Effective Infection Prevention Change Strategies

Kavita K. Trivedi, MD

Director of Clinical Guidance, Communicable Disease Controller

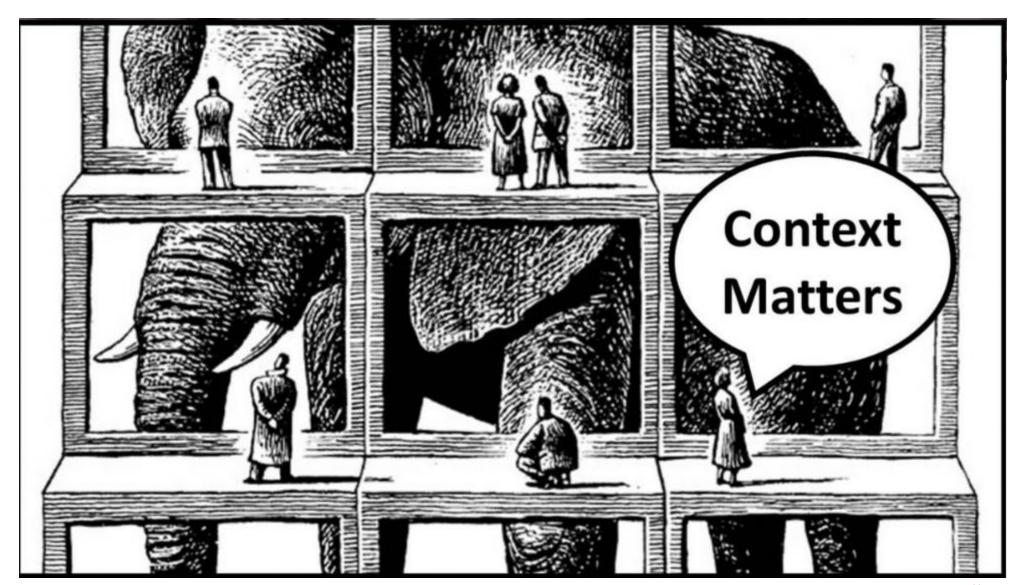
Alameda County Public Health Department

Disclosure

I have no actual or potential conflicts of interest to disclose

Acknowledgements

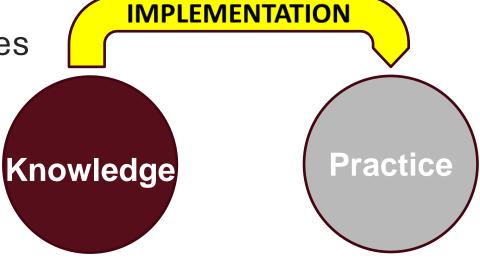
- Implementation Chapter Writing Group
 - Josh Schaffzin (many shared slides), Sean Berenholtz, Valerie Deloney
- SHEA and partners



Learning Objectives

After this session, participants will be able to:

- Delineate the difference between implementation science and quality improvement
- Explain why understanding context is essential when implementing practice
- Develop and incorporate a standard approach to implementing HAI prevention interventions in healthcare institutions
- Discuss implementing a single framework across Montana acute care hospitals



Why do we Need Implementation?

- Knowing-Doing Gap
 - Estimated 17yr to implement evidence
 - Implementation can bridge the two
- Regulatory expectation
 - To implement evidence-based policies

Balas and Boren (2000) Grant et al (2003) The Joint Commission (2021)

Terminology

- Implementation science
 - "The scientific study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice."
 - Directs us to evaluate contextual determinants of behavior to design more successful, customized interventions
- Implementation in practice (Quality Improvement)
 - "The systematic uptake of research findings and other evidence-based practices into routine practice"

Terminology

- Example: Hand Hygiene (HH)
 - Evidence shows that hand hygiene prevents disease transmission
 - You need your providers to perform hand hygiene
 - Implementation Science
 - How should HH be performed?
 - How should adherence be measured?
 - What materials are necessary for HH?
 - What motivates people to perform HH?
 - What are facilitating factors? Barriers?
 - Quality Improvement
 - Which methods will work best for my providers?

