Introduction to Microbiology

Infection Preventionist Two-Day Course, 2024

Healthcare-Associated Infections Program
Center for Health Care Quality
California Department of Public Health

Objectives

- Describe role of the microbiology laboratory in infection prevention
- Explain basic laboratory tests for infectious pathogens
- Define common Healthcare Associated Infection (HAI) pathogens

Microbiology and Infection Prevention

Microbiology has two important functions related to the prevention and control of infections:

- Clinical: identify pathogens and their susceptibility to antimicrobial treatment
 - Example: Physician reviews a culture, prescribes an antibiotic
- Epidemiological: identify pathogens causing disease or outbreak in a population, and looks for potential sources of these pathogens
 - Example: Public health investigates a report of an outbreak of foodborne

illnesses

Importance of Micro Lab Results

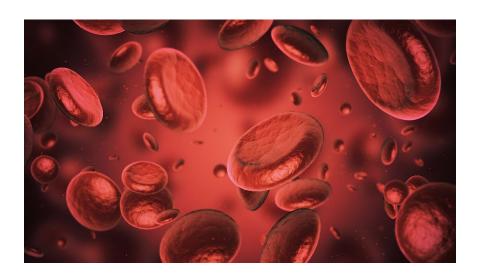
- Determines need for transmission-based precaution
- Assessment and implementation of Enhanced Barrier Precautions (EBP)
- Reinforces the need for adherence monitoring for:
 - Hand hygiene
 - PPE donning and doffing
 - Environmental cleaning
 - Fluorescent marking

Importance of Micro Lab Results (Continued)

- MDRO cohorting decisions
- Observation of housekeeping practices if transmission has been detected
 - Check if contact time followed for disinfectant
 - Appropriate disinfectant for organism identified is being used
 - Housekeeping staff use standard process to prevent cross-contamination
- Antimicrobial Stewardship

Accuracy of Lab Results

- No lab test is 100% accurate 100% of the time
- Many factors can affect accuracy of laboratory tests
 - Pre-testing: specimen collection, handling, transportation, and preservation prior to arrival in the lab
 - During testing: specimen processing, skill of the laboratory technician, accuracy of biochemicals and instrument system
 - 3. <u>Post-testing</u>: Accuracy of result transcription, results communicated to provider in a timely manner


Interpreting Microbiology and Laboratory Test Results

- Organism presence does not mean it is causing disease
 - Bacterial growth may confirm infection if found in normally sterile sites
- Interpreting cultures
 - Pathogens normally found in that body site without signs and symptoms of an infection may indicate colonization, and may not need treatment
- Contamination of samples at any point can result in inaccurate results and pseudo-outbreaks
- Use blood cell counts to interpret results
 - CBC
 - WBCs
 - Clotting times

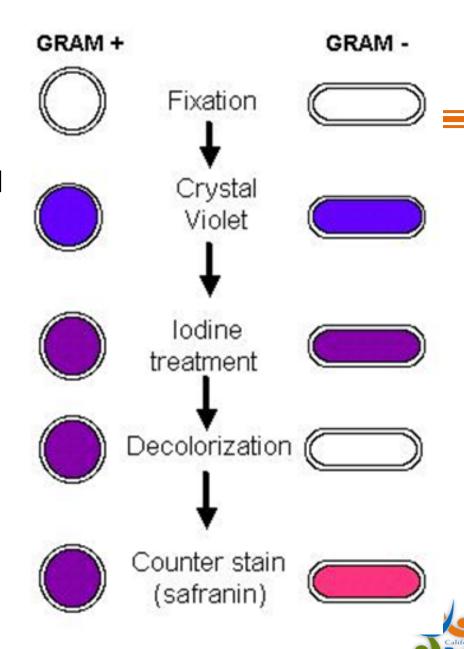
Complete Blood Cell Count (CBC) and Clotting Times

