
Solving Vascular Access Device Complications with Tissue Adhesive

Rebecca Stevens BSN, RN, VA-BCTM

Disclosures/Disclaimers

- Adhezion Biomedical
- Teleflex, Inc.
- Genentech
- Brand names to provide examples of products used in the evidence presented.

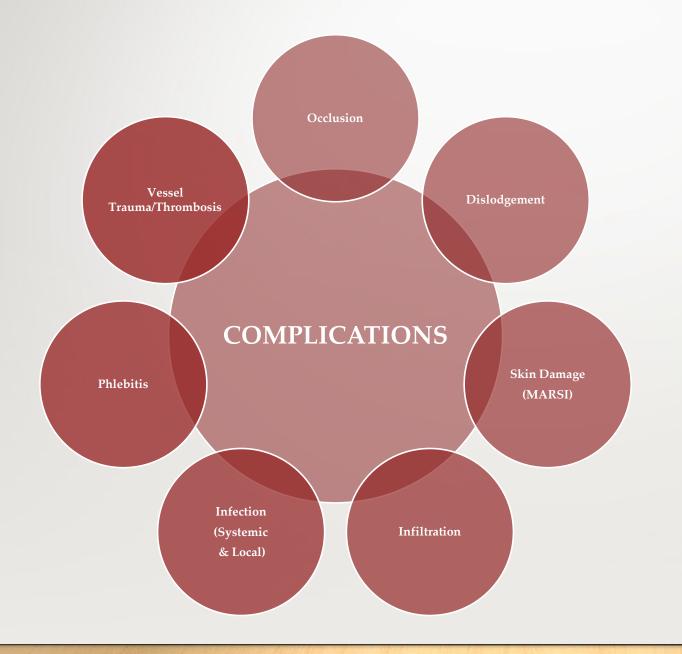
Learning Objectives

- > Review of vascular access device complications.
- Define the components and characteristics of tissue adhesives.
- Describe the purposes of tissue adhesives when used with VADs.
- Analyze the clinical outcomes with tissue adhesives used with VADs.

Vascular Access

- ➤ 1 2 Billion PIVs annually world wide
 - >300 million in the US
- ➤ Over 30 million CVC's, PICCs, Midlines

Vascular Access Devices (VAD)


- ➤ Protect the integrity of skin
- > Protect puncture site from skin organisms
- ➤ Reduce VAD movement and dislodgment
- ➤ Reduce unplanned dressing changes

Vascular Access Devices (VAD)

- >Current standard of practice
 - Application of skin antiseptics
 - Central sterile technique
 - Peripheral aseptic no touch technique
 - Puncture of skin and vein wall create a surgical wound
 - Securing and stabilizing the VAD
 - Securing from movement & accidental dislodgement
 - Application of medical adhesives
 - Tape/Dressings

= FAILURE

Peripheral Catheter Failure

- ➤ Up to 63% failure across 8 RCTs ¹
- All study types, all causes minimum failure 30%, maximum 95%
 - Included infiltration/extravasation, occlusion, accidental removal, phlebitis, and infection
- ➤ Dislodgement 3-10%

Peripheral IV Complications

- Phlebitis -- Incidence reports of 14.7% to 16.1%
 - Precipitated by mechanical, chemical and infectious causes
 - Movement of the body relative to the secured catheter Direct trauma to the intima
- Infiltration Most common form of failure; Incidence 15.7% to 33.8%
 - Results from erosion or penetration of the catheter through the vessel wall
 - Even in non-joint regions, <u>inadequate device securement</u> can lead to catheter tip motion and consequent injury to vessel wall

Peripheral IV Complications

- Occlusion -- Incidence of 2.5% to 32.7%
 - Device kinking
 - Catheter migration (movement) into a dead-end position within the vessel wall without frank infiltration
- Dislodgement -- Incidence of 3.7% to 50%
 - Study by Jackson; 3296 PIV restarts over 6 months
 - Catheter dislodgement 50% of the failures
 - Inadequate securement; tubing catching on clothing, etc.
 - Current securement devices add bulk to the catheter-dressing complex and extend adhesive surface area