Eccles & Mittman (2006) Saint et al (2010)
Tomoaia-Cotisel et al (2013) Geerligs et al (2018) Kaplan et al (2010)

System vs Individual

- Organizational structure dictates performance
 - Systems work toward a steady state
 - "Systems operate the way they are designed to operate"
- Working harder vs working better
 - No amount of effort can change system design
 - "A bad system will beat a good person every time"
 - Red bead experiment
 IHI Demonstration Video Red Bead Experiment: https://youtu.be/oMb_UKYHvto?si=xB6mVslnjmzcZShS

W. Edwards Deming

The many lessons of the Red Bead Experiment

- It's the system, not the workers.
- Since top management owns the system and quality is the outcome of the system, quality must start with management.
- Numerical goals and production standards can be meaningless.
- By using reward and punishment, management was tampering with a stable system.

The many lessons of the Red Bead Experiment

- Extrinsic motivation is not effective.
- A process can be stable, in-control and be producing defective items 100% of the time.
- Rigid and precise procedures are not sufficient to produce the desired quality.

The many lessons of the Red Bead Experiment

- Slogans and posters are useless.
- Superstitious knowledge can affect decisions.
- People are not always the dominant source of variability.

Working Harder vs Working Better

- Optimizing tomato production
 - You want market-ready product from seed to fruit in 2 weeks
- Existing System Constraint
 - It is biologically impossible to produce a tomato in <30 days
- Strategies to improve production
 - Positive Incentives, swag, competition
 - Negative Pay cuts, lay-offs
- The goal cannot be achieved unless you modify the system of the system
 - Genetic intervention (cross-breeding)
 - Invent equipment (soil, environment)

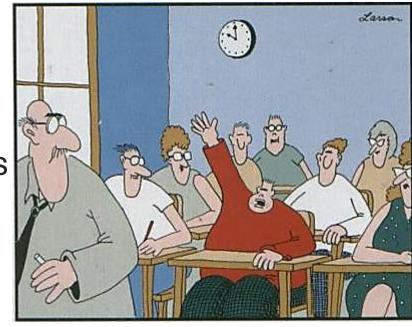
Small Group Discussion

Discussion

- Imagine your workplace. Are there times you feel that you have no control over the outcomes?
- Do you take time to discuss issues in your system that leave you feeling as though outcomes are beyond your control?
- In which situations do you feel that management has "tampered" with the system rather than fixed the problem

Observation and Qualitative Evaluation

- 'Going to the Gemba'
 - Real-world, real-time observation
 - Direct engagement with people and process
 - Collect data, not solutions


Reliability

- How often a process happens as it is supposed to
 - Percent success or failure
- Systems can be highly reliable but humans cannot
 - Person-Dependent systems are unreliable
- Creating reliability requires purposeful design and maintenance
 - Forced-function
 - Automation
 - Standardization
 - Constant evaluation/observation

Education is a Low-Reliability Intervention

- Necessary but insufficient
 - Relies on memory and vigilance
 - Requires repetition and practice
 - May not account for different learning styles
- Prone to failure
 - Cannot fix lapses in concentration
 - Does not change habits
 - May not affect external pressures

Mr. Osborne, may I be excused? My brain is full.

Education has Low-Reliability - Examples

- Driving, Skidding, and Breaking
 - Taught pump breaks, turn into skid
 - Reliable fix Anti-Lock Brakes
 - Mandatory on all cars

Education has Low-Reliability - Examples

- Hand hygiene
 - No lack of data
 - No lack of education
 - Why do we see lack of adherence?

