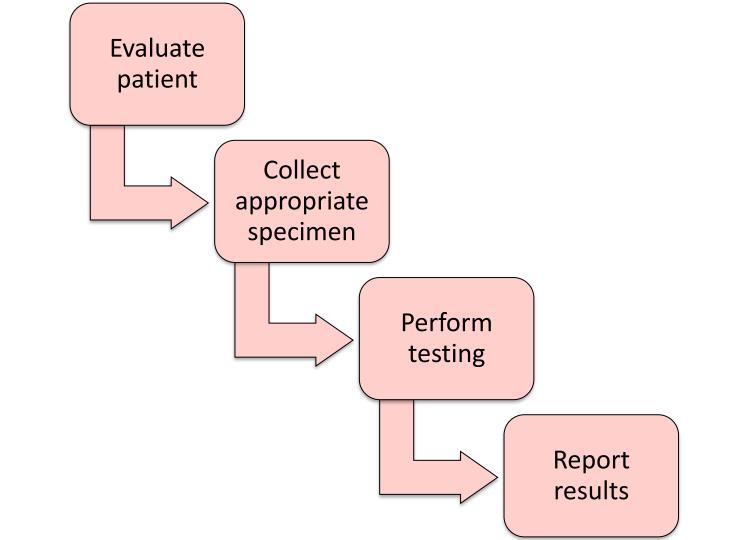


Clinical Microbiology

A Refresher

Objectives

- Explain the infectious diseases diagnostic testing process, including appropriate specimen collection.
- Describe the bacterial/fungal culture and antimicrobial susceptibility process.
- Define beta-lactamases and discuss how they contribute to bacterial resistance.


Outline

- Basics of microbiology laboratory testing
- Bacterial/fungal cultures
- Antimicrobial susceptibility testing
- Antimicrobial resistance

TN

Basics of Microbiology Laboratory Testing

Specimen Collection

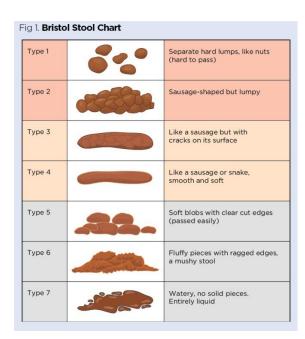
- Most important part of the testing processing
- Good test results begin with a good specimen
- Includes:
 - Collection of specimen
 - Storage of specimen
 - Transport of specimen

Specimen Collection: Appropriate Specimen

- The specimen collected from a patient depends on clinical symptoms
 - Blood
 - Cerebrospinal fluid (CSF)
 - Respiratory
 - Throat
 - Sputum
 - Bronchial washings
 - Eye
 - Ear
 - Wound / Tissues
 - Urine
 - Genital specimens
 - Stool

Sterile vs. non-sterile site

Specimen Collection: Important Factors


- Timing of collection
- Amount of material
- Contamination
 - Normal microbiota or other contamination
- Labeling
- Storage
- Transportation

Case in Point: C. difficile

- Collect specimens only on symptomatic patients
 - Colonization vs. Infection

- Collect stool
 - Unformed, liquid stool
 - Patient should not be on laxatives
 - Collect in approved sterile container based on lab guidance
 - Transport to lab within designated time and temperature

Infectious Diseases Diagnostic Tests

- Microscopy
- Culture
- Molecular methods
- Immunological analysis

Microscopy

- Can be performed directly from patient specimen or from a culture
- Mainly used for bacteria, fungi and parasites
 - Rarely used for viruses
- Various stains may be used to visualize the microorganism
 - Example: Gram stain

Culture

- Mainly used for bacteria, fungi
- Rarely used for viruses
 - Viruses are obligate intracellular pathogens
 - Need host cells to grow; must grow on live cells in the laboratory
- Some parasite can be cultured but it's rarely performed

Molecular Methods

- Can be performed directly from patient specimen or from a culture
- Used for bacteria, fungi, viruses and parasites

- Includes:
 - DNA probes
 - NAAT (nucleic acid amplification test)
 - PCR (polymerase chain reaction)
 - 16s
 - Sequencing

Immunological Analysis

- Evaluation of
 - Antigen protein on microorganism
 - Antibody immune response to microorganism
 - IgM antibody produced during acute phase of disease
 - IgG antibody produced later on during the disease process; can persist for life
- Examples test methods
 - ELISA, EIA, lateral flow

