Introduction to Priority Multidrug-Resistant Organisms (MDROs)

September 27, 2024

Presented at Beyond the Basics IP Training Mercy Medical Center, Redding, CA

Healthcare-Associated Infections (HAI) Program
Center for Health Care Quality
California Department of Public Health

Implicit Bias

- Describes how our unconscious attitudes or judgements can influence our thoughts, decisions or actions
- Includes involuntary, unintentional perceptions made without awareness
- Occurs as our brains sort information and perceive data to understand our world
- Affects our decisions, contributing to societal disparities
 - Self awareness about implicit bias can promote healthcare diversity and equality
- Learn more about your own implicit bias at Project
 Implicit (implicit.harvard.edu/implicit/)

Objectives

- Describe priority multidrug-resistant organisms (MDROs) including Candida auris and Carbapenemase-producing organisms (CPOs)
- Understand C. auris and CPO epidemiology in California

What are MDROs?

- Bacteria and fungi resistant to many or all antimicrobials (antibiotics, antifungals)
- Infections caused by MDROs can be more difficult and expensive to treat
 - Can result in increased morbidity and mortality
- Can cause outbreaks in healthcare settings

MRSA=methicillin-resistant *Staphylcoccus aureus*; VRE=vancomycin-resistant *Enterococci*; ESBL=extended-spectrum beta-lactamase; *C.* diff=*Clostridiodes difficile*; CRE=carbapenem-resistant Enterobacterales; CRPA=carbapenem-resistant *Pseudomonas aeruginosa*; CRAB=carbapenem-resistant *Acinetobacter baumannii*

What are Priority MDROs?

- Novel or emerging MDROs
- Can spread more rapidly within and among healthcare facilities
- We do not want these pathogens to become common in healthcare facilities!
 - Early and aggressive facility and public health containment efforts can limit spread

MRSA=methicillin-resistant *Staphylcoccus aureus*; VRE=vancomycin-resistant *Enterococci*; ESBL=extended-spectrum beta-lactamase; *C.* diff=*Clostridiodes difficile*; CRE=carbapenem-resistant Enterobacterales; CRPA=carbapenem-resistant *Pseudomonas aeruginosa*; CRAB=carbapenem-resistant *Acinetobacter baumannii*

What are the Risk Factors for Acquiring a Priority MDRO?

- Exposure to long-term acute care hospitals (LTACHs) and ventilator units in skilled nursing facilities (vSNFs)
- Indwelling medical devices (e.g., urinary catheter, endotracheal tube)
- Mechanical ventilation
- Open/draining wounds
- Recent or frequent antimicrobial use (i.e., antibiotics, antifungals)
- Overnight healthcare exposure outside of California or the US

What is Colonization?

- Colonization is when a patient or resident is carrying a pathogen but is not showing signs or symptoms of infection
- Patients or residents colonized with MDROs can still spread the pathogen to other patients or residents
- Patients/residents can be colonized for many months, sometimes indefinitely; patients/residents can be colonized intermittently
 - Do not recommend rescreening patients with CPOs or *C. auris* assess for "clearance" or to discontinue infection prevention ar control (IPC) measures (e.g., Contact Precautions)
- Colonized patients can go on to develop clinical infections

(<u>www.cdc.gov/healthcare-associated-infections/php/preventing-mdros/preventing-mdros/fags.html</u>)

MDROs spread from person to person, via the hands and clothing of healthcare personnel or contaminated equipment or surfaces when there are gaps in core IPC practices

Core IPC practices can prevent spread

Slide courtesy of Danielle Rankin, CDC

What are Core IPC Practices?

Hand Hygiene

Personal Protective Equipment

+ observe and monitor compliance

Environmental Cleaning & Disinfection

Candida auris

C. auris

- Drug-resistant yeast, can be resistant to all 3 antifungal classes
- Invasive infections can lead to 30-60% mortality
- Persistence in the environment contributes to rapid spread in healthcare settings
 - Cleaning and disinfection requires agents effective against *C. auris*
 - Regular disinfecting agents such as "quats" are not effective
- Title 17 requirements as of September 2022
 - Reportable by laboratories and providers
 - Laboratories submit specimens from sterile sites (e.g., blood)

Why are We Concerned About *C. auris*?

