Future of Urban and Autonomous Mobility: Bringing Autonomy On and Beyond the Streets of Boston
Why does the World Economic Forum care about self-driving vehicles?

Improved road safety
- 90% of accidents today occur due to human error
- Reduction in accidents by 70%¹ feasible if self-driving vehicles represent considerable share of car fleet

Decrease in pollution
- Better fuel efficiency of ~20% can lower overall pollution (absent an increase in mileage)
- Even higher decrease of emissions possible with electrification

Freed up space
- Need for parking space in the city can be reduced by up to 60%¹

Increased traffic efficiency
- Traffic congestion can be improved by ~70%¹ due to smoother traffic flow and fewer cars on the road

Reduced public transport spending
- Reduction in losses from often non-profitable public transport service in lower density areas

Less waiting time
- Seamless, multi-modal end-to-end mobility can be offered to consumers

Productivity boost
- Over 1.2B hours of pure driving time savings over 10 years possible

Decreased cost of mobility
- Cost savings of up to 50% per km for ride shared self-driving taxi service vs. traditional car ownership

Equitable access to mobility
- Elderly, children and people with disabilities can make use of new end-to-end mobility options

¹ After 10 years; Note: Potential rewards calculated for a model city of ~5M inhabitants; Source: International Organisation for Road Accident Prevention, European Parking Association, UCS, World Economic Forum; BCG analysis
The World Economic Forum

The International Institution committed to improving the state of the world through public-private cooperation in the spirit of global citizenship

Non profit, international organization founded by Prof. Klaus Schwab in 1971.

Impartial: tied to no political, partisan or national interests.

Global: based in Geneva, with offices in New York, Beijing and Tokyo.

Belief: economic progress and social development are essential to creating a sustainable future.
Multi year Forum initiative to shape the future of urban mobility

- Develop vision for mobility and strategy for autonomous vehicles (AV)
- Support the set-up of AV testing
- Extend AV strategy to include goods mobility
- Contribute to a network of cities to share best practices and key learnings on the global level

Traffic management
- Benchmarking of traffic management concept in leading cities

Self-driving vehicle (SDVs)
- Analysis of obstacles in regulation, society, and technology
- Customer research
- City policy maker interviews

Intermodal travel assistants
- Benchmarking of currently available implementations

Future urban mobility scenarios
- Scenarios for urban mobility

Source: World Economic Forum; BCG analysis
The City of Boston realized first tests in 4 months, now three AV partners approved.
A phased incubator approach is instrumental to scale technology and business model trials in a controllable environment.

Testing phases

A Off-site testing

B1 100 miles, Marine Industrial Park, day time only, good weather

B2 100 miles, Marine Industrial Park, day and night time, mixed weather

C1 200 miles, South Boston Waterfront, day time only, good weather

C2 200 miles in South Boston Waterfront, day and night, mixed weather

D1 400 miles in City of Boston, day time only, good weather

D2 City of Boston day and night time, mixed weather

Detail testing site for phase C1

Raymond Flynn Marine Park Seaport District

- Testing permitted on City roadways.
- MassPort roadways pending approval.

Source: World Economic Forum; nuTonomy, MassDOT, City of Boston, BCG analysis
Impact simulation: We built a real-life traffic model for downtown Boston

We took a real world environment incorporating geospatially accurate data ...

... and simulated traffic flows in its streets

<table>
<thead>
<tr>
<th>Traffic participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
</tr>
<tr>
<td>Taxis</td>
</tr>
<tr>
<td>Pedestrians</td>
</tr>
<tr>
<td>Buses</td>
</tr>
<tr>
<td>Minibuses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment and infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic lights</td>
</tr>
<tr>
<td>Streets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dynamic behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following distance</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Traffic rules</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
</tbody>
</table>

0.45 km² study area
12.6 km of streets
22.8 km of sidewalks
12 bus routes
53 traffic signals

Source: World Economic Forum; BCG analysis in cooperation with MIT Media Lab
We looked at one evolutionary and one revolutionary scenario.