69% of failures not related to education

Domain	Count (%) N=207	Themes/Examples
Memory/Attention/ Decision Making	87 (42%)	Forgot Preoccupied/distracted In a rush
Knowledge	55 (26%)	Gloves are adequateUnaware of need
Other	31 (15%)	Don't know why 'Oh!' Apologized
Environment/ Resources	18 (9%)	Too busy Not within reach
Consequence Beliefs	6 (3%)	- Alcohol dries hands
Nature of Behaviour	5 (2%)	Habit
Skills	2 (1%)	- Out of practice
Emotions	2 (1%)	Bad morning
Social Norms	1 (<1%)	- Different from what peers say

Interventions and Reliability

Education & Information

Rules & Policies

Reminders & Checklists

Standardization

Automation

Forced-Function

Human Reliability

Efficacy LOW HIGH

Implementation Easy Difficult

Adapted from ISMP Hierarchy of Effectiveness

Human Factors E

- What it IS
 - The interaction
 - Includes techn
 - Supports work limitations of w
 - Standardizing r behaviors"
- What it IS NOT
 - How humans to
 - Humans makir

Wearable sensors Intelligent Knowledge of sensing risks systems Compliance Risk tracking and perceptions monitoring Perceptions and Cognitive Technology Aspects Hand Hygiene Training and **Physical** Systems Education Environment Placement of Technique Coordination hand hygiene products Organizational Multi-pronged Signage and support and approach visual cues culture

Compliance

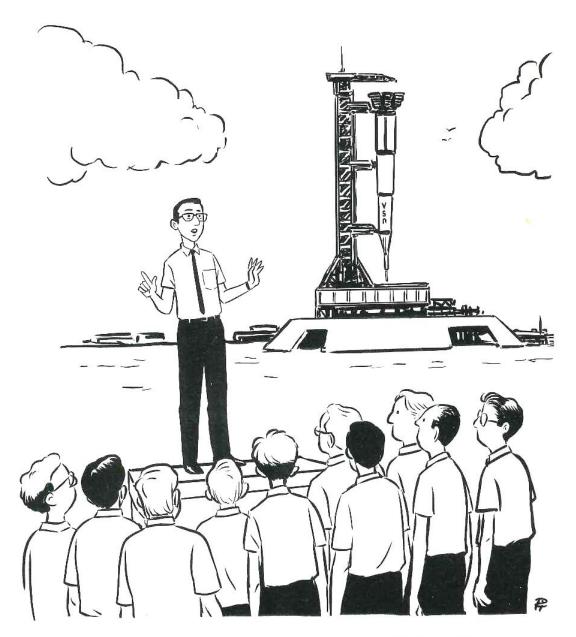
surroundings al structure ties, needs, and

es as "normal

Holden RJ et al. (2013) Pennathur & Herwaldt (2017)

Human Factors Engineering

- Color matters
- Color as a signal of content/product



Discussion

Describe your previous/ongoing QI projects

- 1) What was the project and who was the audience you were helping?
- 2) Describe something that worked
- 3) Describe something that didn't work
- 4) Describe the team that was assisting to implement the change strategy
- 5) What could you have done differently?

"Now, we're not going to use the word 'blame.'"

Implementation Science in Practice

Implementation Science

Key pieces needed to succeed

- Team
- Context and Determinants
- Measures
- Framework

QI in Practice

Key pieces needed to succeed

- Team
 - Can form at any time
 - Frontline stakeholders, influencers and leaders, technical support
 - Team membership is fluid
- Context and Determinants
- Measures
- Framework

The Importance of Context

Operational support

Context is: Informatics resources

Familiarity and

experience

Willingness to change

Safety culture

Healthcare workforce

Patient population

Existing efforts

And more...