Highly drug-resistant

C. auris Antifungal Resistance in the United States

United States

Fluconazole 86%

Amphotericin B 21%

First-line treatment

Echinocandins 1%

US-subset of isolates submitted to CDC <u>AR Lab Network</u>, 2017–2022 (www.cdc.gov/antimicrobial-resistance-laboratory-networks/php/about/domestic.html)

In California, Almost All Isolates are Fluconazole-resistant Very Few are Amphotericin B- or Echinocandin-resistant

Fluconazole

United States

86%

Amphotericin B

21%

Echinocandins

1%

California

99%

2%

<1%

CA-subset of CA isolates submitted to <u>WA regional AR Lab Network lab</u>, 2018–July 2023 (n=1199) (www.doh.wa.gov/ForPublicHealthandHealthcareProviders/PublicHealthLaboratories/ARLNLabTestMenu)

However, in California, We are Identifying More Fluconazole+echinocandin-resistant *C. auris* Cases

Why are We Concerned About *C. auris?*

Highly drug-resistant

C. auris Colonization

- C. auris can colonize the skin and other body sites
 - Axilla
 - Inguinal creases
 - Nares
 - Hands
 - Toes
 - Other skin sites
- Screening recommendation: composite axilla/groin swabs

C. auris Colonization Can be Long-term

Why are We Concerned About C. auris?

Highly drug-resistant

Spreads in healthcare settings and networks

C. auris is Persistent in the Healthcare Environment

- Environmental cleaning and disinfection of *C. auris* requires <u>List P</u> agents with claims against *C. auris*
 - If List P is unavailable, List K or bleach
 - "Quats" don't work
- Greater environmental contamination associated with higher patient colonization burden

See <u>EPA's Registered Antimicrobial Products Effective Against Candida auris [List P]</u> (www.epa.gov/pesticide-registration/epas-registered-antimicrobial-products-effective-against-candida-auris-list)

See <u>Yadav et al., J. Fungi (2021)</u> (DOI.org/10.3390/jof7020081) See <u>Sexton et al., Clin Infect Dis.</u> (2021) (DOI.org/10.1093/cid/ciab327)

Once C. auris is In a Facility, it can Spread Rapidly

The high burden of *C.*auris identified during the first point prevalence survey (PPS) at LTACH A likely contributed to internal spread in the facility

^{*}preliminary data from an LTACH with a high burden of *C. auris*

C. auris is Being Identified in High-risk Facilities (LTACHs, vSNFs) and Increasingly in Short-stay Acute Care Hospitals

Why are We Concerned about *C. auris*?

Highly drug-resistant

All the makings of a fungal superbug!

Spreads in healthcare settings and networks

Aggressive Response to our First C. auris Outbreak was Successful

The Pandemic Contributed to Widespread and Sustained Spread of *C. auris*

We are Seeing More *C. auris* in Central and Northern California

From September 2022, Most Central/Northern California Cases* had No Exposure Outside the Region ======

Let's prevent further spread of *C. auris* in Central and Northern California!

Carbapenem-Resistant Organisms (CROs) and Carbapenemase-Producing Organisms (CPOs)

Acronyms

- Carbapenem-resistant organisms (CROs) include:
 - Carbapenem-resistant Enterobacterales (CRE)
 - Carbapenem-resistant *Pseudomonas aeruginosa* (CRPA)
 - Carbapenem-resistant *Acinetobacter baumannii* (CRAB)

C is for Carbapenem

- Class of beta-lactam antibiotics (others include penicillin, cephalosporins)
- Broad spectrum
 - Imipenem
 - Meropenem
 - Ertapenem
 - Doripenem (not used in the US)

R is for Resistant

- Resistant to at least 1 carbapenem antibiotic
- Treatment options for infections can be more limited, expensive, and toxic, and less effective

Susceptibility Information Antimicrobial	Card:				
	Completed:	Interpretation	Status: Final	Analysis Time: 7.30 hours	
				1.110	Interpretation
Ampicillin			Meropenem	>= 16	R
Amoxicillin/Clavulanic Acid			Amikacin		
Piperacillin/Tazobactam	>= 128	R	Gentamicin	>= 16	R
Cefazolin	>= 64	R	Tobramycin	>= 16	R
Cefoxitin			Ciprofloxacin	>= 4	R
Ceftazidime	>= 64	R	Levofloxacin	>= 8	R
Ceftriaxone	>= 64	R	Tetracycline	>= 16	R
Cefepime	>= 64	R	Nitrofurantoin		
Ertapenem			Trimethoprim/Sulfamethoxaz ole	>= 320	R