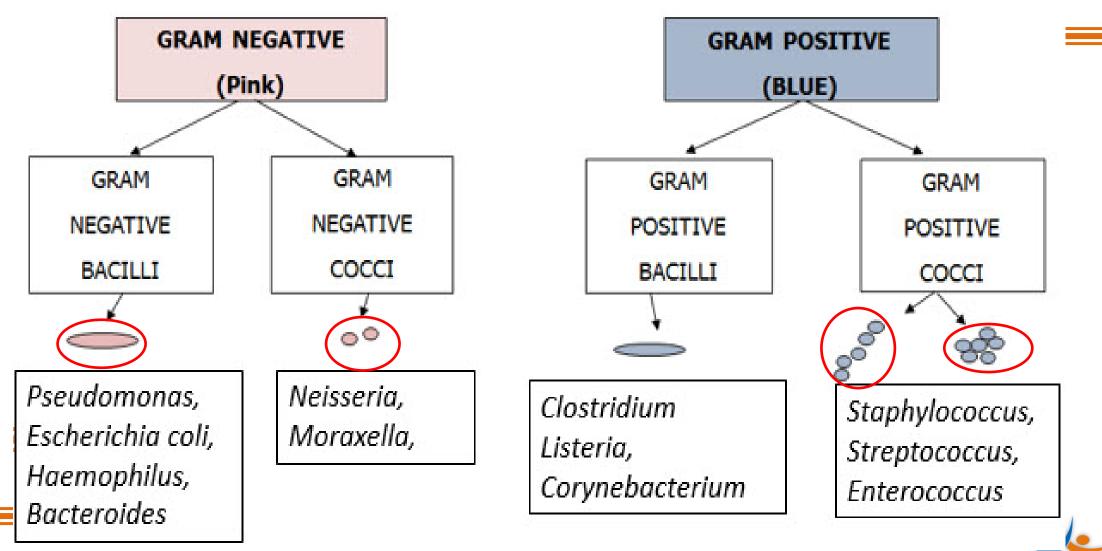
- Blood tests used to evaluate overall health
 - Includes detection or absence of infection
- Measuring blood components
 - White blood cells (WBC)
 - Sedimentation rate (sed rate)
 - Clotting times

White Blood Cell (WBC) Types

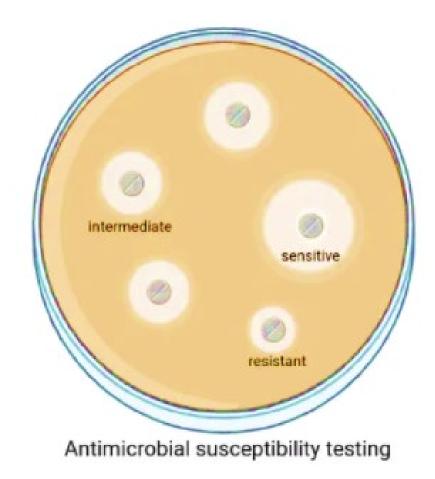
- **Polymorphonuclear leukocytes** (PMNs): General response to threat
 - Neutrophils (50-60% of WBC)
 - First line of response to infection
 - Also called 'segs'
 - Left shift = presence of **immature neutrophils**
 - Bands or Stabs
 - Indicates acute infection or inflammatory process
 - Eosinophils (1-7% of WBC)
 - Allergic reactions and parasites
 - Basophils (<1% of WBC)
 - Allergic reactions
 - Help mediate the strength of the immune response
- Lymphocytes: play a crucial role in the immune system.

Laboratory Testing Methods for Infectious Pathogens and Disease


- Serology testing looks for antibodies that demonstrate exposure/infection
- Cultures identify causative pathogens and categorize them
- Antibiotic susceptibility tests of bacterial cultures identify the susceptibility or resistance to specific antimicrobial agents



Gram Stain


- Microbiology lab method of classifying bacteria into 2 large groups: positive (+) and negative (-)
- Differentiates bacteria by the chemical and physical properties of their cell walls
 - Lipid, non-lipid, thick or thin walled
- Guides initial antibiotic therapy



Gram Stain Identifies Four Basic Bacteria Groups

What Does Susceptible and Resistant Mean?

Kirby-Bauer Disc Diffusion

MIC = minimum inhibitory concentration: Smallest amount of antibiotic on those white discs pictured above, that kills the bacteria on the culture plate

Antibiotic Resistance (AR)

- AR is when some or all of a species or subspecies of bacteria survive exposure to an antibiotic
- Multi-drug resistance organisms (MDRO) are organisms resistant to multiple antibiotic classifications
- An antibiogram shows the number of types of bacteria susceptible or resistant to specific antibiotics in a facility or region
 - % of Staphylococcus aureus sensitive or resistant to penicillin, for example, in a facility or community
 - Used for clinical decision-making and antibiotic selection if a resident is positive for staph aureus and has symptoms
- Antibiograms reduce the risk of creating antibiotic resistance

