A Bayesian latent class approach to causal inference with longitudinal data
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BACKGROUND SIMULATION STUDY

e Bayesian causal methods that follow a parametric specification of the joint likelihood 1. SIMULATED DATASET Table 1. Simulation results from 1000 iterations. Parameter of interest (111 — o) , treat-
of treatment, outcome and covariates, are analytically intractable when face with high- e We simulated 1000 iterations of a simple two-visit (k = 2) longitudinal dataset =~ ment effect evaluated between always treated and never treated. RB: Relative Bias; ESE:
dimensional confounders. with n = 250 and n = 500. Empirical Standard Error; ASE: Average Standard Error; CP: Coverage Probability; Ul and

. . . . L U2 represent the average proportion of correct imputation under Bayesian estimation.

e One possible approach for dimensionality reduction is to model the set of confounders e C%~ N(10,3) and C?¥ from a Bernoulli distribution with P(q2 =1)=0.6

lass indicators in a latent cl lysis. : :

as class indicators in a latent class analysis e 7., abinary treatment assignment. logit(P(Zi; = 1)) = —1 + wi; — zij 1 Setting Estimator Mean RB ESE ASE CP Ul U2

e This approach mimics the treatment assignment process often seen in observational . s . n = 250 Naive 118 -2938 024 024 46.1

i, three cl bersh th lated t t42% : 29% : 29% £ .1 . ,

studies with administrative data that contain a large number of variables which are ’ gﬁdultﬁfﬁ)fxgi g}s’g‘libil:csio;pfv‘g; simulated proportion at 42% : 29% : 29% from 1Q 1nd1cat9rs Adjust 147  -1221 022 023 864

indicative of the patient’s disease and health status. P(U;; — 2) high quality = MSMs Sand. 1.61 -3.47 0.27 0.28 958
l Yo —0.5—0.1c¢*+0.2¢5 +T(u;i 1 =2)+ 0.5 (w51 =3) — 25 Bayes 1.67 012 022 023 964 070 0.70

e We aim to provide a Bayesian latent class approach to estimate causal effects. Ogllz (gzj = :13) ¥ 0205 4 1w )t (g1 )~ Fig n = 250 Na}ifve 1.18 -2938 024 024 46.1

log (Ui; = 3) = 0.5 — 0.1¢% + 0.2¢5 + 0.5 (w1 = 2) + I(usj—1 = 3) — 2ij_1 10 indicators  Adjust 1.38 -17.07 024 024 750

P(Uij = 1) med quality MSMsSand. 148 -1122 028 028 87.5

OBJECTIVES quality

, , : . e X;;, simulated conditionally independent given U;; from Bernoulli distribution. Bayes 1.63 0.80 026 025 959 0.60 0.60

e In this paper, we consider a causal effect that is confounded by an unobserved, visit . | | T — 950 Naive 118 2938 024 024 461
specific, latent class in a longitudinal setting. - High quality defined as P(X;; =1 | U;; = ¢) = 0.88 10 indicators  Adjust 198 9348 024 024 6102

e We formulate the joint likelihood of the treatment, outcome and latent class models - Medium quality defined as P(X;; = 1| Us; = ¢) = 0.73 low quality  M5Ms Sand. 132 -2099 026 026 71.5
conditionally on the class indicators, which permits a full Bayesian causal inference. i : : - N Bayes 119 2876 025 024 476 0.39 0.9

Low quality defined as P(X;; = 1| Uy = ¢) = 0.62 n=500  Naive 118 2959 016 017 136

o Vi ~ N(ug, 1), where piz = 0.1 + 0.51(z;1 = a1) + I(zi2 = a2) — 0.21(uj1 = 10 indicators  Adjust 147  -1214 0.15 0.16 784

CAUSAL FRAMEWORK 2) — 0.5I(u;; = 3) — 0.51 (ujz = 2) — I(ujz = 3). high quality MSMs Sand.  1.62  -3.09 0.18 0.20 95.2
1. NOTATIONS o o 7 Bayes 1.68 045 0.15 0.16 96.6 0.78 0.78

e . - n=>500  Naive 1.18 2959 0.16 0.17 13.6

°n spbjects indexed by i, 7 = 1,...,n and k number of visits for each subject indexed by \ 10 indicators ~ Adjust 138 -17.68 0.15 016 544
J,g=1... k. - - med quality MSMsSand. 146 -1231 0.17 019 822

