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How does UAV System Work
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Image Credit: Creotech Instruments S.A.
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from the UAV data? 
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Overview: the Need of High-throughput Phenotyping 
and Crop Breeding for Bioenergy Feedstock

• Sustainable Aviation Fuels (bio-jet fuel): expected to reach 
30 billion gallons per year by 2040.

• Switchgrass (Panicum virgatum L.) is a perennial grass 
with great potential as a bioenergy feedstock. 

• Measuring the traits is labor-intensive and costly.

• UAV-based RGB and hyperspectral/multispectral imagery

• Explored the feasibility of applying UAV remote sensing to 
the high-throughput phenotyping for switchgrass.

• Four traits: leaf chlorophyll, nitrogen, lignin content, and 
rust disease (Xu et al., 2021).

A
C

UAV with multispectral camera. A) DJI Matrice 600 pro with MicaSense RedEdge-M multispectral camera. B) Vegetation 

index map of the field calculated from the multispectral imagery. Green color represents higher vegetation index value 

compared to red color; C) Digital surface model from UAV-based LiDAR sensor; D) UAV map of the field.

D
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Research Objectives and Questions

• Objectives

- To leverage spectral information for modeling the four traits

- To provide scientific basis for a sustainable field-grown switchgrass

- To test the feasibility of automated phenotyping for precision agriculture 
and plant breeding

• Questions 

(1) Can we model the leaf chlorophyll, nitrogen, lignin, and rust disease with 
UAV multi-spectral data?

(2) Which vegetation index developed from the UAV multispectral data 
performs best?

(3) Can we detect the rust disease from hyperspectral imagery?
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Data Collected from Switchgrass GWAS 2020 
in Field

• UAV: weekly flights

• Chlorophyll Measurements (mg/L)

- measured chlorophyll content of the leaves using Opti sense handheld 
device

• Rust Severity Score (percentage)

- scored the plant rust as percentage ranging from 0-100% where 0 indicates 
no rust and 100% indicates severe rust.

• Nitrogen and lignin quantification (percentage)

- 600 plant samples; 150 accessions grown under Low N (2 replicates), 150 
grown under Mod N (2 replicates)

- two tillers containing both stem and leaves were collected from each plant

- samples were oven dried at 45°C for 72 hours, then milled

- nitrogen and lignin quantification were done at Noble Research Institute, 
Oklahoma

UAV Data Time-series:

Rust

07/29/2020

(5-day later)

08/12/2020*

(6-day later)

08/26/2020

(5-day later)

10/15/2020

(1-day earlier)

Chlorophyll

08/26/2020

(1-day later)

Nitrogen 
and Lignin

07/29/2020

(6-day earlier)

11/05/2020

(5-day earlier)

Ground Data Time-series:

Rust

07/24/2020

08/06/2020*

08/21/2020

10/16/2020

Chlorophyll

08/25/2020

Nitrogen 
and Lignin

08/04/2020

11/10/2020
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UAV-based Modeling Methods for Rust Disease, Chlorophyll,
Nitrogen, and Lignin Content

NDRE: normalized difference rededge

NDVI: normalized vegetation index

CLG: chlorophyll index green

CLRE: chlorophyll index rededge

CVI: chlorophyll vegetation index

GLI: green leaf index

RVI: ratio vegetation index

Data processing and analysis pipeline for 

switchgrass sustainability traits modeling:

• We have ground data collected from 

different time points

• We have processed the UAV data from the 

corresponding dates. We calculated the 

vegetation index, including 7 vegetation 

indices

• We then build 4 statistical models for the 

four traits, one model for each trait.



8

Modeling Results for Rust Disease, Chlorophyll,
Nitrogen, and Lignin Content

• The normalized difference red edge (NDRE) 
vegetation index outperforms other indices for 
rust and nitrogen, while NDVI performs the 
best for chlorophyll and lignin. 

• Linear models work well for rust disease, 

chlorophyll and lignin.

• For nitrogen, non-linear models outperform 

linear models, but these regression models did 

not perform well (Xu et al., 2021)

• Machine learning approaches have potentials 

for modeling the nitrogen content

High-throughput modeling results (Xu et al., 2021)  
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Ongoing Work: Tiller Nitrogen Content Estimation with UAV
Data – Machine Learning Methods

• (a) Incorporating more vegetation indices into the 
model. 10 Vegetation indices were calculated from 
multispectral data.