Antimicrobial Resistance Types & Mechanisms

Types

- Natural or Intrinsic
- Acquired or Transferred

Mechanisms

- Limiting uptake of the drug
- Altering binding site for antibiotic
- Producing enzymes, e.g., Lactamases, Carbapenemases

Antibiotic Stewardship and Microbiology

- Antibiotics are essential, but
 - Leads to C. difficile infection (CDI) or resistant organism formation if used inappropriately
- Microbiology culture results impact treatment
 - Antibiotics given for a gram-negative organism if organism causing symptoms is gram-positive
 - Will not affect the infection
 - Sets up the resident for antibiotic resistance risk

MDRO Acronyms on a Microbiology Lab Report

- CR = carbapenem resistant
- CRE = carbapenem resistant Enterobacteriaceae (Enterobacterales)
- CRO = carbapenem resistant organism
- CPO = carbapenemase producing organism
- KPC, IMP, VIM, OXA, NDM = genetic mechanism of carbapenem resistance

Classification of Common Organisms

Anaerobes

- Bacteria that die in the presence of oxygen
- Usually not found in the respiratory tract

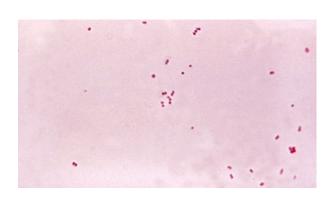
Aerobes

- Oxygen loving
- Will be found in respiratory tract but not in urine
- **Non-lactose fermenters**: Bacteria that on special medium (McConkey) will not turn color
 - Differentiate gram-negative bacteria from each other
 - Example: Pseudomonas and Salmonella are non-lactose fermenters
 - E. Coli and Serratia are lactose fermenters

Blood Cultures

- A single blood culture specimen is collected in two bottles
 - Bottles are designed to recover either aerobes or anaerobes
 - Growth may occur in one or both bottles
- In adults, low volume of blood in the bottle (≤8 mL) can mean low numbers
 of bacteria in the sample
 - Leads to negative results on gram staining and false negative culture
 - Collecting the appropriate volume of blood (8-10 mL in each bottle, or 20 mL of blood divided into two bottles) is important
- Poor specimen collection technique can introduce contaminants
 - These are often common skin (commensal) flora

Urinalysis (UA)



- Odor or cloudiness may or may not mean a UTI is present
- Blood may or may not be present in a culture from resident with catheterassociated or symptomatic UTI
- Increase in WBCs with symptoms, with or without leukocyte esterase or nitrite, may indicate the urine should be cultured in microbiology lab
 - Positive leukocyte esterase or nitrite found on UA can be helpful in determining presence of WBCs
 - Increased WBC in urine with negative urine bacterial cultures may indicate infection with a sexually transmitted disease (STD) Chlamydia or Gonorrhea

Common Urinary Tract Infection (UTI) Pathogens

- Organisms may come from the resident's perineal area (GI, GU) or poor hand hygiene
- Gram-negative organisms: Eschericia coli: Causes 80% of all UTIs
 - Proteus, Klebsiella, Enterobacter, Pseudomonas, and Gardnerella are others
- Gram-positive organisms: Staphylococcus, Enterococcus
- Yeasts: Candida glabrata, Candida albicans

Gram stain of gram-negative bacteria https://www.cdc.gov/gram-negative-bacteria/media/images/gram-negative-bacteria.jpg

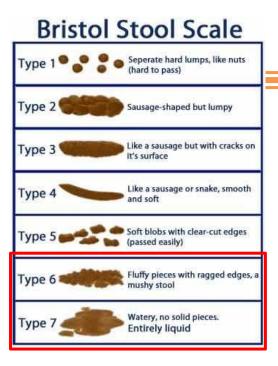
Testing for Lower Respiratory Bacterial Pathogens

- Sputum and bronchial washes are often contaminated with oral flora
- Tracheal aspirates and protected brush specimens are not contaminated with oral flora
- Bronchoscopy suctioned and BAL are the most accurate specimen collection for lower respiratory testing

Common Lower Respiratory Tract Pathogens

- Community-acquired pneumonia (CAP)
 - Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasmas
- Healthcare-associated pneumonia, most often ventilator-associated
 - Pseudomonas aeruginosa
 - Stenotrophomonas maltophilia
- CAP or healthcare-associated pneumonia caused by
 - Staphylococcus aureus (MRSA or MSSA)
 - Moraxella catarhallis (most often CAP)