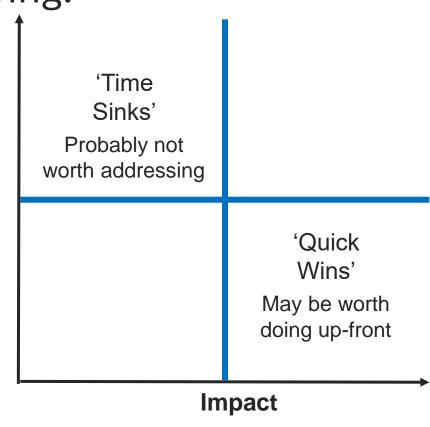
- Directly influences implementation plan
 - Choice of what and how to implement
 - Interventions need to match context
- Understanding context can be tricky
 - Experience vs Clean slate
 - External appearance vs Internal reality

Implementation Science in Practice (QI)

Key pieces needed to succeed

- Team
- Context and Determinants
- Measures
- Framework

Determinants


- Factors influencing a practice or change
 - Facilitators promote a practice or change
 - Barriers hinder practice or change
- Levels to assess
 - Individual Preferences, needs, attitudes, knowledge
 - Facility Team composition, communication, culture, resources
 - Partners Degree of support and buy-in
- How to identify
 - Literature
 - Direct observation
 - Conversations

Determinants - Prioritization

May be helpful to address by stratifying:

- Feasibility
 - Team vs Unit vs System level
 - Precedent vs none
 - Funding
- Timeline
 - Quick vs prolonged to affect
- Urgency
 - Align with strategic plan
 - Safety or regulatory issue

Effort

Determinants Example - SSI Prevention

- Project: Implement SSI prevention bundle for all surgeries
- Facilitators
 - Surgical and perioperative champion(s)
 - External collaboration SPS, NSQIP
- Barriers
 - Large set of complex micro-systems
 - Who makes final decisions?
 - Resistance to change
 - Long time to show impact
 - Other competing projects

Implementation Science in Practice (QI)

Key pieces needed to succeed

- Team
- Context and Determinants
- Measures
- Framework

Measures

- Data to show progress (or lack thereof)
- Measures should be appropriate
 - To address the question being asked
 - For implementation method used
- Rapid turnaround
 - Automation of any or all steps
- Impactful
 - Data that matters to your context

Aims and Measures

Two types of aims

- 1. Global Aim Very big picture
- 2. SMART Aim Project-directed

Three types of measures

- 1. Outcome ultimate goal
 - What you are trying to prevent or improve
- 2. Process action reliability
 - What you have put in place to achieve the outcome
- 3. Balancing undesired outcome of change
 - Unintended harm, the cost of your project (safety, stress,

S pecific

M easurable

A ctionable

R ealistic

T ime-based

Aims & Measures Example - VAP Prevention

Global aim: Eliminate all VAPs

Actionable Measurable

Realistic 20% reduction

Time-based

Project: Implement VAP prevention bundle for all intubated patients

Measures

- Outcome VAPs
- Process Bundle reliability
- Balancing Reintubation
 - Early extubation is a bundle component
 - Do not want to do too soon (leads to reintubation)

Framework

Methodology to help organize efforts and interpret results

- Choosing a framework
 - Practical:
 - What is local expertise/experience? Available resources?
 Timeline?
 - Methodologic:
 - What is the outcome you are trying to achieve?
 - Many published frameworks
 - Some have books and materials ('How To')
 - All require some expertise (qualitative research/coding, survey development and analysis)

Standard Approach - Framework

- Principles and evidence summarized for 9 published frameworks
 - More exist
 - Hybrid approach
- Resources to help choose
 - Context local expertise, consultant help
 - Included with each described framework
 - Online databases
 - ERIC Expert Recommendations for Implementing Change
 - CFIR Consolidated Framework for Implementation Research
 - RE-AIM and PRISM Practical Implementation Sustainability Model