Boston today
- **Primary transport modes**
 1. Public transit: 56%
 2. Personal car: 33%
 3. Taxi and e-hailing: 11%
- **Today's status quo in Boston downtown study area**
 - Most trips into and out of study area are work commutes
 - Public transit and personal car as key transport modes

Private Car Evolution
- **Primary transport modes**
 1. Public transit: 50%
 2. Shared self-driving taxi: 22%
 3. Self-driving personal car: 11%
 4. Traditional personal car: 11%
- **Shift to autonomous technology with increased sharing**
 - Many car owners switch to self-driving cars or using shared self-driving taxis
 - Some public transit shifts to shared taxi

Robo-Transport Revolution
- **Primary transport modes**
 1. Public transit: 34%
 2. Self-driving mini-bus: 28%
 3. Self-driving taxi: 24%
 4. Shared self-driving taxi: 14%
- **Disruptive shift to shared, autonomous transportation**
 - Shift from personal car to (shared) self-driving taxi and minibus
 - Considerable shift from public transit to minibus

Note: Model assumes simplified modal mix without walking and cycling. Boston today modal mix representative of study area only. Modal mix expressed as % of trips taken.

Source: World Economic Forum; BCG analysis in cooperation with MIT Media Lab
Number of vehicles: Considerable reduction due to sharing

- **Private car evolution** (-11%)
 - Increase in shared self-driving taxis from personal car
 - Counterbalanced by shift from bus to shared self-driving taxi (occupancy of 2-3 PAX)

- **Robo-transport revolution** (-28%)
 - Strong increase in use of shared modes
 - Slightly counterbalanced by bus trips shifting to smaller capacity minibuses (occupancy 2-15 PAX)

Source: World Economic Forum; BCG analysis in cooperation with MIT Media Lab
Average travel speed: Significant improvements of up to 30% possible

Total average speed in km/h for private cars

- **Private car evolution** +15%
 - Driven by small reduction in the number of vehicles (-11%)
 - Lower safety distance between autonomous vehicles
 - Traffic flow is improved

- **Robo-transport revolution** +30%
 - Driven by strong reduction in the number of vehicles (-28%)
 - Large share of autonomous vehicles with lower safety distance
 - Traffic flow is considerably improved

Source: World Economic Forum; BCG analysis in cooperation with MIT Media Lab
In both scenarios we found significant impact along key KPIs

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Private car evolution</th>
<th>Robo-transport revolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of vehicles</td>
<td>-11%</td>
<td>-28%</td>
</tr>
<tr>
<td>Vehicle distance traveled</td>
<td>+13%</td>
<td>+6%</td>
</tr>
<tr>
<td>Average travel time</td>
<td>-11%</td>
<td>-30%</td>
</tr>
<tr>
<td>CO2 emissions</td>
<td>-42%</td>
<td>-66%</td>
</tr>
<tr>
<td>Parking space needed</td>
<td>-16%</td>
<td>-48%</td>
</tr>
</tbody>
</table>

Source: World Economic Forum; BCG analysis in cooperation with MIT Media Lab
Six key takeaways from the collaboration with the City of Boston

1. Autonomous vehicles are a crucial building block to make transportation more **accessible, safe and reliable**

2. Autonomous vehicles **enhance, but do not replace public transit**

3. Getting used to AVs takes time—**public’s awareness** for them must be **created early on**

4. City of Boston does **not want to own assets** for shared mobility models

5. Boston envisions **one city-wide mobility platform** where all its mobility offers converge

6. **Experimentation with different industry partners** key to learn, always in close cooperation with state level

Source: World Economic Forum; BCG analysis; City of Boston
Outlook: The project focusses on 5 key topics in 2017

1. **Urban logistics models**
 - Analyze new business models for urban goods delivery

2. **AV testing**
 - Assist in expanding autonomous vehicles testing in Boston

3. **Impact study AVs**
 - Broaden scope of traffic simulation

4. **Mobility Platform**
 - Develop framework for city mobility platform

5. **City Network**
 - Facilitate a best and worst practice on autonomy leveraging digital capabilities and existing city networks & collaborations
Autonomous mobility landscape 2016: Variety of categories emerged

- Connectivity tools – speech recognition, wireless connection, wearable, infotainment systems
- Connection between connected cars and advanced driver's assistance – external information/input needed to operate vehicle
- Unmanned aerial vehicle, autonomous robotics
- Self-driving fleets, electric autonomous vehicles, driverless last-mile transportation
- Control units and electronics
- Software systems, CPU, low power programmable processors, electronic perception technology
- Image processing sensors, optical distance measurement, 3D image sensors
- Machine learning, unsupervised
- Lane departure, collision warning, localization and mapping, real-time 3D mapping, smart 3D sensing

Source: BCG analysis with Quid
From control units to autonomous vehicles and AI in ~15 years

2000
33 companies

2008
55 companies

2016
115 companies

Connected car systems and Control units were already in vehicles

Unmanned drones were the earliest form of 'autonomous vehicles'

Deep-learning and A.I. is a completely new cluster. Large growth in Sensor technology and Advanced driver assistance

Source: BCG analysis with Quid