Peripheral Catheter Infection

- ➤ New Systematic Review
 - PIVC-BSI = 0.18% in 85063 peripheral catheters
 - Mean of 22% (range 7%-60%) of 7860 nosocomial CRBSI
 - Mean of 38% (range 12% to 64%) S. aureus
 CRBSI from infected peripheral catheters ²
- ➤ Arterial Catheters 1.7/1000 catheter days ³

Peripheral IV Dwell Time - Clinically Indicated

- Before 2011 Routine removal (48-96 hours)
- 2011 CDC Guidelines for the Prevention of Intravascular Catheter-Related Infections
 - No need to replace more frequently than 72-96 hours
- 2011 Infusion Nursing Society Standards of Practice
 - Removal time-based site rotation and supported removal when clinically indicated

Report All Laboratory Confirmed BSIs??

- ➤ Hospitals in Pennsylvania required to report ALL laboratory confirmed bloodstream infections (LCBI) not just CLABSI
 - ➤ 2011-2012 PA HAI report revealed:
 - ➤ 1890 (38%) LCBI reported had no central line
 - ➤ How many of these BSIs may have been related to a PIV?
 - ≥ 31% of these pathogens = Staphlococcus aureus

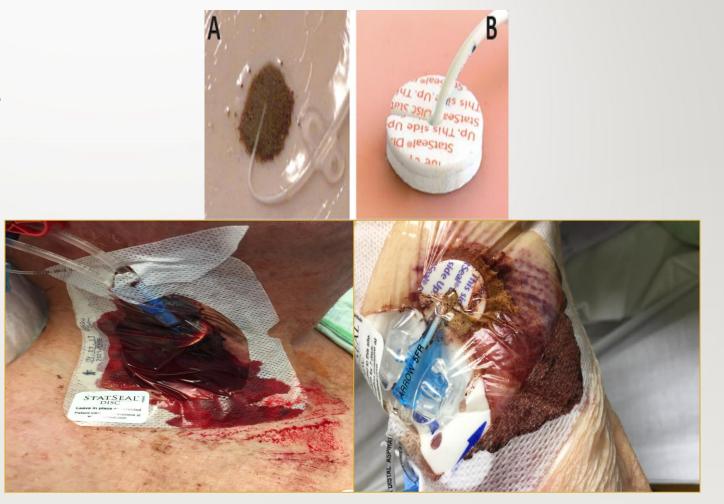
Protect the PIV ~ Clinical Indication

- >Staff education
- ➤ Insertion Bundle
 - > Sterile Procedure
- >37% reduction in primary bacteremia
 - ➤ Combining PIV & CLABSI infections
- > 19% reduction in PIV bloodstream infections
 - ➤ 11 years of surveillance data (PIV-associated bloodstream infections)

CVAD Infections

- > CRBSI
 - PICCs -0.12 2.3/1000 catheter days 4,5
 - 3.1/1000 catheter days (Ullman, Pediatrics; 2015) ⁶
 - CVCs 0.1 4.8/1000 catheter days ³