H. influenzae, a gram-negative bacterium https://www.cdc.gov/hidisease/media/images/Hinfluenzae.png


Common Bowel Flora

- A normal mix of bacterial flora maintains our gut health
- There are more than 400 species in the bowel
 - 95-99% are Enterobacter, Enterococcus, Proteus, Morganella,
 Peptostreptococcus, Bacteroides, Clostridium species
- Presence of altered conditions (colitis, diarrhea), yeast, C. difficile, pseudomonas species, VRE, and others can pathogenically change bowel flora
- Presence of bowel organisms found in non-GI sites may need to be investigated for possible contaminated specimen if resident is asymptomatic
 - Should not be routinely found in blood or urine, for example

Testing Stool

- C. difficile testing: Bristol Stool Scale Type 6 or 7
 - Toxin test: Toxins A/B, results same day
 - C. diff toxin degrades after one hour at room temperature
 - Molecular tests: PCR, results 24-48 hours
 - Antigen tests: Rapid, results < 1 hour, used with toxin testing
 - Stool cultures: Slow growth, 48-96 hours for results
- Norovirus: RT-PCR from whole stool sample
- Both requires a fresh stool sample
 - Avoid collecting from stool collection device
 - Must be taken to the lab within an hour

Clinical Testing and Diagnosis for CDI

(https://www.cdc.gov/c-diff/hcp/diagnosis-testing/index.html)

Viral Testing

- Viruses are tested differently than bacteria
- Viral testing types
 - PCR
 - Direct fluorescence (DFA) or immunofluorescence (IFA)
 - Serological (EIA)
 - Immunoassays (rapid tests)
 - RSV
 - Influenza
- Antibody testing (IgM, IgG)

Serology – Antibody Testing

- Diagnostic test that identifies immunoglobulins (antibodies) in blood serum
 - Immunoglobulins (Ig) are proteins that bind to viruses and bacteria

Types of antibodies

- IgM: produced immediately after exposure (acute phase of disease)
- IgG: most abundant; long term response to disease (chronic disease)
- IgA: secretory, present in mucosal linings (respiratory, GI, GU tracts)
- IgE: plays a role in hypersensitivity reactions

Laboratory Tests for Respiratory Viruses

- Direct fluorescent antibody (DFA) tests identify respiratory viruses
 - RSV
 - Influenza or parainfluenza
 - COVID 19
- Detected from nasal wash samples of patient/residents with suspected infection
 - Collected by a swab used for nasal sampling
 - Cotton or calcium alginate swab and/or wood handle does not collect viruses, resulting in false negative results

Hepatitis A Virus Test Results

- Hepatitis A Virus (HAV)
 - Hepatitis A Total
 - Result indicates current or past HAV infection
 - Cannot determine if acute or not on total result
 - Hepatitis A, IgM positive
 - Acute HAV infection
 - Patient/resident in infectious stage of disease
 - Hepatitis A, IgG positive
 - Recovering from infection
 - No longer infectious

Hepatitis B Viral Testing Terminology

Test / Term	Definition
antigen	Foreign microbe causing an immune response
antibody	Immune (proteins) response to an antigen
IgM	Immune globulin M, 1st antibody to appear after exposure to an antigen
НВ	hepatitis B virus
HBsAG	surface antigen test; detects a current infection
anti-HBc	core antibody test; detects if ever been infected
anti-HBs	surface antibody test; past infection or vaccination (immune)
IgM anti-HBc	antibody response due to initial exposure to HB core antigen
HbeAG	HB e antigen; acute HB infection marker indicates highly infectious

Hepatitis B Viral Testing Results

#	Interpretation Person is:	HB(s) AG	anti- HBc	anti- HBs	IgM anti-HBc	HB(e) AG
1	Susceptible to HBV infection	neg	neg	neg		
2	Immune due to prior HBV infection	neg	pos	pos		
3	Immune due to hepatitis B vaccination	neg	neg	pos		
4	Acutely infected with HBV	pos	pos	neg	pos	
5	Chronically infected with HBV	pos	pos	neg	neg	
6	Highly Infectious					pos

CDC Interpretation of Hepatitis B Serologic Test Results (PDF) (cdc.gov/hepatitis/HBV/PDFs/SerologicChartv8.pdf)

Hepatitis C Viral Testing

Hepatitis C Virus (HCV)

