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Overview

• The mission, measure Rocket Plume Erosion (RPE)

• Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS)

• Camera calibration data, methods, and models

• The SCALPSS camera calibration data

• Camera model history and categories



Image Source:

[2]

Rocket plume 
erosion

“interaction between the 
rocket plume and the 
surface material beneath 
the vehicle plays a 
significant role in the 
descent dynamics and 
safety[1]”



Image Sources:
https://mars.nasa.gov/msl/multimedia/raw-images/NASA 
resources insight-on-mars-illustration
See: Seven Minutes of Terror

Curiosity Rover

Unclassified

Rocket plume 
erosion

https://www.youtube.com/watch?v=Ki_Af_o9Q9s


Rocket plume 
erosion

Phoenix Lander

Image Sources:
Jet Propulsion Laboratory PHOTOJOURNAL
NASA Mission pages, Phoenix



Rocket plume 
erosion

Insight Lander

Image Sources:
https://mars.nasa.gov/insight/
https://mars.nasa.gov/mars-exploration/
missions/insight/

https://mars.nasa.gov/insight/
https://mars.nasa.gov/mars-exploration/


SCALPSS

Image Sources: [2]
References: [1-2]

First Dedicated RPE Study

• Involved in the planning

• Measurements before, 
during, and after landing.

• Pick cameras and calibrate
them.



Bouguet Calibration
NASA’s Legacy SOP

References: [3-5]

• Measurements of planar 
target with targets

• Math model is essentially 
Brown’s model

• Failed!



• Calibration harp [6-7]

• Rational distortion model [8]

• Two stage calibration for 
ultimate de-correlation of 
parameters [9]

• Let the Johnson Space Flight 
center team do an exterior 
calibration.

Plan B



Categorizing Calibration Models
Geometric Models Empirical Models General Models

Derived from physical sensor 
characteristics

Few parameters that 
ostensibly have geometric 
interpretation

Applicable to families of 
similar sensors

Derived/customized from 
observed distortion 
patterns or experience.

Moderate parameters 
that may have geometric 
interpretations.

Applicable to families of 
similar sensors

Derived from function 
approximation theory.

Moderate to enormous 
numbers of parameters 
with no claim of 
geometric interpretation.

Theoretically applicable 
to all sensors.



• 500,000 measurements

• Covering 99.8% of the field of 
view

• Precision of 0.04 pixels RMSE, 
consistent with [6,10-11]

Extracted Harp Lines



Numerical Solution Path
Extract wire 
edges [10, 
12]

Local linearity 
noise 
estimate

Polynomial fit 
to estimated 
noise level

Outlier 
filtering

Transform 
line to ideal 
space

Centralize & 
Normalize

Individual Line Pre-processing

Individual 
measurement 
weights

Polynomial 
thin/filter 
data

Global Data Pre-Processing

Identity

Fish-eye [7]

Initial ValuesOptimization

Rational Polynomial [6-8]



Numerical Solution Path
Extract wire 
edges [10, 
12]

Local linearity 
noise 
estimate

Polynomial fit 
to estimated 
noise level

Outlier 
filtering

Transform 
line to ideal 
space

Centralize & 
Normalize

Individual Line Pre-processing

Individual 
measurement 
weights

Polynomial 
thin/filter 
data

Global Data Pre-Processing

Identity

Fish-eye [7]

Initial ValuesOptimization

Rational Polynomial [6-8]

Never did better than median 
residual of 0.14 pixels. The floor 
for that value was 0.03 pixels.



Back to literature review
Machine Vision
Research addressing the need to model fish-
eye lenses, drone/surveillance cameras

Photogrammetry
Research addressing the need to reduce correlations 
among parameters in Insitu calibrations.

Edge 
extraction
[10, 12]

Harp 
Calibrations
[6]

Rational 
Distortion 
[8, 6]

Standard 
Polynomials 
[9,  11]

Combined 
Orthogonal 
[13,15-16]

Utilizing 
linear 
features [17]

General camera calibration 
using orthogonal basis 
functions and calibration 
harps.

Orthogonal 
Bases
[13-14]



Orthogonal Basis Functions

Can theoretically model any arbitrary function, to any arbitrary 
accuracy (see the Stone-Weierstrass or Fourier Theorem).

Image Source: Wikipedia commons



2D Orthogonal Basis Functions
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Legendre Chebyshev (Type 1) Fourier
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Numerical Solution Path
Extract wire 
edges 
[10, 12]

Local linearity 
noise 
estimate

Polynomial fit 
to estimated 
noise level

Outlier 
filtering

Transform 
line to ideal 
space

Centralize & 
Normalize

Individual Line Pre-processing

Individual 
measurement 
weights

Polynomial 
thin/filter 
data

Global Data Pre-Processing

Identity

Fish-eye [7]

Initial ValuesOptimization

Rational Polynomial [6-8]

Naive Polynomials [9-11]

Chebyshev [13-14, 16]

Legendre [13,15-16]

Fourier [13, 15-16]

⋮



Polymorphic Optimizer

interface  BasisFunction {

//  Evaluate the basis function at (x, y)

double operator()(double x, double y)

// Differentiate the basis WRT x at (x, y)

double dx(double x, double y)

// Differentiate the basis WRT x at (x, y)

double dy(double x, double y)

};

class  StandardPolynomialBasis implements BasisFunction {

//  Evaluate the basis function at (x, y)

double operator()(double x, double y)   return 𝑥𝑚𝑦𝑛

// Differentiate the basis WRT x at (x, y)

double dx(double x, double y)                return 𝑚𝑥𝑚−1𝑦𝑛

// Differentiate the basis WRT y at (x, y)

double dy(double x, double y)                return 𝑛𝑥𝑚𝑦𝑛−1

};



Results
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Results
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What happened with to Fourier basis?

Residuals of Fourier Basis Fit

4 Bases 8 Bases 16 Bases 32 Bases 64 Bases

Residuals of Polynomial Fits

3 Bases 4 Bases 5 Bases 6 Bases 7 Bases 8 Bases



Results

Correlations
Legendre Chebyshev Standard Fourier

Percent < 0.1 95% 94% 94% 96%
99th Percentile 0.74 0.78 0.78 0.34
max 1.00 1.00 1.00 0.45



Conclusions

• Harps are a cheap and practical way to collect abundant high 
precision data.

• In the context of laboratory harp calibrations:
• Orthogonal basis functions are a theoretical general approach to modeling 

distortion that performed well empirically.

• The type of orthogonal basis function is largely irrelevant.

• Polynomial bases don’t have high correlation issues they do in collinearity 
adjustments

• Mixing Fourier and polynomial basis showed promise (though this is an 
empirical claim).
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