Central Line Complications

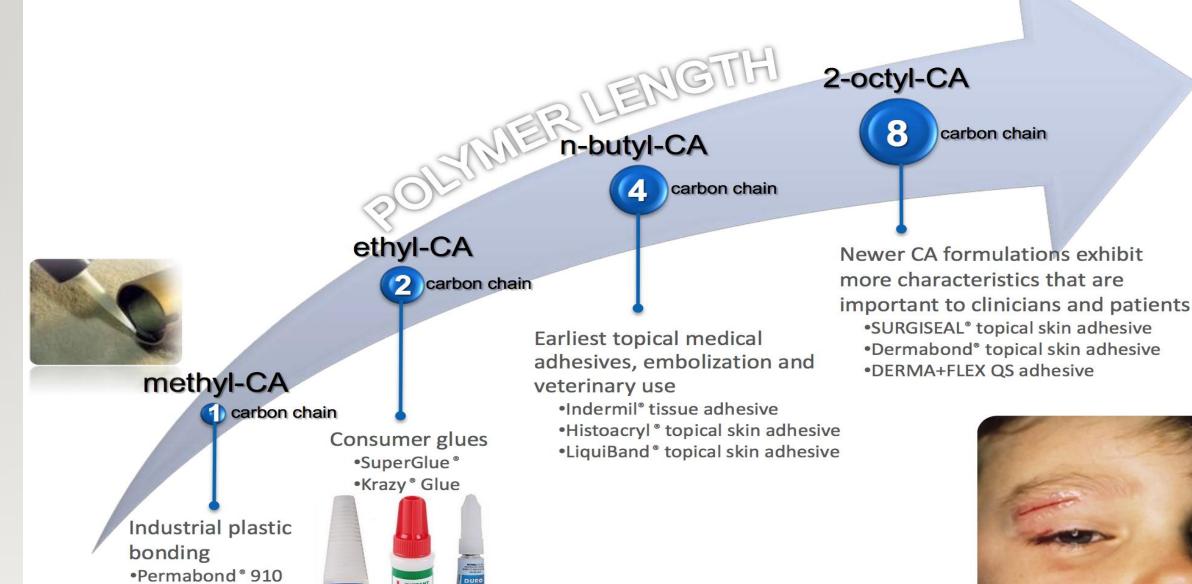

- >Oozing/blood leakage at insertion site
 - Non-routine dressing changes are common: Average 22.8%
 - 43% of respondents have > 25% Early
 Dressing Changes (AVA 2017 survey)
 - 7 24.7% Oozing and 3.8% leaking ⁶
 - 0.6% major bleeding; 2.8 5.4% minor bleeding ⁷

Hemostatic Agents

- D-Stat
- Surgicel
- StatSeal

Central Line Complications

- >Accidental Withdrawal
 - 4.2%⁸



CHG Allergy

- ➤ Can adding tissue adhesive to our toolbox make a difference in these outcomes?
- ➤ What is tissue adhesive?
 - Glue cyanoacrylate, (CA) a liquid monomer 9
 - o Polymerizes when exposed to moisture present in air, liquid, or tissue
 - Exothermic process releases energy when the molecules come together
 - May release a small amount of heat

CA'S HAVE BECOME MORE COMPLEX... AND MORE VERSATILE

- ➤ N-butyl-cyanoacrylate (BCA)*
 - Quick drying
 - Rigid/Brittle
 - More cytotoxic
 - Stronger thermal reaction
 - Requires minimum 24 hours before fully water resistant

- ≥ 2-octyl-cyanoacrylate (OCA)*
 - Longer drying time
 - Higher tensile strength & more flexible
 - Less cytotoxic
 - Reduced thermal reaction
 - Immediately water-resistant

- >Antimicrobial activity of different cyanoacrylate formulations
 - First generation products
 - Most were effective against gram positive bacteria
 - Second generation products (2-octyl and octyl blends)
 - Most are effective against gram positive
 - Two of newer formulations; published data demonstrating broad-spectrum activity against Gram Positive, Gram Negative, Yeast, and Fungi^{10,11}

Tissue Adhesive – Uses with VADs

- Early in vitro testing demonstrated suitability of tissue adhesive for VADs ¹²
- >4 purposes identified
 - Enhanced securement of VADs
 - Wound closure by a protective barrier
 - Minimizes oozing at puncture site
 - Infection prevention by immobilizing and killing bacteria

Types of Dressings*

Standard polyurethane (SPU)	Bordered polyurethane	Sutureless securement (SSD)	Integrated securement (ISD)
		REMOVE WITH ALCOHOL.	