Selected Organism: Acinetobacter baumannii complex

O is for Organism

Gram-negative bacteria

• Enterobacterales (formerly Enterobacteriaceae)(CRE)

Carbapenem-resistant Enterobacterales (CRE)

- Commonly identified organisms include:
 - -E. coli
 - Klebsiella spp.
 - *Enterobacter* spp.
 - -50+ other genera
- Naturally inhabit the gut
- Cause infections in wounds, bloodstream, urinary tract, and other sites

See <u>CDC CRE Information for Facilities</u> (PDF)

(www.cdc.gov/healthcare-associated-infections/media/pdfs/CRE-handout-V7-508.pdf)

O is for Organism

Gram-negative bacteria

- Enterobacterales (CRE)
- Pseudomonas aeruginosa (CRPA)

Carbapenem-resistant Pseudomonas aeruginosa (CRPA)

- P. aeruginosa is commonly found in the environment, particularly water sources
 - Some outbreaks in healthcare settings found to be associated with drains, sinks, and faucets
 - Other CROs also found in these water sources
- CRPA are naturally resistant to many antibiotics, some pan-resistant
- CRPA can cause serious infections in patients with chronic lung disease

See <u>CDC CRPA Information for Facilities</u> (PDF) (www.cdc.gov/healthcare-associated-infections/media/pdfs/CRPA-handout-V7-508.pdf)

See <u>The Hospital Water Environment as a Reservoir for CROs Causing Hospital-Acquired Infections-A Systematic</u>

<u>Review of the Literature</u> (pubmed.ncbi.nlm.nih.gov/28200000/)

O is for Organism

Gram-negative bacteria

- Enterobacterales (CRE)
- Pseudomonas aeruginosa (CRPA)
- Acinetobacter baumannii (CRAB)

Carbapenem-resistant Acinetobacter baumannii (CRAB)

- A. baumannii are often found in the environment, particularly soil and water
- A. baumannii can be persistent in the healthcare environment
 - Outbreaks of CRAB associated with contaminated healthcare environment,
 healthcare worker hands and clothing, medical equipment
- Naturally resistant to many antibiotics, some pan-resistant

• CRAB can cause infections in blood, wound, urinary and respiratory tract, other

sites

See CDC CRAB Information for Facilities (PDF)

(www.cdc.gov/healthcare-associated-infections/media/pdfs/CRAB-handout-V7-508.pdf)

Acronyms

CROs

- CRE
- CRPA
- CRAB

Carbapenemase-producing organisms (CPOs)

Carbapenemases:

- KPC
- NDM
- VIM
- OXA-48
- IMP

C is for Carbapenemase

- Enzyme that confers resistance (inactivates) to:
 - Carbapenems
 - Other beta-lactam antibiotics (e.g., penicillins, cephalosporins)
- Examples include:
 - **KPC** = *Klebsiella pneumoniae* carbapenemase (most common in the US)
 - **NDM** = New Delhi metallo-beta-lactamase
 - -IMP = imipenemase
 - VIM = Verona integron-encoded metallo-beta-lactamase
 - OXA = oxacillinase (common in CRAB)

P is for Producing

- The organism produces the carbapenemase enzyme, the mechanism for carbapenem resistance
- Genes encode for specific carbapenemases
 - -e.g., NDM gene encodes for NDM carbapenemase
- On mobile genetic elements (e.g., plasmids), enabling transfer within and across bacterial species, more likely to spread resistance
 - —e.g., NDM in E. coli → NDM in Pseudomonas aeruginosa

P is for Producing

Detection of carbapenemase production (phenotypic tests)

- Modified Carbapenem Inactivation
 Method (mCIM), CarbaNP, BD Phoenix
- Results report whether the organism is producing a carbapenemase or not (e.g., yes/no)

Detection of carbapenemase type (genotypic, other tests)

- Polymerase chain reaction (PCR) (e.g., Cepheid Xpert Carba-R), Hardy CARBA 5, whole genome sequencing
- Results report which carbapenemase types are present (e.g., KPC, OXA-23)

See <u>CRO Primer Test for Carbapenemases</u> (PDF)

(www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH%20Document%20Library/CRO_PrimerTests_for_Carbapenemases.pdf

O is for Organism

- CPO = Carbapenemase-producing organism
 - A subset of CROs are CPOs

Examples include:

