# GENDER ISSUES IN THE EV: HOW BRUSSELS IS MOVING TOWARDS GENDER EQUALITY 

Giulia Pancheri INFN - Frascati


## FROM NEW ORLEANS FIP SESSION

Einstein's quote, " Science is not a high status activity except as an admission card into the community of modern countries "

I would say therefore that
for women to be left out of science means to be left out of the modern world.

## OUTLINE

1. The EU Commission
2. EU gender trends in S\&T
3. What is happening in EU
4. Examples from high energy physics

## GU GLOSSARy

- European Community(EC) :
- the Member States (MS)
- European Union (EU) :
- MS + Community Institutions
- European Council sets the political guidelines:
- EU heads of State + President of the EU Comission
- Institutions of the European Community


## EC INSTITUTIONS

- EU Council of Ministers :
overall governance designated by Member States (MS) Governments with presidency rotating through MS every 6 months
- EU Parlament :
consultation and co-decision with the Council of Minister selected by people in each MS
- EU Commission : designated by MS, is the executive body, and normally lasts 5 years
- Court of justice
- Court of Auditors


## THE EV COMMISSION

- Is the effectively the governing body, proposes policy, responsible for implementing and managing
Community programs
- The Commissioners are 27, one for each MS and each commissioner is responsible for a Directorate-General or an area of work
- Directorates are managed by a Director

General, which is a permanent staff

## THE GUROPEAN COMMISSION

- The Commission
- 27 Commissioners for all facets of EU life
- 9 of them are women
- Commissioner for Science and research 1
DG Research


## Employed human resources in science and technology

(HRST) by sub-population and gender
Figure 1: Employed human resources in science and technology (HRST) aged 25-64 by sub-population and gender in the EU, 2006


EU-27 estimates with 2005 data for BE and IE.
For definitions of HRST, see methodological notes (p. 7).
Source: Eurostat HRST statistics
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-08-010/EN/KS-SF-08-010-EN.PDF

Human resources in science and technology as a share of labour force - Total
(\%)


Legend (Data 2006)

| $\square 18.4 \cdot 30.8$ | $\square 30.8 \cdot 34.8$ |  |
| :--- | :--- | :--- |
| $\square 40.2 \cdot 44.1$ | $\square 44.1 \cdot 50.8$ | $\square \mathrm{~N} / \mathrm{A}$ |
| Minimum value:18.4 Maximum value:50.8 |  |  |

## HRST as share <br> Of the labor force


18.4\% 50.8\%

Source : EUROSTAT

## HRSTO=Human Resources employed in S\&T



## UNIT S OF THE DG-RESEARCH AND THE HELSINKI GROUP

- During the last year of Edith Cresson's mandate as a Commissioner of Science and Research in 1999, the spotlight was focused on women in science and a special unit was started, unit 5 of the Research Directorate General, DG-XII
- A group of EU statistical correspondents and scientists held their first meeting in Helsinki
- The ETAN (European Technology Assessment Network ) report on Women and Science was prepared by the Helsinki Group and published in early 2000
- In FP7(2007-2013) the mandate is covered by the Science and Society Unit and EUROSTAT


## WHY MORE WOMEN IN S\&T?

- The rationale at the Commission level is that Human resources in S\&T (HRST) can sustain and increase
Europe
competiveness in S\&T


## THE EV SCIENCEAND SOCIETY LINK

http://ec.europa.eu/research/sciencesociety/index.cfm?fuseaction=public.top ic\&id=27


## Women and Science

Statistics and Indicators


## SHE FIGURES 2006 EXECUTIVE SUMMARY

- Across EU 29\% of researchers are women
- Only 18\% of researchers in Business \& Enterprise Sector are women
- In higher education only $18 \%$ of highest academic grade are women
- In engineering and technology at the top only 5.8\% are women


## FOCUS ON EASTERN countries

- The Enwise countries are
- Bulgaria
- Czek Republic
- Estonia
- Hungary
- Latvia
- Lituania
- Poland
- Romania
- Slovakia
- Slovenia



## S\&T STATISTICS

Employment
\% of women Total employment

Scientists\&Engineers

## PHD GRADUATES IN PHYSICAL SCIENCE\&ENGINEERING



- Italy at $45 \%$ in physics
- Portugal more than $50 \%$ in physics
- Lituania highest in Engineers


## EDUCATION IN S\&T

PROPORTION OF FEMALE PHD, 2003

$\square$ MATH\&STAT
■ ENGINEERING

- PHYSICAL SCIENCES


## PHD EMPLOYMENT IN NATURALSCIENCES IN THE EV



- Natural Sciences include life sciences, Math, Chemistry and Physics
- Highest numbers in Portugal
- Details are not available for all countries
- Source : eurostat S\&T, DG research for EU-25


## career patterns

- The scissor diagram
- Who reaches the top?