^{*} For illustration purposes only

TA Effectiveness – in vitro study

- 1. Chemical compatibility TA & TA removal agents
 - > Overall tensile strength was not reduced
- 2. Pull out strength TA versus current dressings and control
 - > TA outperformed standard polyurethane & bordered polyurethane dressings
- 3. Microbiological qualities of TA against current dressing methods

Microbiological results

		18 Ho	urs	72 Hours		
		Beneath Device	Around Device	Entry Point	IVC Tract	
S. aureus	TA	-	+	-	-	
	(2) Dressings	+	+	+	+	
S. epi	TA	-	+	-	-	
	(2) Dressings	+	+	+	+	

Tissue Adhesive – Current Evidence

- ➤ Peripheral IV catheters
- > Peripheral arterial catheters
- > Central venous access devices
- > Epidural catheters

- > 4 arm pilot randomized trial in adults on medical-surgical units 13
 - Catheter failure, premature removal due to complication

	Standard polyurethane (SPU) control group	Bordered polyurethane	Sutureless securement (SSD) + SPU	TA + SPU
Number	21	20	23	21
# failed	8	5	5	3
Failure rate	6.92	3.82	3.14	2.40
Adverse Events	0	0	0	4

- ≥ 2 arm randomized trial in adult emergency patients 14
 - Assessed failure at 48 hours, modes of failure

	BPU + tape	TA + BPU + tape
Number	190	179
Failure No (%)	52 (27%)	31 (17%)
Dislodgement	26 (14%)	13 (7%)
Phlebitis	9 (5%)	6 (3%)
Occlusion	20 (11%)	15 (8%)

• Dressings and securements for the prevention of peripheral intravenous catheter failure in adults (SAVE): a pragmatic, randomised controlled, superiority trial

- Published in the Lancet; July 2018
- Two facilities; 1 ½ years; March 2013 September 2014
- Large randomized trial; Over 1800 patients

	Standard polyurethane (SPU) - control	Bordered polyurethane	Sutureless securement (SSD) + SPU	TA + S	PU
Number	454	454	453	446	
% Failure: Total Failure	43%	40%	41%	38%	> 2 - 5%
% Failure: Pre-Protocol Analysis	34%	35%	34%	26%	> 8 - 9%
Failure rate/100 PIV days	18.3	19.6	15.9	12.7	> 3 - 7
% due to Occlusion	22%	19%	23%	16%	> 3 - 7%
Dislodgement/100 PIV days	3.5	3.5	3.0	2.5	> 0.5 - 1

Pilot Trial with Tissue Adhesive on PIVs

	Control Group	Study Group
Range of Dwell	4h 9min – 164h 1min	5h 32min – 329h 26 min
Time		
Average Dwell	35 hours	73.2 hours
Time		
Number of	N=35	N=25
Patients		
Age Range	24d – 24.4years	2.5 months – 20.2 years
Complications C	16 (46%)	8 (32%)
Leaking	5	1
Phlebitis	0	1
Occlusion	3	2
Infiltration	4	1
Pulled out by	4	0
patient		

Financial Impact

- Insert 100,000 PIVs annually
 - Cost @ \$30 = \$3,000,000
- Adding Tissue Adhesive to PIV Protocol
 - Approximately \$5
- 15% Improvement = \$25,000 savings
 - 85,000 PIVs annually
 - $$35 \times 85,000 \text{ catheters} = $2,975,000$

Tissue Adhesive – Reduced Dressing Changes

- 3 Posters 2018 AVA Scientific Meeting
 - Decreased early dressing changes
 - Reduced bleeding
 - Saved estimated \$40,000 annually

Tissue Adhesive - Tunnelled CVADs in Pediatrics

- >4 arm, 2 centre pilot RCT 16
- >Primary outcome: CVAD failure
- ➤ Compared:
 - 1. Bordered polyurethane (BPU) dressing + suture
 - 2. Sutureless securement device (SSD) + suture + BPU
 - 3. Tissue adhesive (TA at exit wound and under catheter bifurcation) + BPU
 - 4. Integrated securement-dressings (ISD) + suture