11 12 - - -

o YV, X;;, U;; and Z;; are random variables representing an end-of-study outcome, time- BaYeS :“68 0.70 O'j7 O'j7 264 068 0.69
dependent class indicators (a vector of p elements), time-dependent latent class and " :.500 Na%ve ;*'18 -29.59 O'j6 O'j7 13.6
time-dependent treatment for i at visit ;. 7. > N 10 indicators ~ Adjust 127 2412 016 0.17 29.8

T . low quality = MSMs Sand. 1.30 -2233 0.17 0.18 41.8
e There are a treatment categories available at each visit and ¢ number of class member- Fieure 2. Causal diagram of the simulation dataset. Bayes 131 2173 028 018 352 040 041

ships at each visit.

Zij =2, -- -, Zij} 1. Causal parameter of interest - Average potential outcome (APO) e Based on the simulation study, Bayesian latent class approach is preferred
o Letd, a, f and v characterize the outcome model, the latent class model, the class indi- C o when we have medium to high quality class indicators .
cator model and the treatment model respectively. B3] = Z Z E(y; | 3 = a, i = &, 0) | - o | |
Bt e Full Bayesian specification permits imputation on class membership; Even when mem-
2. DAG berships are not well predicted, we can still obtain relative unbiased APO estimate.
Xi1 X2 Xik [ H P(uij = ¢ | Zij—1 = -1, T55-1 = G—1, )] (1) e Our Bayesian approach can be easily implemented in common MCMC software.
— ) j=1
— e Future works to investigate the trade off between estimation accuracy and minimum
Uil (Ui —= U, 2. Joint likelihood ) number of high quality indicators.
\.' P(yi, Zi, Uiy & | 0,0, 8,77) = P(y; | Zi, 4y = 51«,9)[1_[ P(zij | Zij—1,Uij = ¢5,75)
. T . j=1 ACKNOWLEDGMENT
’L]_ - 7’2 .................................. — f[,k,‘
T P T NP | s = }
\/‘/ < Pluiy = ¢ | Gijm1, Zij-1, ) Plaiy | wig = ¢, 5) 2) e This research is funded by the Canadian Institutes
of Health Research.
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3. ASSUMPTIONS f{e 0B} P(y;, Zi,u;, 2 | 0, a, B,7) Py (0, o, B, v)dOdadBdy

e Stable unit treatment value assumption o REFERENCE S
We assume a prior independence Py (0, o, 3,7) = Py(0)Po(a) Po(B)Po (7).

Robins J., A new approach to causal inference in mortality studies with a sustained exposure period—application

. .. , D . : ) o . . . to control of the healthy worker survivor effect, Math Modelling 7(9-12), 1986
e Positivity, at each visit, every possible treatment sequence which is compatible with treatment 4. Posterior Predictive Inference on APO We predict the potential outcome of a given | | Keil A.P, Daza EJ., Engel S.M., Buckley J.P, and Edwards J.K., A Bayesian approach to the g-formula. Statistical

® Consistency, i/i& ’ (Zil = A1,y...,Rik — ak) — Y; ‘ (Zz'l = Qa1 ...,Rk = ak)

history up till that visit have positive probability of occurring. methods in medical research 27(10), 2018.
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P(g@ iy Ziy Ui, T) = / P(g@ | yi, Zi, i, )P0, o, B,y | yi, Ziy s, T3 )dOdad Bdry. (4) Liu K., Saarela O., Feldman B.M., and Pullenayegum E., Estimation of causal effects with repeatedly measured
‘ {60,0,,8,~} ‘ outcomes in a Bayesian framework. Statistical Methods in Medical Research , 2020.

treatment sequence for a new observation drawn from data distribution {Y, Z, U, X },

e Sequential latent unconfoundedness , 7Z;; | (Uf;j , X ZJ YY) | (Uzijfll ,Zij—1),forj=1,... k.

e Conditional independence between class indicators , P(X;; | Ui;) = [[,_, P(Xu; | Usj).