Microscopy

- Can be performed directly from patient specimen or from a culture
- Mainly used for bacteria, fungi and parasites
 - Rarely used for viruses
- Various stains may be used to visualize the microorganism
 - Example: Gram stain

Culture

- Mainly used for bacteria, fungi
- Rarely used for viruses
 - Viruses are obligate intracellular pathogens
 - Need host cells to grow; must grow on live cells in the laboratory
- Some parasite can be cultured but it's rarely performed

Molecular Methods

- Can be performed directly from patient specimen or from a culture
- Used for bacteria, fungi, viruses and parasites

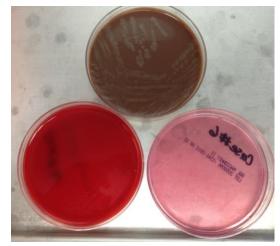
- Includes:
 - DNA probes
 - PCR (polymerase chain reaction)
 - NAAT (nucleic acid amplification test)
 - 16s
 - Sequencing

Immunological Analysis

- Evaluation of
 - Antigen protein on microorganism
 - Antibody immune response to microorganism
 - IgM acute response
 - IgG chronic or resolved infection

Used for bacteria, fungi, viruses and parasites

Bacterial/Fungal Culture


Culture

- The process of growing microorganisms by taking bacteria from the infection site and growing them in the artificial environment of the laboratory
- Must recreate body environment in the lab including
 - Temperature
 - Atmosphere
 - Nutrients

Culture Media

 Provide the nutrients the organism needs to grow outside the body

Harriott, 2012

Culture Process

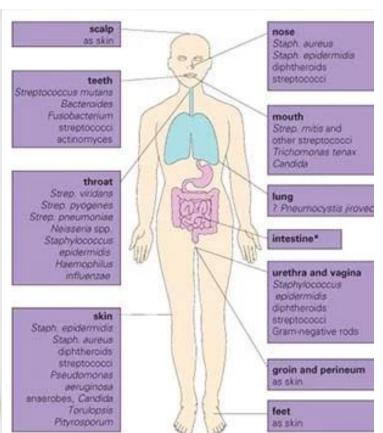
- Process patient specimen
- Choose correct media plates for specimen type and the organism that may be causing the infection
- Inoculate media with patient specimen
- Incubate at correct temperature, atmosphere and for the correct amount of time

Culture Incubation Time

- Appropriate time
 - Varies for specimen and organism
 - 1 -2 days for most bacteria
 - 3 weeks for fungi
 - 6 weeks for mycobacteria
- After predetermined incubation time, remove plates and identify any organisms growing

Identification of Growth

- Evaluate plates after designated incubation period for growth of pathogens
- Must distinguish pathogen from microbiota

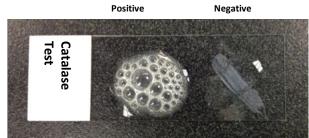


Harriott, 2013

Normal Flora

https://microbenotes.com/normal-human-microbiota/

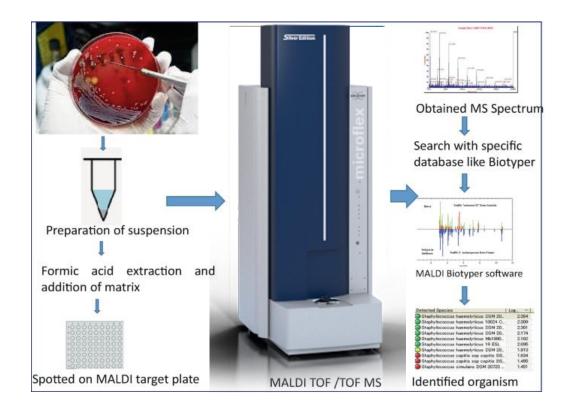
Identification of Growth

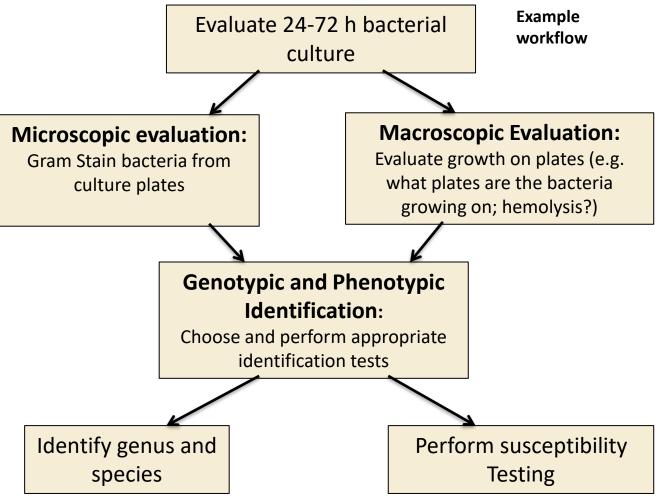

 If a potential pathogen is suspected, then further testing is warranted

- Type of tests
 - Phenotypic
 - Evaluation of the expression of genetic characteristics
 - Genotypic
 - Use of molecular techniques to evaluate RNA or DNA from colony growing on plate

