Contact Precautions for MRSA and VRE: Out of Fashion or Prevention Worth Wearing?

APIC West Virginia

Fall Conference 2024

Graham Snyder, MD SM

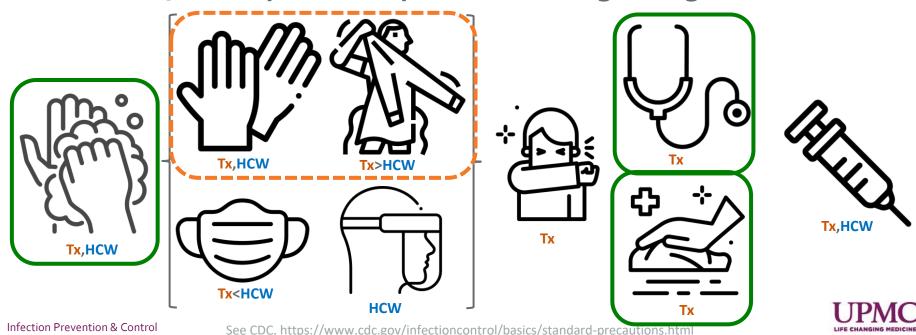
September 19, 2024

Disclosures

No relevant financial relationships to disclose

Learning Objectives

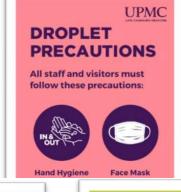
- Understand the mechanisms of transmission for methicillinresistant Staphylococcus aureus (MRSA) and vancomycinresistant Enterococci (VRE)
- Summarize the published evidence for use of contact precautions, and discontinuation of contact precautions, to prevent healthcare-associated infections due to MRSA and VRE
- Define a risk-tailored approach to use of transmission-based precautions to prevent transmission of MRSA and VRE.

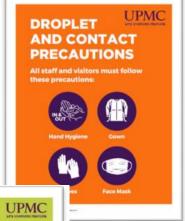


To understand the *incremental* value of contact precautions, we must define the "fundamentals"

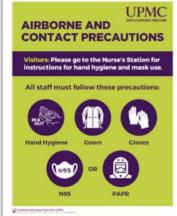
Standard precautions applies to all patient encounters – and likely affords substantial protection

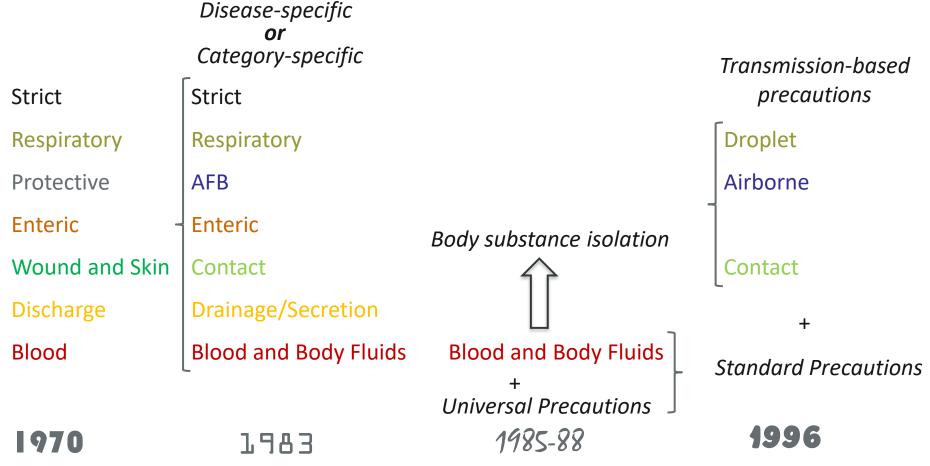
Universal and situation-dependent transmission prevention measures, not dependent upon microbiologic diagnosis




Transmission-based precautions requires knowledge

of pathogen carriage





The current transmission-based model presents challenges to implementation

- Translating clinical assessment and/or testing to appropriate signage
- Visibility of signage
- Availability of personal protective equipment (PPE)
- Waste disposal (+/- laundering "cost")
- Suboptimal adherence and incorrect use

Theoretical reasons why transmission-based precautions may be counter-productive

- Menial burden of PPE use, without visualization of consequences of non-adherence
- Conscious risk assessment and protective action versus subconscious behavior
- Risk of increased contamination with misuse
- "Knowing more" may not equal better/safer patient care
- Potential adverse risks to patient: frequency of care, adverse events, psychological impact