Correlation between nitrogen content (NITROGENC) and the ten 

vegetation indices calculated from multispectral imagery. 

• (b) Machine learning approaches were used to 
model the nitrogen with the vegetation indices. 
End-of-season correlation plot shows the 
importance of each variable.

- Random forests (RF) compared with conventional               
(regression-based) models is much more powerful to      
model the nitrogen content
- Accession is extremely important for nitrogen modeling

Predictor 
Variables (X):

• Accession

• CLG

• CLRE

• CVI

• EVI

• GLI

• NDRE

• GNDVI

• GRVI

• NDVI

• RVI

Response 
Variables 
(Y) :

Nitrogen 
content

~

Vegetation indices and their importance 

to machine learning algorithms. Figure 

shows the variable importance measured 

from random forest machine learning 

algorithm.

Variable Importance

Advanced big data analytics with data collected 
from the second growing season (2020) were used 
to improve the nitrogen content model

GLI: green leaf index 
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• Cubist model: rule based modeling

Rules applied: aggregating the accessions (e.g., J237.A)  by nitrogen content

Clustering the Samples by Accessions

Group 2: [50 accessions, 200 plants mean 1.02, range 0.73 to 1.45, est err 0.10]

Accessions in {J324.A, J301.A, J465.A, J514.A, J337.A, J329.A, J321.A, J501.A, J331.A, 

J496.C, J251.C, J235.A, J018.A, J086.B, J441.A, J421.A, J028.C.B1, J020.B, J330.A, 

J186.A, J236.A, J001.A, J013.C, J219.A, J500.A, J216.A, J009.C, J182.A, J018.C.B1, 

J188.A, J313.A, J016.C, J065.B, J460.A, J231.A, J243.A, J189.A, J004.B, J041.A, J288.B, 

J484.C, J482.C, J320.A, J303.A, J498.B, J212.A, J458.B, J466.A, J503.C, J315.A}

Nitrogen Content = 1.01 - 0.19 GLI + 0.1 EVI

Group 3: [44 accessions, 176 plants, mean 1.15, range 0.63 to 1.52, est err 0.13]

Accessions in {J016.A, J327.A, J317.A, J013.B, J215.A.B1, J594.A, J504.C, J614.B, 

J022.D, J222.A, J241.A, J008.D, J022.A, J016.B, J323.A, J251.A, J502.A, J460.B, J615.A, 

J016.D, J464.B, J218.A, J019.A, J503.A, J305.A, J211.A.B1, J416.A, J500.B, J456.C, 

J311.A, J483.C, J177.A, J326.A, J497.C, J279.A, J026.B, J271.A, J023.B, J466.B, 

J394.C.B1, J005.B, J190.A, J268.A.B1, J226.A}

Nitrogen Content  = 1.15 - 0.21 GLI + 0.09 EVI

Group 4: [28 accessions,144 plants, mean 1.29, range 0.81to 1.74, est err 0.15]

Accessions in {J272.A, AP13, J293.A, J500.C, J208.C, J073.B, J336.A, J011.B, J497.A, 

J274.A, J419.A, J461.C, J250.B, J003.E, J535.A, J587.A, J193.A, J229.A, J499.C, J610.A, 

J037.A, Performer.TCE7, J441.B, J340.A, J005.A, B6, J447.A, J030.C}

Nitrogen Content = 1.32

Total accessions measured: 24+50+44+28 = 146 

accessions

Total plants: 96+200+176+144 = 616 plants

Evaluation on training data:

Correlation coefficient:  0.53 (vs R-squared 0.05)

Group 1 Group 2 Group 3 Group 4

Group 1: [24 accessions, 96 plants, mean 0.86, range 0.48 to 1.16, est err 0.12]

Accessions in {J237.A, J587.B, J482.B, J275.A, J240.A, J296.A, J504.A, J280.A, J206.A, 

J065.A, J312.A, J483.B, J610.C, J424.A, J469.C, J339.A, J484.A, J319.A, J270.A, J008.A, 

J481.C, J294.A.B1, J308.A, J230.A}

Nitrogen Content = 0.85 - 0.2 GLI + 0.11 EVI 
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Ongoing Work: Rust Disease Rating Using Hyperspectral 
Imagery and Artificial Intelligence