Phenotypic Identification

- Evaluation of colonies
- Biochemical testing
 - Mostly automated
- MALDI-TOF
 - Mass spectroscopy


Harriott, 2012



Harriott, 2004

MALDI-TOF

Blood Cultures

Clinical signs/symptom

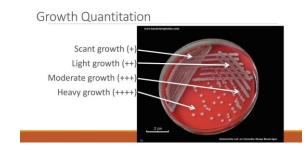
Blood sent for sequencing

- In a very small proportion of cases, blood may be sent out for sequencing
- This may occur in difficult diagnose cases or for other reasons
- May be referred to as WGS (whole genome sequencing), NGS (next generation sequencing) or by the actual company name (e.g., Karius)

Blood cultures drawn

- Typically, 2 sets drawn 10-15 minutes apart
- 1 set = 2 bottles (aerobic and anaerobic)
- . Each set will have a different accession number
 - So, 2 bottles will have the same accession number
- Bottles received in the lab and placed on the machine (analyzer).
- Bottles remain on the machine for 5 days.
- Bottles that stay negative after 5 days are reported as "No Growth at 5 days"
- Anytime during the 5 days, a bottle may become positive.

Positive bottle (s)


As soon as a bottle is flagged positive, all three of the following actions are taken (most often within 1 hour of the bottle turning positive)

- · Blood from bottle removed and Gram stained.
 - Gram stain is called to floor (i.e. Gramnegative cocci in clusters)
- Blood from bottle is removed and placed on petri dishes/plates for culture.
 - Culture plates are incubated for 3-7 days
 - If a bacteria or fungus grows on the plates the organism is identified and if appropriate (e.g., S. aureus), susceptibility testing is automatically performed (e.g., oxacillin S)
 - Culture results take 3-7 days to complete
- Blood from a bottle is removed and used for molecular (e.g., PCR) testing.
 - Most of these tests identify the organism and can also detect resistance markers (e.g., KPC, NDM, vanA, mecA)
 - Even if molecular testing is performed, culture-based testing results (explained above) will follow.
 - Rapid molecular blood culture assays take 1-2 hours to complete

Culture Reports

- Sterile sites
 - Growth or no growth
- Normal flora

- Quantity of organisms
 - Rare, Few, Moderate, Many
 - **-** 1+, 2+, 3+, 4+
 - Urines: colony forming units per mL of urine (CFU/mL)

TN

Antimicrobial Susceptibility Testing and Stewardship

Antimicrobial Susceptibility Testing

- Testing to determine if an antimicrobial agent can be used to effectively treat an infection
- Phenotypic
 - Evaluating expression of a gene
 - Main method for bacteria and fungi
- Genotypic
 - Evaluating the presence of a gene
 - Can be performed for bacteria, fungi, and viruses
- Susceptibility testing for parasites rarely performed

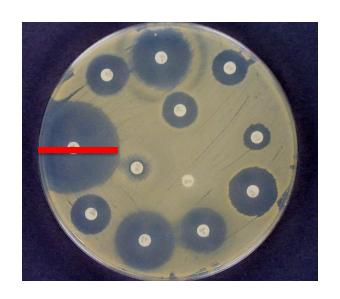
Phenotypic Susceptibility Testing

- Purpose:
 - Predict whether the bacteria is capable of expressing resistance to the antimicrobial agents that are potential choices as therapeutic agents for managing the infection
- The tests are performed under standardized conditions
 - Ensures reproducibility
- Guide not a standard!!
 - Results should be combined with clinical information and experience when selecting the most appropriate antibiotic for a particular patient.