Type and Duration of Precautions Recommended for Selected Infections and Conditions¹

Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings (2007)

Α

Infection/Condition		Type o		Duration Precaution		Precautions/Comments
Viral hemorrhagic fevers due to Lassa, Ebola, Marburg, Crimean- Congo fever viruses	Cor	oplet + ntact + ndard	2 0	ration of Iness	be found 2018). Single-pa	te: Recommendations for healthcare workers can at Ebola For Clinicians. (accessed September tient room preferred. Emphasize: ase of sharps safety devices and safe work practices,
Respiratory syncytial virus infection, in infants, young children and immunocompromised adu		Contact Standar		Duration of illness	[116, the du shedo deter	mask according to Standard Precautions [24] CB 117]. In immunocompromised patients, extend uration of Contact Precautions due to prolonged ling [928]. Reliability of antigen testing to mine when to remove patients with prolonged talizations from Contact Precautions uncertain.

Why we should believe in the effectiveness of contact precautions to reduce transmission

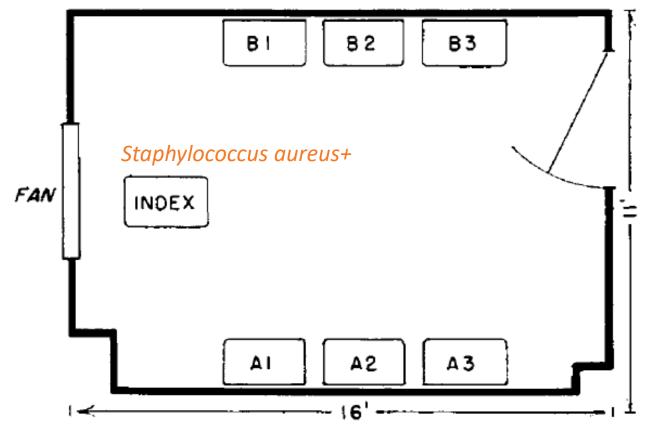
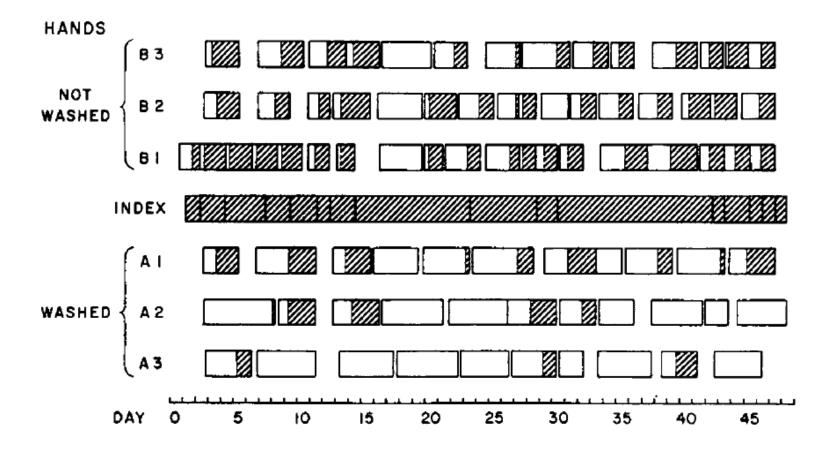
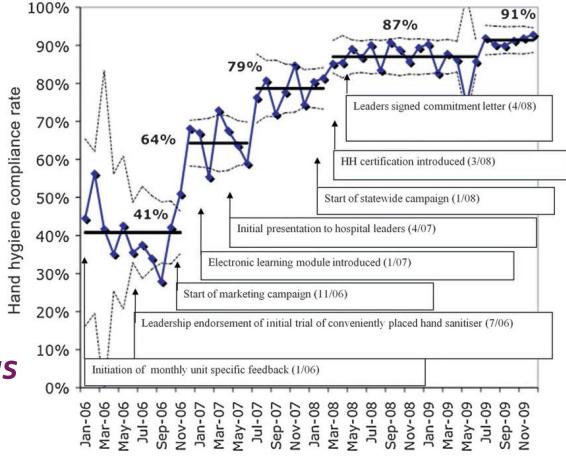
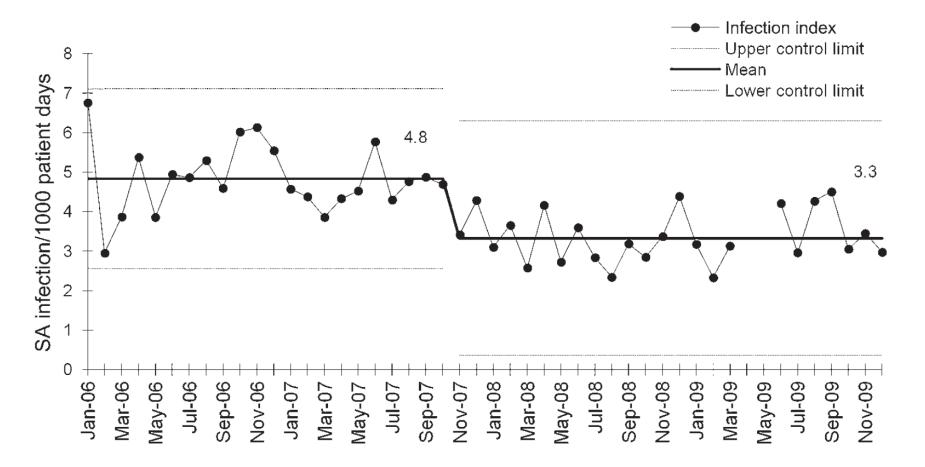