Framework Examples

SHEA Compendium Chapter

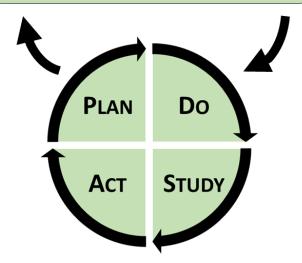
Table 3. Implementation Frameworks

Framework	Published Experience	Resources
4Es	Settings • Healthcare facilities • Large-scale projects including multiple sites Infection prevention and control • HAI Prevention (including mortality reduction and cost savings)	 4Es framework³⁰ HAI reduction^{32–34} Mortality reduction³⁵ Cost savings³⁶
Behavior Change Wheel	Settings Community-based practice Healthcare facilities Healthy behaviors Smoking cessation Obesity prevention Increased physical activity Infection prevention and control Hand hygiene adherence Antibiotic prescribing ¹⁷⁹	Behavior Change Wheel: A Guide to Designing Interventions Stand More at Work (SMART Work) ⁴¹
CUSP	Settings • Intensive care units • Ambulatory centers Improvements	CUSP Implementation Toolkit AHA/HRET: Eliminating CAUTI (Stop CAUTI) AHRQ Toolkit to Improve Safety in Ambulatory Surgery Centers

Framework Example - Model for Improvement

· Used widely in healthcare, IP&C, Public Health

Change vs change resulting in improvement


3 questions to develop hypothesis

- PDSA cycles to experiment and modify
- Designed for team-driven projects
- Relies heavily on data analysis and interpretation
 - Statistical process control

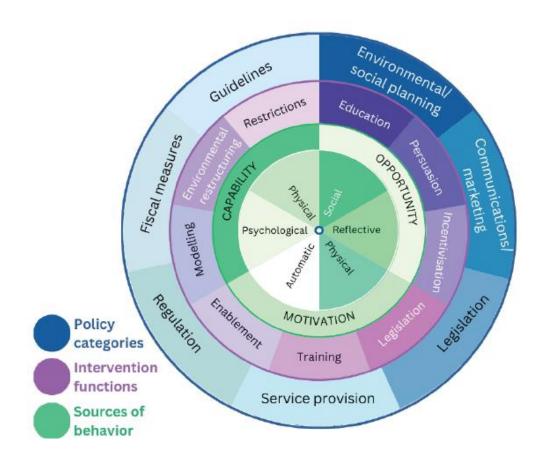
What are we trying to accomplish?

How will we know that change is an improvement?

What changes can we make that will result in improvement?

- Act has 3 choices:
 - Adopt Incorporate into system as-is

AIM


MEASURES

CHANGES

- Adapt Modify and retest
- Abandon Move on to other interventions

Framework Example – Behavior Change Wheel

Been used successfully in health promotion efforts such as smoking cessation; COM-B used to investigate HH adherence and antibiotic prescribing

- Links interventions with targeted behaviors
- Michie et al. evaluated 19 existing behavior change frameworks for comprehensiveness (i.e., applicability to any intervention), coherence, and link to a behavioral model to create a 3layered tool.
- Components:
 - COM-B (Capability, Opportunity, and Motivation to change Behavior)
 - Nine intervention functions that can be used to affect behavioral change
 - Seven policy categories that enable or support interventions to enact the desired behavior change

