Deep Learning & Autonomous Vehicles

Robert Seidl robert@motusventures.com

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Deep Learning: Cambrian Explosion

capabilities Early wins AV applications

Deep Learning Success Stories

- Object recognition (cats, faces, cars, voices etc.)
- Image matching, Machine translation, Games, Lip reading
- Healthcare: iphone dermatology diagnostics, Deep Patient
- Generative networks
 - Voice synthesis
 - Chat bots
 - Image Captioning
 - Image completion, inpainting

Object detection & bounds

Road & Lane markings

Image Segmentation

Free space detection

HOW A DEEP NEURAL NETWORK SEES

Training

Forward / Inference pass

Back propagation / Error adjustment pass

GoogleNet

LeNet 28×28 (1998)	AlexNet 224×224 (2012)	VGG 224×224 (9/2014)	GoogLeNet 224×224 (9/2014)	Inception BN 224×224 (2/2015)	Inception V3 299×299 (12/2015)	Resnet (n=9, 56 Layers) 28×28 (12/2015)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

AV Architecture

- Sensors & fusion
- Object Detection & tracking
- Behavior Detection
- Failure detection
- camera, lidar, radar, ultrasound
- V2x, 5G
- GPS, IMU, map/localization
- lead vehicle

- Trajectory control
- Maneuver planning
- e-horizon, maps
- Traffic signs, rules, lights
- Safe distances
- Comfortable dynamics

- steering
- brakes, accelerator
- belt tighteners
- ECUs

End-to-End learning

Sense

Actuate

Raw sensor inputs

steering, brake outputs

http://www.cs.nyu.edu/~yann/research/dave/

I4 years ago
Urs Muller, Yann LeCun
Training data: human driver,
I00K images + stick input
72K nodes, 3M connections
no hand-coded algorithms

End-to-End learning

NVidia BB8 car running PilotNet

Challenges: Introspection & Development Tools

Engineering "V"

Modern Coding Tools+Methods

- Editor
- Debugger
- Profiler
- Static code analysis
- Versioning
- Testing
- Code coverage
- Requirements tracking
- Agile, SCRUM, CI, TDD

NN: still more art than science

Deep Visualization Toolbox

- Network architecture
 - Height / Width / Reusable modules
- Training set size, backprop f's
- Don't run over grandma
- Adding outputs w/o retraining
- Activation semantics
- Undertrained parts

Spatial Saliency visualization (NVidia)

Faster learning of rules

Deep Learning
Data driven
Perception

Procedural Rule driven Planning

Your perception
planning
control code

ROS, Tensorflow

OpenGL, CUDA
Linux, QNX

DrivePX, Freescale etc.

\$
Development costs

3-4x \$
Maintenance costs

Opportunities

Functional & Safety validation

using

Sensor Simulation

Cityscapes dataset

20K images hand labeled data, 30 classes, 50 cities, Daimler/Max Planck/TU Darmstadt

https://www.cityscapes-dataset.com/

Tesla collecting driver behavior

The world is way too big to just *randomly* sample it.

Phillip Isola (MIT/UC Berkeley)

day

TESTING

different light conditions

rain

fog, snow

THOUSANDS OF CASES

Simulation: a key driver for AV success

- Controllable (weather, lighting, sensor configs etc.)
- Repeatable, fuzz-able
- Scalable
- Dangerous = ok
- Lots of training data, fully labeled, with ground truth
- Sim Training is transferable

Sensor Fusion

Sensor Steering

foveation requires loops rather than just feedforward

Behavior not just Object recognition

RNNs to better detect "difficult" objects

Behavior classification

Eye contact

Head pose, gaze estimation

Intent-Aware Long-Term Prediction of Pedestrian Motion

Sharing Data & Best Practices

- Scenario catalog
 - scenarios (geometry, traffic, environment etc.)
 - eg freeway maneuvers
 - German project:
- Accident Data
- Realistic traffic & pedestrian data

This has only just begun