Fig. 1.—Plan of study nursery.

Study Group	N	S.aureus acquisitions	Hours exposed	Frequency of acquisition	Rate of acquisition (/100 hours)
A = handwashing	32	17	2,265	53.1%	0.75
B = no handwashing	49	45	1,578	91.8%	2.85


Risk Ratio: Incidence Rate Ratio:

1.73 (1.24-2.42) 3.80 (2.18-6.64)


Handwashing reduced the risk of transmitting *S. aureus* by 40-75%

Studies continue to demonstrate the importance of hand hygiene (and ergo contact route) in the prevention of *S. aureus*

Personal protective equipment becomes contaminated during patient care – ICU, MRSA & VRE

TABLE 1. Rates of Detection of Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococci (VRE) on the Gowns and Gloves Worn by Healthcare Workers Caring for Patients with MRSA and VRE Carriage

	Patients w	vith MRSA carriage	Patients with VRE carriage		
Sample cultured	Proportion of observations	Percentage of observations (95% CI)	Proportion of observations	Percentage of observations (95% CI)	
Gloves	14/79	17.7 (9.3–26.1)	7/91	7.7 (2.2–13.2)	
Gown	5/81	6.2 (1–11.4)	4/94	4.3 (0.2–8.4)	
Gloves and/or gown	15/81	18.5 (10–27)	8/94	8.5 (2.9–14.1)	
Hands after removing gloves and gown	2/78	2.6 (-0.9 to 6.1)	0/94	0	

NOTE. For some interactions, gown or glove samples could not be obtained, so the total number of observations varies. CI, confidence interval.

Personal protective equipment becomes contaminated during patient care – ICU, MRSA

PPE sampled	Contam %
Gloves	14.2% (570/3982)
Gowns	5.9% (233/3980)
Gloves and/or gown	16.2% (644/3982)

Type of Healthcare Personnel (N = 3982)	Number of Gloves or Gowns With MRSA/Number of Observations (% Gloves or Gowns With MRSA)	Odds Ratio (95% Confidence Interval
Occupational/physical therapist	27/83 (32.5)	6.96 (3.51, 13.79)
Respiratory therapist	87/322 (27.0)	5.34 (3.04, 9.39)
Nurse	404/2292 (17.6)	3.09 (1.84, 5.19)
Patient care technician	36/293 (12.3)	2.02 (1.09, 3.74)
Medical doctor/nurse practitioner	61/541 (11.3)	1.83 (1.04, 3.25)
Environmental services	13/204 (6.4)	0.98 (0.46, 2.09)
Other ^a	16/247 (6.5)	Ref
Domain Touched (N = 3982)	Number of Gloves or Gowns With MRSA/Number of Observations (% Gloves or Gowns With MRSA)	Odds Ratio (95% Confidence Interval)
Contamination of gloves or gowns		
Any patient contact ^a	594/3274 (18.1)	2.59 (1.04, 6.51)
Environment only	45/620 (7.3)	1.13 (0.43, 3.00)
Nothing	5/88 (5.7)	Ref

