, Bayesian latent class approach is preferred

when we have medium to high quality class indicators .

• Full Bayesian specification permits imputation on class membership; Even when mem-
berships are not well predicted, we can still obtain relative unbiased APO estimate.

• Our Bayesian approach can be easily implemented in common MCMC software.

• Future works to investigate the trade off between estimation accuracy and minimum
number of high quality indicators.
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