 Public Healt Department

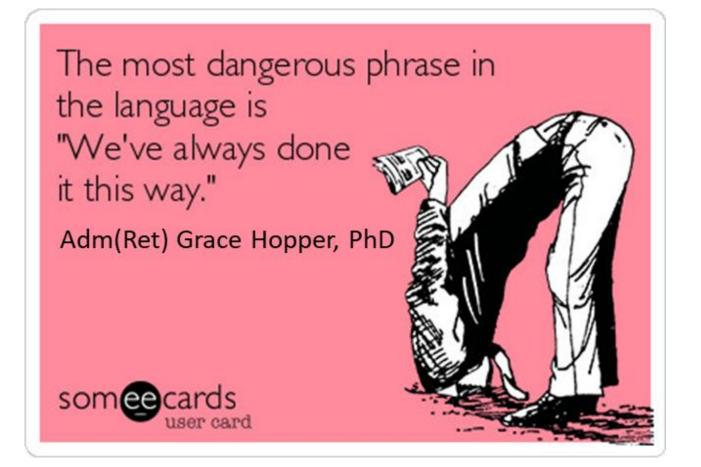
COM-B Model for Behavior Change

- Capability can this behavior be accomplished in principle
 - Individual's physical and psychological ability to participate
- Opportunity is there sufficient opportunity for the behavior to occur
 - External factors that make the behavior possible social and physical
- Motivation is there sufficient motivation for the behavior to occur
 - Conscious and unconscious cognitive processes that direct and inspire behavior to occur - automatic and reflective

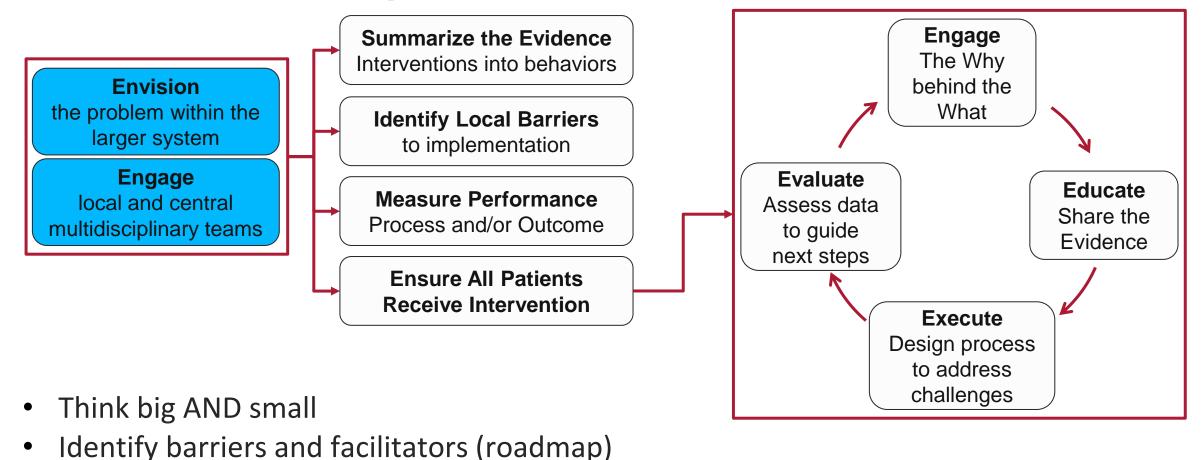
BCW: Motivate LTCF Providers to Improve Antibiotic Prescribing

 Behavior Change: Improve Antibiotic Stewardship Programs in LTCFs

- Who: all LTCF providers including RNs
- What: Optimize use of antibiotics
- When: During LTCF stay
- Where: in LTCF
- How: Initiate antibiotics only if clinical criteria for infection is met and not just when there is a positive test result


Use COM-B Construct to Assess Individual-level Barriers

- Physical capability none
- Psychological capability Do providers and RNs have the knowledge of which symptoms indicate bacterial vs. non-bacterial infection, colonization vs. infection?
- Physical opportunity Do providers have opportunity to assess residents themselves when there is a change in condition?
- Social opportunity culture of antibiotic prescribing in LTCF
- Reflective motivation Providers are concerned about missing bacterial infection and consequence
- Automatic motivation reflex response with good intention (prescribe so that they don't get infected)


COM-B/BCW

- Select interventions to address each key barrier:
- Educate RNs to utilize Minimum Criteria for Antibiotics Toolkit so they develop their own assessment and plan when d/w providers (physical opportunity)
- Inform families and residents upon admission that LTCF practices antibiotic stewardship (social opportunity)
- Ensure ASP well-defined and specific programmatic goals (e.g. ordering less urine cx) (reflective motivation)

4Es

Framework Example – 4Es

Measure and report

Pronovost et al (2008) Cabana et al (1999)