Personal protective equipment becomes contaminated during patient care – non-ICU, MRSA

Contam %
3.1% (16/517)
3.5% (18/517)
5.4% (28/517)

	Transmission of MRSA to HCP Glove or Gown			
Variable	Yes, No. (%)	No No. (%)	Adjusted OR (95% CI) ^a	
HCP type				
Direct patient care ^b	26 (6.4)	378 (93.6)	3.93 (0.89–17.44)	
No direct patient care ^c	2 (1.8)	111 (98.2)	Ref	
MRSA bacterial bioburden				
Detected ^d	9 (9.3)	88 (90.72)	2.84 (1.02-7.87)	
Not detected ^e	11 (3.6)	299 (96.5)	Ref	

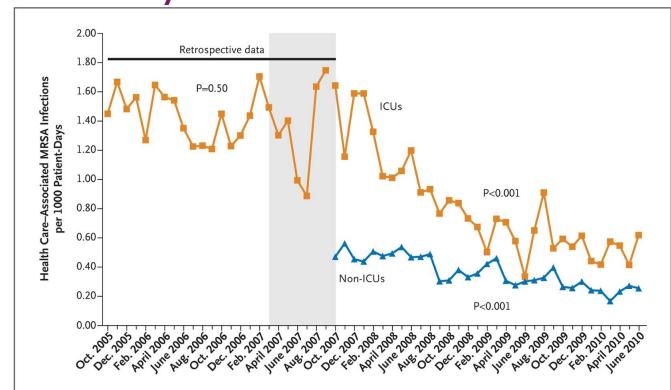
Personal protective equipment becomes contaminated during patient care – ICU, VRE

PPE sampled	Contam %
Gloves	13.0% (61/469)
Gowns	6.2% (29/469)
Gloves and/or gown	15.1% (71/469)

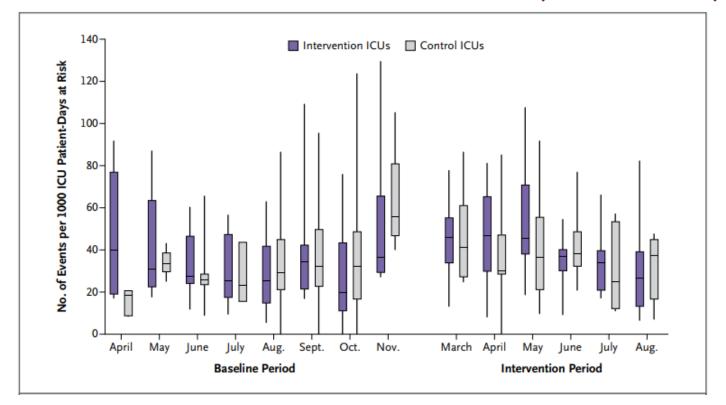
HCW Type (N = 469)	HCW-Patient Interactions, No. (%)	OR (95% CI) ^a
Nurse	236 (50)	4.74 (1.63–13.77)
MD/nurse practitioner	70 (15)	4.26 (1.06–17.18)
Respiratory technician	37 (8)	3.15 (0.64–15.54)
Patient care technician	18 (4)	7.57 (1.80-31.79)
Occupational/physical therapist	12 (3)	8.66 (1.36-55.05)
Environmental services and other ^b	96 (20)	Reference

Variation in PPE contamination could tailor transmission prevention effectiveness

- Contamination of gowns, gloves, or both with MRSA and VRE are common during care for MDRO carriers
- Consistent risk factors include:
 - Time in room
 - ICU > non-ICU
 - Nature of care: Respiratory, wound/hygiene, devices
 - Contact with patient domain > environmental domain
 - Bacterial burden on the patient



What methodologically robust studies suggest about effectiveness of contact precautions


The nationwide Veterans Administration "MRSA bundle" was persuasively successful

- Leadership buy-in
- "Positive deviance" culture change
- Resources (education, lab, et al)
- Data transparency
- Hand hygiene
- MRSA prevention coordinator
- Active surveillance
- Contact precautions

