DOE’s Focus on Energy Efficient Mobility Systems

David L. Anderson
Energy Efficient Mobility Systems Program
Vehicle Technologies Office

Automated Vehicle Symposium
San Francisco, California
July 13, 2017
MOBILITY IS FOUNDATIONAL TO OUR WAY OF LIFE
MOBILITY IS A LARGE PART OF OUR ENERGY ECONOMY

Transportation is the 2nd largest expense for U.S. households

70% of total U.S. petroleum usage is for transportation

On-road vehicles account for 85% of transportation petroleum usage
CONVERGING TRENDS ARE SHAPING MOBILITY

Population

- Population expected to grow by **70 million** in next **30 years**

Demographics

- **Americans are Living Longer**
 - By 2045, the number of Americans over age 65 will increase by **77%**.
 - About **one-third** have a disability that limits mobility.

- **Millennials are Connected & Influential**
 - There are **73 million** Americans aged 18 to 34.
 - They drove **20%** fewer miles in 2010 than at the start of the decade.

Technology

- **Integration of Connected & Automated Technologies**
- **Introduction of Shared Service Platforms**
- **Advancements in Energy Storage Technology**
- **Deeper Application of Big Data**
- **Faster Processing Speeds at Decreasing Cost**
Industry is leading the introduction of disruptive business models & technologies based on consumer demand.

DOE must understand:
• How will this disruption lead to new energy efficiency opportunities?
• What are the risks to energy use and how can we overcome them?
• What are the most promising innovation levers for a sustainable energy future?
FUNDAMENTAL DISRUPTION, DRAMATIC ENERGY IMPACTS

Potential Increase in Energy Consumption

2050 Baseline Energy Consumption

Potential Decrease in Energy Consumption

Source: Joint study by NREL, ANL, and ORNL (http://www.nrel.gov/docs/fy17osti/67216.pdf)
VTO EXPANDING FOCUS TO TRANSPORTATION LEVEL

Component Vehicle Transportation System
VTO develops advanced transportation technologies that:

✓ Improve energy efficiency
✓ Increase domestic energy security
✓ Reduce operating cost for consumers & business
✓ Improve global competitiveness of US economy
ENERGY EFFICIENT MOBILITY SYSTEMS (EEMS)

- SMART Mobility Lab Consortium
- High-Performance Computing / Big Data Analytics
- Advanced R&D Projects
- EEMS Living Labs
- Core VTO Evaluation & Simulation Tools
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles

Connected/Automated Vehicles

- What are the *energy, technology, and usage implications* of connected & autonomous technologies?

- How will these systems *operate in the real world*?

- What are the critical *levers to promote “eco-CAV” solutions*?
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Mobility Decision Science

Mobility Decision Science

- What are the transportation energy impacts of potential lifestyle trajectories?
- How do consumers and companies make travel decisions in the short / medium / long-term?
- What mechanisms are available to influence consumer decisions?
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Mobility Decision Science
- Urban Science

Urban Science

- **How will SMART-enabled mobility impact the urban traveler** in terms of VMT, congestion, vehicle ownership, mobility-as-a-service?
- What are the long-term **impacts on the urban built environment?**
- What are the energy impacts of **optimized signal management and automated mobility districts?**
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Mobility Decision Science
- Urban Science
- Advanced Fueling Infrastructure

Advanced Fueling Infrastructure

- **What infrastructure is required** to support future mobility systems?
- How can next-gen fueling/charging infrastructure enable energy-efficient transportation?
- What are the **costs and benefits**, and where should infrastructure investments be made?

EVSE Location Siting in Seattle

From 18,000 Potential Sites to 281
SMART MOBILITY LAB CONSORTIUM

Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Mobility Decision Science
- Urban Science
- Advanced Fueling Infrastructure
- Multi-Modal Transportation

Multi-Modal Transportation

- What are the potential energy benefits of reduced modality interface barriers?
- What are the interactions between mass transit and transportation network companies?
- What opportunities do evolving household spending and commodity flow bring for freight logistics?
Multi-Lab Consortium creating new knowledge and understanding about the energy implications and opportunities from future mobility.

- Connected & Automated Vehicles
- Mobility Decision Science
- Urban Science
- Advanced Fueling Infrastructure
- Multi-Modal Transportation

Quantifying energy savings potential of vehicle connectivity and automation in merging roadway scenario (ORNL).

Quantifying the energy benefits of CAV-enabled drive smoothing for multiple powertrain technologies (ANL).

Modeling charging requirements for electrified shared mobility service fleets using spatially-resolved vehicle activity patterns (INL/NREL).

Analyzing energy impacts of autonomous driving in Chicago metropolitan area using agent-based transportation simulation (ANL).
ADVANCED R&D PROJECTS

Partner with industry and academia to research and develop mobility technology solutions that lead to energy savings.

Solutions may include:
- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components
Partner with industry and academia to research and develop mobility technology solutions that lead to energy savings.

Solutions may include:
- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components

Develop an adaptive spatio-temporal intersection control system that reduces fuel use by ~15% while improving travel time (University of Michigan).
Partner with industry and academia to research and develop mobility technology solutions that lead to energy savings.

Solutions may include:
- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components

FOA-0001629 EEMS AWARD SELECTION

Clemson University: Boosting Energy Efficiency of Heterogeneous Connected Automated Vehicle (CAV) Fleets via Anticipative and Cooperative Vehicle Guidance

- Develop anticipative/collaborative traffic and vehicle control algorithms to achieve 10% energy savings
- High-fidelity transportation and vehicle simulation to quantify energy benefits
- On-track vehicle-in-the-loop testbed to validate results
Partner with industry and academia to research and develop mobility technology solutions that lead to energy savings.

Solutions may include:
- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components

FOA-0001629 EEMS AWARD SELECTION

University of California – Riverside: Evaluating Energy Efficiency Opportunities from Connected and Automated Vehicles (CAVs) coupled with Shared Mobility in California

- Conduct real-world CAV data collection and analysis
- Model impacts on energy intensity (EI) and modal activity (MA)
- Construct statewide energy inventory
Partner with industry and academia to research and develop mobility technology solutions that lead to energy savings.

Solutions may include:
- Hardware devices
- Software solutions
- Control systems
- Advanced sensors
- Powertrain components

FOA-0001629 EEMS AWARD SELECTION

Virginia Polytechnic Institute and State University: Developing an ECO-Cooperative Automated Control System (ECO-CAC)

- Develop network-level vehicle-routing and speed-harmonization algorithms
- Develop vehicle-level energy management algorithms
- Integrate network and vehicle algorithms to demonstrate 20% energy savings while improving Level-of-Service (congestion)
- **Major disruption** occurring in transportation
- **Connected & Autonomous Vehicles** (CAVs) are coming
- CAVs & Shared Mobility have **dramatic implications for energy use**
- DOE must understand energy impacts and **develop the knowledge to enable energy efficiency in transportation**