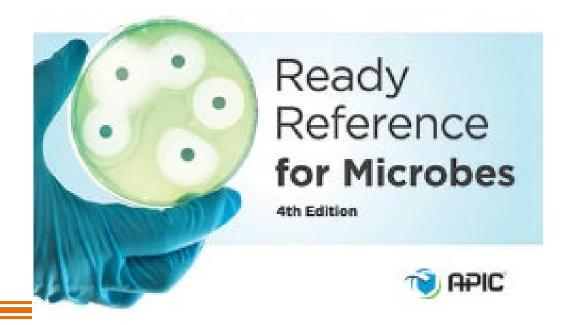
- Hepatitis C antibody (Anti-HCV)
 - Exposure to hepatitis C
 - Active, chronic, or resolved
- Hepatitis C Qualitative (RNA PCR)
 - Identifies genetic material of the virus, detectable earlier than antibody tests
 - Used to screen after exposure
 - Confirmatory test of antibodies to the virus

When the Lab Calls...

- Does the organism sound odd?
 - Question if certain organisms found in sterile sites and patient/resident is not symptomatic
 - Culture from blood results with a resistant organism
 - Organism not usually found in that site
- Cross-contamination is possible during collection and in the lab
- Administration of antibiotics for colonization or cross-contamination increases risk of developing resistance
- Missed opportunities: unrecognized Candida auris as a pathogen
 - Some labs may report Candida auris as "yeast"

The Role Of The Laboratory In Outbreak Investigation

How do we identify the relatedness of bacteria in an outbreak



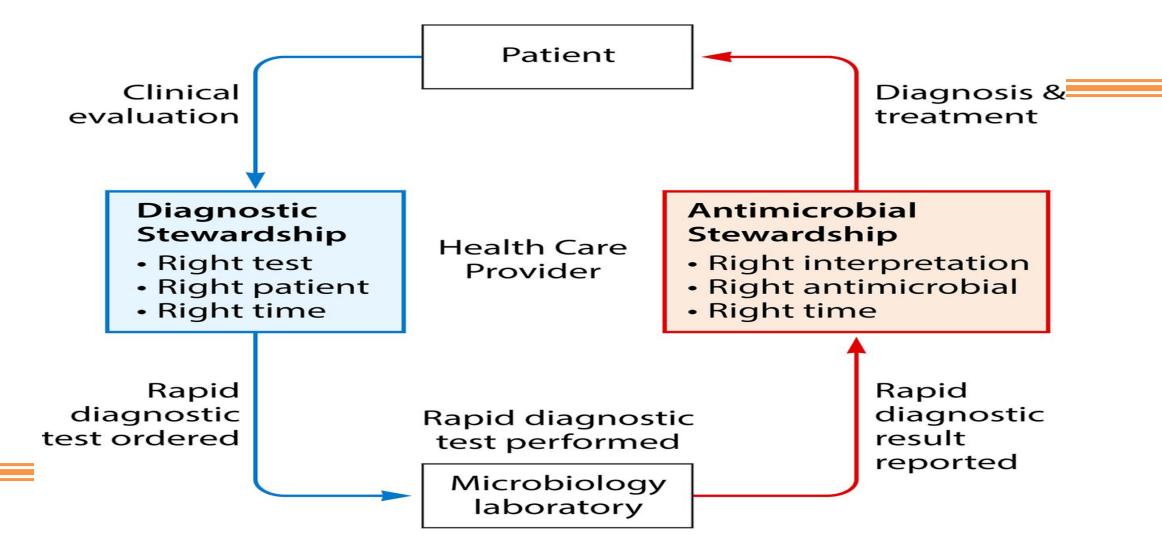
Additional Resource

Brooks, K. Ready Reference for Microbes, 4rd Ed., 2018

Available on the apic.org website:

secure.apic.org/web/ItemDetail?iProductCode=SLS6005&Category=BOOKS

Summary


- Microbiology laboratory is important for HAI Prevention to
 - Provide results to help manage outbreaks
 - Indicate the need to perform additional screening and confirmatory tests for epidemiologic investigations
 - Target infection surveillance
 - Alert that unusual pathogens or changes in antibiotic susceptibility in the population may be occurring
 - Local antibiogram development and antimicrobial stewardship
 - Give assistance with interpretation of test results

Questions?

For more information, please contact

HAIProgram@cdph.ca.gov">HAIProgram@cdph.ca.gov