• Experimental design for switchgrass rust disease 
detection and rating: lab – tripod - UAV

Spectral responses for healthy switchgrass leaves (collected from the Resonon

Pika XC2 hyperspectral camera). The five ribbons, from blue in the left, to red 

in the right, indicate the band locations of the MicaSense multispectral camera, 

as compared to the full spectral range of Pika XC2

Rust Severity 
Assessment

Data 
collection

Image 
Analysis

AI/ML
Rust 

Detection

• Reasons for this “lab – tripod – UAV” integrated approach: 

- downselect the spectral signature

- less spectral variability in the lab

- higher resolution on a tripod

- upscaling the method with UAV once we identify the target 

• Hyperspectral data will be compared with the multispectral data for 

rust detection.
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Rust Disease Rating: progress in the lab

• Collected healthy and rust-infected leaf samples.

• Used Resonon Pika XC2 hyperspectral camera 

benchtop system.

• hyperspectral camera to scan the leaves for spectral 

reflectance. 

• Spectral data classification analysis with spectral data 

processing software.

• Spectral data descriptive analysis with spectral data 

processing.

The green color and blue color lines represent the average of 

the spectral reflectance from the rust and healthy leaves, 

respectively. Imagery is pixel-based, and lines show an 

average of several pixels in the areas affected by rust and the 

healthy areas. Upper and lower boundaries of the lines 

represent the standard deviation of those pixels selected for 

the areas affected by rust or the healthy areas. Red circles 

show the wavelength values where differences may happen 

between these two groups, control (healthy) and rust.

Spectral Angle Mapper (SAM) for  

rust disease pixels  

Benchtop hyperspectral scan, areas 

affected by rust disease are shown in 

yellow or orange
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Spectral data collection in the lab and the spectral responses for 

healthy switchgrass leaves.

The five ribbons, from blue in the left, to red in the right, indicate 

the band locations of multispectral camera
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Potential Applications Beyond the Four Traits

Platform/Sensor Spatial Scale Use

Satellite/UAV
multispectral
LiDAR

field
scale

biomass/yield
weed detection
crop stress
soil moisture
precision irrigation

Outdoor 
tripod/gantry 
hyperspectral 

plant 
scale

canopy temperature
disease/pathogen
leaf area index
water content 

Lab benchtop/
hyperspectral 
camera

leaf 
scale

disease/pathogen
leaf expansion rate
Photosynthesis rate
phytonutrients

switchgrass

weed
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Take Home Messages

• Leaf chlorophyll, lignin content, and rust disease can be modeled with UAV 
multispectral data

• Nitrogen content modeling is a challenge, leveraging multiple vegetation 
indices and machine learning can significantly boost the model

• Hyperspectral imagery has great potential for rust disease detection 

• A combination of sensors at various spatial scales can provide more 
opportunities for the applications
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MDPI Plants Special Issue

• Name of the special issue: “Modeling of Biofuel 
Plants Phenotyping and Biomass”

• A special issue of Plants (ISSN 2223-7747) belongs to 
the section "Plant Modeling".

• Deadline for manuscript submissions: 31 December 2023

We encourage topics from a data-driven approach, including, 

but not limited to:

• Perspectives of biofuel plant phenomics;

• Big data challenges for genomics and phenotyping data;

• High-throughput phenotyping: tools and techniques for assessment;

• Genomic selection in biofuel crops: Benefits of high throughput phenotyping;

• Precision agriculture association with high throughput biofuel plant phenotyping;

• Biomass quantity/quality assessment;

• Biotic/abiotic stress assessment;

• Sustainability trait assessment.

Scan this QR code to access

Biofuel crops ≠ switchgrass only!

corn, sugarcane, palm oil, cottonseed, sunflowers, 

wheat, soybean, and more…

https://www.mdpi.com/journal/plants
https://www.mdpi.com/journal/plants/sections/plant_modeling
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Thanks!
Welcome to reach out 
to me for questions 
and collaborations!

Yaping Xu
yxu86@utk.edu
Website (Scan to access):
https://sites.google.com/
view/yapingxu