Tissue Adhesive - Tunnelled CVADs in Pediatrics

Results

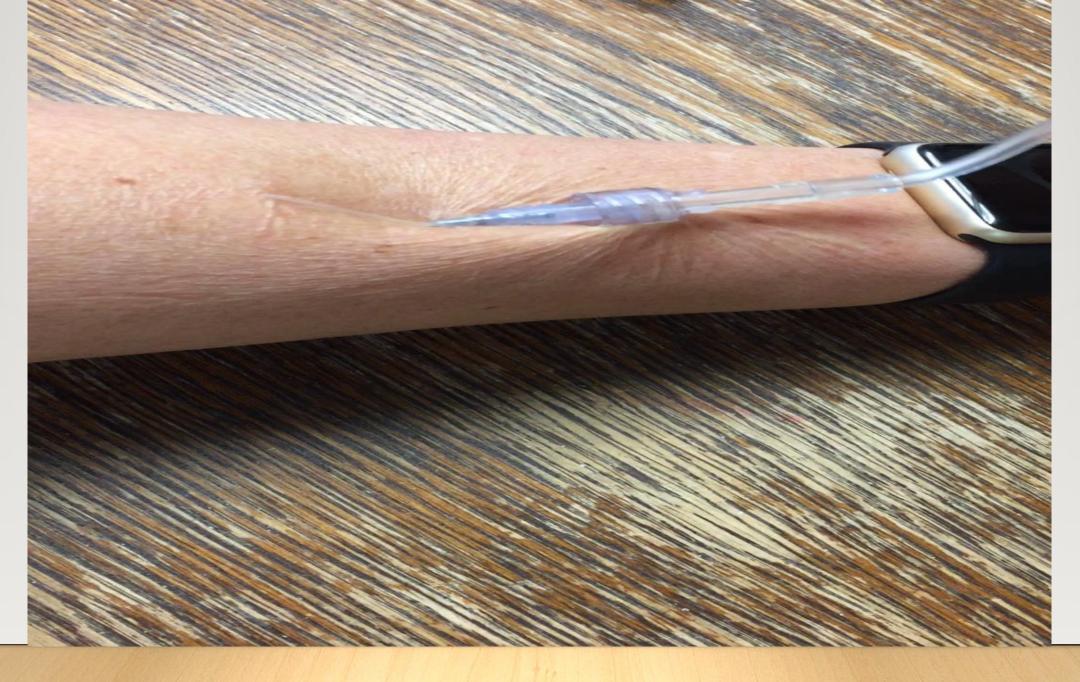
- Lower non-routine dressing changes
- High staff approval on application
- High parental satisfaction on removal but not staff satisfaction

	ISD+ suture n=12	SSD+suture +BPU n=13	BPU+suture (control) n=11	TA+ BPU n=12
CVAD failure	2 (17%)	1 (8%)	0	0
Complications	1 (8%)	2 (15%)	0	0
Adverse skin event*	2 (17%)	1 (8%)	2 (18%)	0
Non-routine dressing	10	25	17	4

^{*}rash, blister, itchiness

Tissue Adhesive – All CVADs

- ➤ Pittiruti, M., et al. Cyanoacrylate Glue and Central Venous Access


 Device Insertion ¹⁸
- ➤ Poster AVA 2016 Scientific Meeting
 - 513 non-tunneled PICCs and CICCs
 - 114 tunneled PICCs, CICCs, and FICCs
 - 802 implanted ports
- ≥100% effective in prevention of post-insertion bleeding
- **▶**10 fold reduction in CRBSI

Tissue Adhesive in CR-BSI Prevention Bundle

- ➤ Added elements to their existing CR-BSI Prevention Bundle¹⁹
 - ➤ US pre-puncture evaluation (RcCeVA)
 - >Tunneled the exit site
 - > Sealed exit site with tissue adhesive at the time of insertion
 - ➤ No CHG sponge dressing at time of insertion; added at 1st dressing change
 - ➤ Consistent use of transparent dressings
 - ➤ Simulation based training program for all inserters


Tissue Adhesive in CR-BSI Prevention Bundle

- Conducted in a PICU from June 2009 June 2014
- 1150 catheter days; 648 in the study group and 503 in the control
- CR-BSI rate dropped from 15/1000 catheter days to 1.5/1000 catheter days
- 2.2 day longer dwell
- Comments in conclusion about tissue adhesive;
 - "... sealing the exit site.. reduces risk of extraluminal contamination ... and reduces bleeding at puncture site and prevents the "in and out" motion may reduce local damage to the endothelium and reduce risk of thrombosis."