Figure 3.1: Proportions of men and women in a typical academic career, students and academic staff, EU-25, 1999-2003


## Definition of grades:

A: The single highest grade/post at which research is normally conducted
B: Researchers working in positions not as senlor as top position (A) but more as senior as top position (A) but more
C: The first grade/post Into which a newly qualifled PhD graduate would normally be recrulted

ISCED 5A: Tertlary programmes to provide sufficlent qualifications to enter Into advanced research programmes \& professions with high skills requirements Tertary programmes which lead to an advanced research quallification ( PhD )

Source: Eurostat Education data, DG Research, WIS database senlority Grades. 2003
ISCED5A Students:
Data unavallable: FR
Exceptions to the reference year: LU: 1999; EL: 2002
ISCED6 Students
Data unavallable: FR , LU, $\mathrm{DE}, \mathrm{SI}$
Exceptions to the reference year: El: 2002
Grade C, B, A.
Data unavallable: IE, LU
Exceptlons to the reference year: CY: 2002; FR, PT: 2001; EL: 2000
NL: FTE; SI: Data estimated; FR: Grade C unavallable

1999
ISCED 5A Students:
Exceptions to the reference year: BE PT: 2000; EL: 2002. Data unavalble: FR
Exceptions to the reference year. PT: 1998; BE: 2000; CY: 2001; EL: 2002.
ISCED 6 Students:
Data unavallable: $\mathrm{DE}, \mathrm{FR}, \mathrm{LU}, \mathrm{SI}$
Grade C: Data unavallable: FR, Exceptions to the reference year: AT: 1998; PL 2000; FTE: NL, BE (FR)
Grade B. Exceptlons AT 1908 . FR PL. 2000. FTE: NL Grade A: Exceptions to the reference year: AT:1998; FR, PL: 2000; FTE: NL

## SENIORITYIN S\&T, 2004 proportion of female grade a staff


$\square$ NATURAL SCIENCES $\square \in N G I N E \in R I N G$
■hUMANItIES

## THE $\cup$ FUNDED RESEARCH

- The EU funds evaluate a large number of proposals in all fields of science and has become a very important funding source
- Among the type of projects there are
- Individual grants and fellowships (Marie Curie)
- Prizes
- Research and Training Network grants - a structure "invented" by Bruxelles


## THE RESEARCH AND TRAINING NETWORKS

- Networks of researchers, at least 3 different member states
- Typically 10-12 institutions from 5-8 different countries
- Average budget 4 Meuro for a 4 year period
- Chosen through an evaluation process resulting in a 10 \% success rate


## € $\cup$ RECOMMENDATION:GOAL OF $40 \%$ WOMEN IN ALL SCIENTIFIC pANELS

## WHAT THE EV IS DOING TO EMPOWER MORE WOMEN IN S\&T



Scurce: DG Research

- Aim to $40 \%$ presence of women in scientific panels
- Presently roughly $30 \%$, even in physics
- Vademecum for project officers


## EVALUATION PANELS

- Women are well represented at the evaluation level even in hard sciences, like physics
- Evaluation panels have a typical 30-40 \% women presence
- Evaluators are chosen among a very larger pool where women are well represented : Europe is very large with many Government research Institutions and prestigious universities -> the pool is large


## IS IT DIFFICULT TO REACH A $30 \%$ WOMEN PRESENCE?

- Not difficult since the independent expert evaluators are chosen among a large pool of scientists mostly from Europe, both universities and industry, and there are many excellent women


## IS THIS POLICY EFFECTIVE?

- In general, the evaluation process, once launched, is gender-blind except that
one of the evaluation criteria - typically impact or added value - includes a concern with equal opportunity
- In principle it could be used to promote projects which have women in prominent network positions, like node-scientists or members of Executive Committees
- it does help to focus on the existence of excellence among women scientists


## NEXT SLIDES WERE NOT SHOWN BECAUSE OF TIME LIMIT

## TWO EXAMPLES OF GENDER DISTRIBUTION IN HIGH ENERGY PHYSICS

- CERN
- DELPHI experiment at LEP
- ATLAS experiment at LHC


Tiziano Camporesi - Chair of the Equal Opportunities Advisory Panel

## AT CERN

## Women have appeared in the research job market lately



Study performed within the DELPHI experiment at LEP (more than 750 thesis over the life of the experiment!)

Early 1980's: <5\% women students. 2000: $25 \%$ of students are women

The CERN hiring statistics in recent years shows that these women physicist and engineers have equal chances (in fact slightly better) than their male colleagues

## HIGH ENERGY PHYSICS IN A WORLD-WIDE EXPERIMENT <br> 

- ATLAS is a Large hadron Collider experiment with over 2000 high energy phycisists from everywhere in the world and its gender composition sheds light on how different countries are represented in proportion of women scientists


# HIGH ENERGY PHYSICS: THE ATLAS EXPERIMENT 

https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasWomenPage?

## Us Vs Ev IN ATLAS 2008



- Women from EU are present in larger proportion than from US
- Possibly also because of need to commute from US to Europe (family is a problem)


## (SOME) WOMEN IN ATLAS(2008)