Choosing Antimicrobials to Test

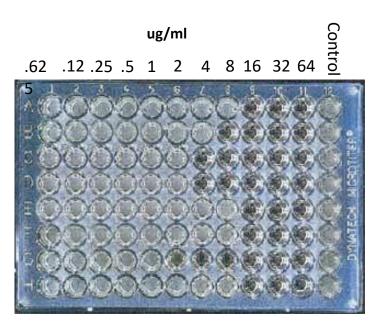
- Number of factors play a role in this
 - Gram-negative vs. Gram-positive
 - Intrinsic resistance
 - Availability of antimicrobials
 - Site of infection

Main Methods


- Disk diffusion (Kirby-Bauer)
- Broth Dilution
- E-test

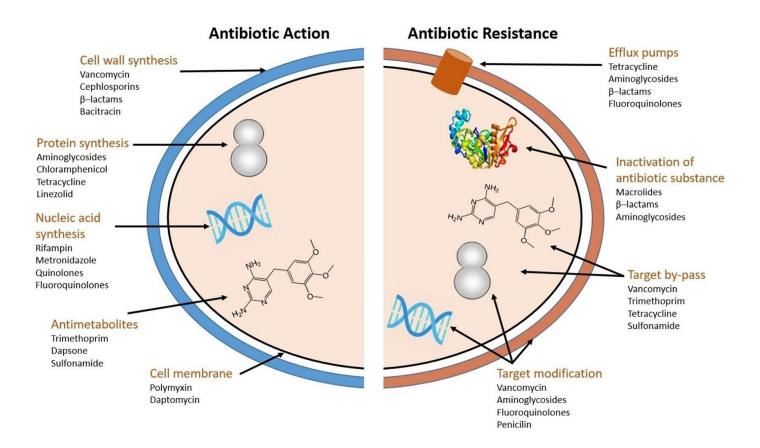
 These methods are standardized to ensure reproducibility and accuracy

Disk Diffusion (Kirby Bauer)


- Concentrations of antimicrobial agents are incorporated into filter paper disk
- Culture plate is incubated with bacteria and discs overnight
- Measure zone of inhibition and determine if it is susceptible, intermediate, or resistant

Broth Dilution Method

- Different concentrations of antibiotics are placed in micro dilution tray
- A suspension of the bacterial organism is also added to each wells
- Incubate overnight
- Look for growth or lack of growth in well (turbidity indicates growth)
- Determine the MIC


TN

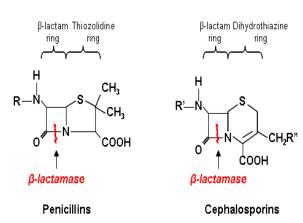
Antimicrobial Resistance

Antibiotic Resistance Mechanisms

- Altered antibiotic transport
 - Efflux pumps
- Enzyme inactivation
 - Activity of the antibiotic is hindered due to hydrolysis
- Target by-pass
 - Prevent the drug from getting to the target site
- Target modification
 - Bacteria modify the antibiotic target rendering it inactive
- These mechanisms can be
 - inherited (passed on generation to generation)
 - acquired

Bacterial Genome

Chromosomal DNA


- Extrachromosomal DNA (Plasmid)
 - Physically separated from chromosome
 - Contains few genes, not essential for the organism to function
 - Replicates independently of the genome
 - Type of mobile genetic element
 - Can be horizontally transferred

Production of Beta-Lactamase Enzymes

- Bacteria destroy the beta-lactam ring
 - The antibiotic is no longer active
- Examples:
 - Extended spectrum beta-lactamase (ESBL)
 - AmpC beta-lactamase
 - Carbapenemase

β-Lactam Antibiotics

Rocha, Antônio & Barsottini, Mario & Rocha, Renan & Laurindo, Maria & Leandro, Francisco & Moraes, Francisco & Rocha, Soraya. (2019). Pseudomonas Aeruginosa: Virulence Factors and Antibiotic Resistance Genes. Brazilian Archives of Biology and Technology. 62. 19180503. 10.1590/1678-4324-2019180503.

Carbapenemase Genes

The "Big-5"

- Klebsiella pneumoniae carbapenemase (KPC)
- Imipenemase Metallo-β-lactamase (IMP)
- New Delhi Metallo-β-lactamase (NDM)
- Oxacillinase-48-type carbapenemase (OXA-48)
- Verona integron-encoded Metallo-β-lactamase (VIM)

Summary

- Identification of microorganisms from patient specimen begins in specimen collection
 - Most important step
- Types of tests include culture, molecular and immunological
- Antimicrobial susceptibility testing is performed to help determine which antimicrobial can be used for treatment
 - Testing can be phenotypic or genotypic
- Beta-lactamases are enzymes produced by some bacteria that inactivate antibiotics resulting in resistance

Questions?

Melphine.Harriott@tn.gov