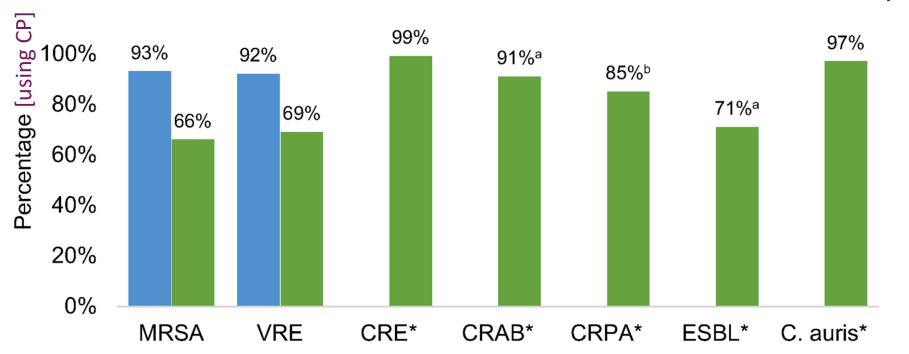
Active surveillance and contact precautions for MRSA and VRE did not reduce transmission (STAR*ICU)

ICU universal gowning and gloving did not result in reduction in {MRSA or VRE} acquisition (BUGG)

			Intensive	Care Units				
		Interven	tion		Contro			
	No. of Acquisitions	Patient-Days at Risk	Mean Rate (95% CI) ^a	No. of Acquisitions	Patient-Days at Risk	Mean Rate (95% CI) ^a	Difference (95% CI) ^b	<i>P</i> Value ^c
Drug-Resistant E	Bacteria							
VRE or MRSA								
Study period	577	32 693.0	16.91 (14.09 to 20.28)	517	31 765.0	16.29 (13.48 to 19.68)		
Baseline	178	8684.0	21.35 (17.57 to 25.94)	176	9804.5	19.02 (14.20 to 25.49)		
Change ^d			-4.47 (-9.34 to 0.45)			-2.74 (-6.98 to 1.51)	-1.71 (-6.15 to 2.73)	.57
VRE								
Study period	411	27 765.5	13.59 (10.26 to 17.99)	337	28 340.5	11.88 (8.65 to 16.33)		
Baseline	108	7691.5	15.18 (10.50 to 21.95)	122	8818.0	14.37 (10.31 to 20.02)		
Change ^d			-1.60 (-7.18 to 3.98)			-2.48 (-5.53 to 0.56)	0.89 (-4.27 to 6.04)	.70
MRSA								
Study period	199	30 454.5	6.00 (4.63 to 7.78)	191	30 024.0	5.94 (4.59 to 7.67)		
Baseline	77	7841.0	10.03 (8.05 to 12.50)	59	9182.0	6.98 (4.50 to 10.83)		
Change ^d			-4.03 (-6.50 to -1.56)			-1.04 (-3.37 to 1.28)	-2.98 (-5.58 to -0.38)	.046

There is a good circumstantial case for the effectiveness of contact precautions.

Nevertheless, it became *de rigueur* to discontinue contact precautions (DcCP).


Hospitals began discontinuation of CP around 2010

		Use of c	ontact precaution	ns		
Institution (number of hospitals)	MRSA	VRE	C. difficile	MDR-GNR	Year foregoing CP	
Hospitals that practice enhanced focus on hand hygic	ene complianc	e and HAI	prevention bund	les (horizontal inte	erventions)	
Virginia Commonwealth University MC	No	No	Yes	Yes	2013	
University of Massachusetts (2 hospital campuses)	No	No	Yes	Yes	2010	
Detroit MC (7 hospitals)	No	No	Yes	Yes	Prior to 2003	
Tufts-New England MC	No	No	Yes	Yes	2010	
St. Johns MC, Santa Monica, CA	No	No	Yes	Yes	2002	
University of Rochester MC	No	No	Yes	Yes	2014	
Baylor St. Luke's MC	No ^a	No	Yes	Yes	2005	
UCLA (2 hospitals)	No	No	Yes	Yes	2013	
University of Nebraska MC	No	No	Yes	Yes	2015	
San Francisco General Hospital	No	No	Yes	Yes	Prior to 2002	
University of San Francisco MC	No	No	Yes	Yes	Prior to 2002	
Alta Bates MC, Oakland, CA	No	Yes	Yes	Yes	2014	
University of Cincinnati MC	No	Yes	Yes	Yes	Prior to 2002	
Oakwood Hospital System, MI (4 hospitals)	No	No	Yes	Yes	Prior to 2013	
Hospitals that use gowns and gloves for syndromic in	ndications onl	y (diarrhea,	draining wound	s)		
Baystate Hospitals (multiple hospitals) ²	No	No	Yes ^b	Yes	2003	
Dartmouth MC ²	No	No	Yes ^b	Yes	Prior to 2003	
Hospitals that use decolonization of patients identifie	ed to have S. a	ureus (inclu	iding MRSA)c			
Cleveland Clinic (10 hospitals)	No	No	Yes	Yes	Prior to 2003	

The trend in discontinuation of CP continues...