- Enterobacterales
 - NDM-producing *E. coli*
 - KPC-producing Enterobacter cloacae
- VIM-producing Pseudomonas aeruginosa (VIM-CRPA)
- NDM-producing Acinetobacter baumannii (NDM-CRAB)

Percent Carbapenem Resistance in Isolates from HAIs in US Hospitals

- Enterobacterales (CRE)
- Pseudomonas aeruginosa (CRPA)
- Acinetobacter baumannii (CRAB)

See <u>National Healthcare Safety Network 2021 Hospital Data</u> (arpsp.cdc.gov/profile/antibiotic-resistance?tab=antibiotic-resistance)

Percent CRE, CRPA, CRAB That are Carbapenemase-producing in the US

- Enterobacterales (CRE)
- Pseudomonas aeruginosa (CRPA)
- Acinetobacter baumannii (CRAB)

See <u>National Healthcare Safety Network 2021 Hospital Data</u> (arpsp.cdc.gov/profile/antibiotic-resistance?tab=antibiotic-resistance)

Since 2019, Reported CPO Cases* have Risen in All Regions

CPO Cases* in Northern California, January 2020—June 2024

^{*}preliminary data, including CPO cases from Del Norte, Glenn, Humboldt, Lake, Lassen, Mendocino, Modoc, Shasta, Siskiyou, Tehama, Trinity

CPO Cases* in Sacramento Area, January 2020—June 2024

^{*}preliminary data, including CPO cases from Amador, Butte, Colusa, El Dorado, Nevada, Placer, Plumas, Sacramento, Sierra, Solano, Sutter, Yolo, Yuba

We have Seen Increases Across all Carbapenemase Types* in all Regions

Carbapenemase Types* in Northern California

Carbapenemase Types* in Sacramento Area January 2020—June 2024

OXA variants include:

- 37 OXA-23
- 6 OXA-24/40
- 11 OXA-48
- 12 OXA-235

Dual resistance mechanisms include:

- 48 NDM/OXA-23
- 3 NDM/OXA-48
- 1 OXA-23/OXA-58

^{*}preliminary data, including CPO cases from Amador, Butte, Colusa, El Dorado, Nevada, Placer, Plumas, Sacramento, Sierra, Solano, Sutter, Yolo, Yuba

The Proportion of CPOs* Varies by Region

VIM-CRPA

- VIM is most common carbapenemase associated with CRPA in California
 - Associated with multiple outbreaks in different healthcare settings
- Since 2018, VIM-CRPA cases have been identified in patients reporting <u>receipt of</u> <u>medical care in Mexico</u>
 - Includes both medical tourism and routine medical care
- National outbreak of VIM-CRPA associated with artificial tears
 - -CDC identified 81 patients in 18 states, May 2022—May 2023
 - 9 cases identified from California, 5 from Southern California were associatedwith an outpatient eye clinic

See <u>CDC Outbreak of Extensively Drug-resistant *Pseudomonas aeruginosa* Associated with Artificial Tears</u>

(archive.cdc.gov/www_cdc_gov/hai/outbreaks/crpa-artificial-tears.html)

Regional NDM-CRAB Outbreak

- Prior to 2019, NDM-CRAB had not been identified in the US
 - -NDM was mostly identified in CRE (e.g., Klebsiella pneumoniae)
 - NDM confers a high level of resistance; infections caused by NDM-CRAB can be very difficult to treat
- Emergence of this highly drug-resistant pathogen in California prompted an aggressive public health response

NDM-CRAB Cases* Continue to Spread Across the State

*preliminary data

See <u>CDPH NDM-CRAB CAHAN</u> (PDF)

Regional MDRO Prevention and Response Strategy: a Phased Approach Based on Local Epidemiology

Phase 1: Prevention

Phase 2: Response

Phases 3-4: Mitigation

No cases

Some cases

High case burden/ endemicity

Summary

- CPOs and C. auris can spread easily in healthcare settings and persist in the environment; core IPC practices can prevent spread in healthcare settings
- Patients or residents with frequent healthcare exposure, antimicrobial use, and indwelling devices are at higher risk of colonization; infection is also associated with higher morbidity and mortality
- Reported CPO and C. auris cases are increasing throughout California
 - —Once rare organisms like NDM-CRAB and *C. auris* are becoming more common
- Cases are not confined within county borders; it's critical to ensure communication of patient's CPO or C. auris status during transfer
- Regional prevention and response activities can contain spread!

Thank you!

Questions?

For more information, contact

HAI AR@cdph.ca.gov