Examples of 4Es

- Well-suited for large-scale projects and projects that include multiple sites
- Helps teams to partner in the implementation process (hospital leaders, improvement team leaders, frontline staff)
- Cyclical nature allows for feedback to drive modifications and adaptations
- Provides a guide for resolving knowledge gaps through education
- Does not include targeted strategies to address multilevel barriers that may hinder implementation

Settings and Improvement with 4Es

- Settings:
 - Healthcare facilities
 - Large-scale projects with multiple sites

- Improvements:
 - CLABSI prevention
 - CAUTI prevention
 - Mortality reduction
 - Cost savings

Summary

- Implementation Science vs Quality Improvement
 - Implementation Science How and why interventions may work
 - Quality Improvement Making interventions work in a specific context
- Be systematic and scientific
 - No assumptions (Don't start with interventions)
 - Direct observations ('Go to the Gemba') Understand your context
- Education is a low reliability intervention
 - Necessary but not sufficient

Essentials for Success

- Team
- Knowing context and determinants (Barriers/Facilitators)
- Proper measures (Process, Outcome, Balancing) and framework

References

- Balas EA, Boren SA. Yearb Med Inform 2000:65-70.
- Grant J, Green L, Mason B. Res Eval (2003) 12:217-224.
- The Joint Commission. (2021) All Accreditation Programs Survey Activity Guide. https://www.jointcommission.org/-/media/tjc/documents/accred-and-cert/survey-process-and-survey-activity-guide/2021/2021-all-programs-organization-sag.pdf.
- Eccles MP, Mittman BS. Implement Sci (2006) 1:1. doi: 10.1186/1748-5908-1-1.
- Kaplan HC, Brady PW, et al. Milbank Q (2010) 88:500-559. doi: 10.1111/j.1468-0009.2010.00611.x
- Saint S, Howell JD, Krein SL. Infect Control Hosp Epidemiol (2010) 31 Suppl 1:S14-7. doi: 10.1086/655991
- Tomoaia-Cotisel A, Scammon DL, et al. Ann Fam Med (2013) 11 Suppl 1:S115-123. doi: 10.1370/afm.1549
- Geerligs L, Rankin NM, et al. Implement Sci (2018) 13:36. doi: 10.1186/s13012-018-0726-9
- Deming WE. The New Economics for Industry, Government, Education. © 1994 W Edwards Deming Institute. Published by MIT Center for Advanced Educational Services, Cambridge, MA
- Bicheno J, Holweg M. The lean toolbox: A handbook for lean transformation. 5th ed. Buckingham: PICSIE Books; 2016.
- Soong C, Shojania KG. BMJ Qual Saf (2020) 29:353–7. DOI: 10.1136/bmjqs-2019-009897
- https://www.ismp.org/resources/education-predictably-disappointing-and-should-never-be-relied-upon-alone-improve-safety
- Fuller C et al. Am J Inf Ctrl (2014) 42:106-10. DOI:10.1016/j.ajic.2013.07.019
- Pennathur PR, Herwaldt LA. Curr Treat Options Infect Dis (2017) 9:230–249. doi:10.1007/s40506-017-0123-y
- Holden RJ, Carayon P, Gurses AP, et al. *Ergonomics* (2013) 56:1669–1686. doi: 10.1080/00140139.2013.838643.
- Trivedi KK, Schaffzin JK, et al. Infect Control Hosp Epidemiol (2023) 44:1232. doi:10.1017/ice.2023.103
- Science of Improvement: establishing measures, 2023. Institute for Healthcare Improvement website.
 https://www.ihi.org/resources/Pages/HowtoImprove/ScienceofImprovementEstablishingMeasures.aspx.
- Langley G, Moen R, Nolan K, et al. The Improvement Guide: A Practical Approach to Enhancing Organizational Performance. 2nd Edition ed. San Francisco: Jossey-Bass Publishers; 2009