■ 2014 survey (n=336) ■ 2022 survey (n=201)
*Not asked about in the 2014 survey

Methodologically limited studies show no change (to benefit?) in MRSA infection rates after DcCP

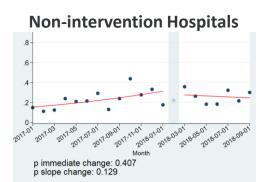
			Risk Ratio		Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bardossy 2017	-0.24	0.332	7.4%	0.79 [0.41, 1.51]	
Deatherage 2016	-0.2	1.21	0.6%	0.82 [0.08, 8.77]	
Edmond 2015	-0.22	0.387	5.5%	0.80 [0.38, 1.71]	
Gandra 2014	-0.22	1.72	0.3%	0.80 [0.03, 23.36]	
Graman 2015	0	0.75	1.5%	1.00 [0.23, 4.35]	
Martin 2016	-0.22	0.132	47.1%	0.80 [0.62, 1.04]	-
McKinnell 2017	0.083	1	0.8%	1.09 [0.15, 7.71]	
Renaudin 2017	-0.037	0.447	4.1%	0.96 [0.40, 2.31]	
Rupp 2017	-0.13	0.165	30.2%	0.88 [0.64, 1.21]	-
Spence 2012	0.1	0.837	1.2%	1.11 [0.21, 5.70]	
Watkins 2014	0.187	0.765	1.4%	1.21 [0.27, 5.40]	
Total (95% CI)			100.0%	0.84 [0.71, 1.01]	•
Heterogeneity: Tau*=	0.00; Chi ² = 0.79	df = 10	(P = 1.00)));	10 100
Test for overall effect:	-	-			0.01 0.1 1 10 100
	(,			Favours Stopping CP Favours CP

Methodologically limited studies suggest a modest decrease in VRE infection rates after DcCP

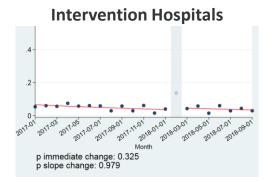
				Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Almyroudis 2016	-0.13	0.105	44.7%	0.88 [0.71, 1.08]	=
Bardossy 2017	0	1.4	0.3%	1.00 [0.06, 15.55]	
Edmond 2015	-0.26	0.323	4.7%	0.77 [0.41, 1.45]	
Gandra 2014	-0.31	1.55	0.2%	0.73 [0.04, 15.30]	
Lemieux 2017	-0.53	0.462	2.3%	0.59 [0.24, 1.46]	
Martin 2016	-0.19	0.121	33.7%	0.83 [0.65, 1.05]	
Rupp 2017	-0.34	0.187	14.1%	0.71 [0.49, 1.03]	
Total (95% CI)			100.0%	0.82 [0.72, 0.94]	•
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.58$, $df = 6$ (P = 0.95); $I^2 = 0\%$					0.01 0.1 1 10 100
Test for overall effect:	Z = 2.78 (P = 0.00)5)			Favours Stopping CP Favours CP

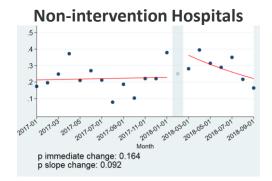
Major Quasi-Experimental Design Types and Subtypes Type and Testing the Subtype Description Notation A. INTERRUPTED TIME-SERIES QUASI-EXPERIMENTAL DESIGNS 15 Interrupted time series that uses switching A1c A2c A3c X A4t A5t A6t removeX A7c A8c A9c A10c counterfactual replications and a control group B1c B2c B3c B4c B5c B6c X B7t B8t B9t B10t Interrupted time series with repeated treatment A1c A2c A3c X A4t A5t removeX A6c A7c X A8t A9t design13 Interrupted time series removing the treatment at a and proving the 13 A1c A2c A3c A4c X A5t A6t A7t A8t removeX A9c A10c known time Interrupted time series with a nonequivalent (A1c^v, A1cⁿ) (A2c^v, A2cⁿ) (A3c^v, A3cⁿ) X (A4t^v, A4tⁿ) (A5t^v, A5tⁿ) 12 dependent variable14 relationship Interrupted time series with an untreated control A1c A2c A3c A4c A5c X A6t A7t A8t A9t A10t 11 group 12 B1c B2c B3c B4c B5c B6c B7c B8c B9c B10c Simple interrupted time series 11,15 10 A1c A2c A3c A4c A5c X A6t A7t A8t A9t A10t between B. OUASI-EXPERIMENTAL DESIGNS THAT USE CONTROL GROUPS The control group design that uses dependent pretest A1c X A2t removeX A3c and posttest samples and switching replications B1c B2c X B3t intervention and The untreated-control group design that uses A1c A2c X A3t dependent pretest and posttest B1c B2c B3c samples and a double pretest outcome – does The untreated control group design that uses A1c X A2t dependent pretest and posttest samples The posttest-only design that uses an untreated not require RCTs X Alt control group B1c C. OUASI-EXPERIMENTAL DESIGNS THAT DO NOT USE CONTROL GROUPS The repeated-treatment design A1c X A2t removeX A3c X A4t The removed-treatment design A1c X A2t A3t removeX A4c The 1-group, pretest-posttest design that uses a (A1c^v, A1cⁿ) X (A2t^v, A2tⁿ) nonequivalent dependent variable A1c A2c X A3t The 1-group, pretest-posttest design that uses a double pretest Schweizer ML, Infect Control Hosp Epi The 1-group, pretest-posttest design A1c X A2t 2016:37:1135 NOTE. Classification types adapted prior publications^{1,2}; A = primary group of interest; B = control group; 1,2,3, etc. = observations for a Group; X = intervention; remove X = remove intervention; v = variable of interest; n = non-equivalent dependent variable; t = treatment group; Infection Prevention & Control c = no treatment. Time moves from left to right, Citations are published examples from the literature.

The future holds a more complete assessment and nuanced perspective of contact precautions


In a multi-facility health system, we found no change in MRSA or VRE HAI rates after DcCP

p slope change: 0.498


MRSA HAI Per 10,000 Patient Days



Intervention Hospitals

VRE HAI Per 10,000 Patient Days

Health systems should consider metrics beyond summary HAI or acquisition metrics

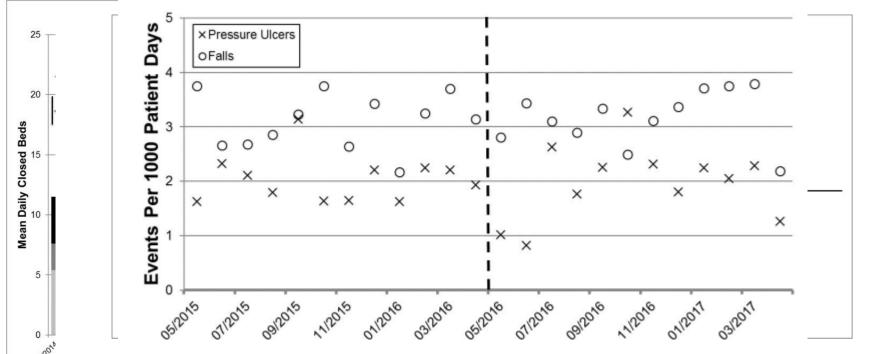
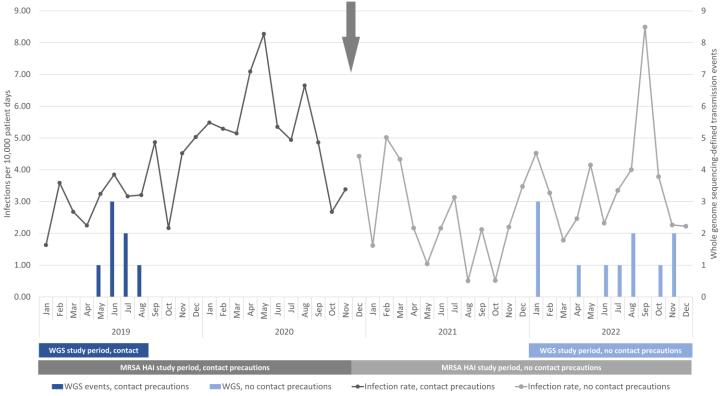


Figure 2 Change in HCAHPS scores of patients discharged from hospital units with double-occupancy beds after DCCP. Comm, communication; DcCP, discontinuation of contact precautions; HCAHPS, Hospital Consumer Assessment of Healthcare Providers and Systems.

Non-Infectious Other Infections MRSA and/or VRE - - Occupancy Rate

nuation


< 0.01

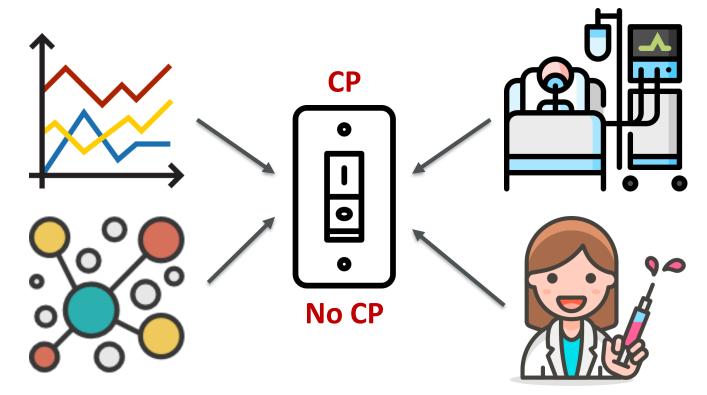
< 0.01

0.23

0.30

An HAI or acquisition measure may not adequately estimate contact precaution-preventable transmission

Hospital "acquisition" represents more than HAI or new colonization alone


MRSA: 10.7% (39/365) unique patient isolates were related to another hospital isolate, in 18 clusters

VRE (*E.faecium*): 10.8% (297/2752) Pseudomonas unique patient isolates were related to another isolate, in 24 clusters (*E.faecalis*: 0/17 isolates)

Acinetobacter spp. Burkholderia spp. Vancomycin-resistant Enterococcus faecium Vancomycin-resistant Enterococcus faecalis Serratia spp. Clostridioides Pseudomonas spi difficile Escherichia coli Klebsiella spp. Klebsiella pneumoniae Legionella spp.

Providencia spp.

The future may be risk-tailored deployment of CP: Anticipate change + robust analysis

Healthcare workers may be amenable to a risk-tailored approach...

Table 1. Summary of most frequently mentioned themes by healthcare personnel related to contact precautions for patients with MRSA

	Frequency
Risk-tailored approach to PPE	
Open to a risk-tailored approach	10
 Concern risk-tailored is too complicated/confusing 	8
Prefer to wear for all encounters	5
Suggestions for risk-tailored approach	
Targeted education for patients and visitors	7
Targeted education for staff	4
Signage	3
	N=24

Table 3. Changes in Hand Hygiene and Personal Protective Equipment (PPE) Donning Compliance During Intervention Versus Baseline and Estimated Effect of the PPE-Free Zone

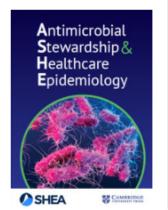
Model	Relative Risk	95% Confidence Interval	<i>P</i> Value				
Hand hygiene compliance (N= 2,335)							
Control units ^a	0.70	(0.55-0.90)	.005				
Intervention units ^a	0.92	(0.79-1.07)	.29				
Interaction term (effect of PPE-free zone) ^b			.07				
PPE donning compliance (N= 2,952)							
Control units ^a	1.00	(0.83-1.20)	.97				
Intervention units ^a	1.17	(1.04-1.32)	.009				
Interaction term (effect of PPE-free zone) ^b			.15				

...but the effectiveness of the impact remains uncertain.

Recommended further reading with expanded references

Are Contact Precautions "Essential" for the Prevention of Healthcare-associated Methicillin-Resistant Staphylococcus aureus?

Daniel J Diekema


✓, Priya Nori, Michael P Stevens, Matthew W Smith, K C Coffey,

Daniel J Morgan Author Notes

Clinical Infectious Diseases, Volume 78, Issue 5, 15 May 2024, Pages 1289–1294,

https://doi.org/10.1093/cid/ciad571

Published: 21 September 2023 Article history ▼

Contact precautions for the control of endemic pathogens: Finding the middle path

Published online by Cambridge University Press: 24 March 2023

Gonzalo M. Bearman (D), Anthony D. Harris and Evelina Tacconelli

Figures

Metrics

Questions