Videos courtesy of Matt Ostroff/St. Joseph's Medical Center

Videos courtesy of Matt Ostroff/St. Joseph's Medical Center

Reapplication for long-term use

- ➤ Currently not well studied
- Some reports of build up on catheter tubing

Impact on Catheter Materials

- ➤ Published in JVA in 2017
- ► Lab study
- ► 12 PICC Brands
 - ►11 polyurethane
 - > 1 silicone
- Evaluated at 4, 8, and 12 weeks
- ➤ No changes in materials observed

Adhesive removal

Commercially available adhesive removers are capable of loosening cyanoacrylate quickly

- >PDI
- **►**Uni-solve
- **≻**Remove
- **≻**Detachol

- >Active ingredients:
 - Paraffin
 - Petrolatum
 - D-Limonene
 - Propanol
 - Esters of IPA

Take Home Message

- > Tissue adhesive benefits
 - Enhanced catheter securement
 - Seal around puncture site
 - Decrease contamination of site
 - Reduced oozing/leaking from puncture site
 - Studies demonstrate feasibility of the concept and suggests reduction of complications
- Large studies are in progress
- ➤ Promoting skin integrity and reducing VAD complications is critical aspect of patient care with any type of VAD

Thank You for Your Attention

- 1. Helm, R.E., et al., Accepted but Unacceptable: Peripheral IV Catheter Failure. Journal of Infusion Nursing, 2015. **38**(3): p. 189-203.
- 2. Mermel, L.A., *Short-term Peripheral Venous Catheter–Related Bloodstream Infections: A Systematic Review.* Clinical Infectious Diseases, 2017: p. cix562.
- 3. Maki, D., et al., The risk of bloodstream infection in Adults with Different Intravascular Devices: A Systematic Review of 200 Published Prospective Studies. Mayo Clin Proc, 2006. **81**(9): p. 1159-1171.
- 4. Raiy, A., et al., Peripherally inserted central venous catheters in an acute care setting: A safe alternative to high-risk short-term intravenous catheters. Am J Infect Control. 2010. **38**(2): p. 149-53.
- 5. Kang, J., et al. Peripherally inserted central catheter-related complications in cancer patients: a prospective study of over 50,000 catheter days. J Vas Acces. 2017. **18**(2): p. 153-157.
- 6. Ullman, A., et al. Complications of central venous access devices; a systematic review. Pediatrics. 2015. Nov 136(5): e.1331 44.
- 7. Lueng, TK., et al. Cancer Nrsg.2011. A retrospective study on the long term placement of peripherally inserted central catheters and the importance of nursing care and education. **34**(1); p. E 25-30.

- 8. Vinson, DR., et al. Bleeding complications of central venous catheterization with abnormal hemostasis. Am J of Emerg Med. 2014. **32**(7): p. 737-42.
- 9. Qui, XX., et al., Incidence, risk factors, and clinical outcomes of peripherally inserted central catheter spontaneous dislodgement in oncology patients: A prospective cohort study. Int J Nrs Stud. 2014. **51**(7). \P. 955-63.
- 10. Januchowski, R. and O. W Jordan Ferguson III, *The clinical use of tissue adhesives: a review of the literature.* Osteopathic Family Physician, 2014. **6**(2).
- 11. Prince, D. et al., Antibacterial effect and proposed mechanism of action of a topical surgical adhesive. AJIC. 2017.
- 12. Prince, D. et al., *Immobilization and Death of Bacteria by Flor Seal® Microbial Sealant*. International Journal of Pharmaceutical Science Invention. 2017. 6(6). P 45-49.
- 13. Simonova, G., et al., Cyanoacrylate tissue adhesives effective securement technique for intravascular catheters: in vitro testing of safety and feasibility. Anaesth Intensive Care, 2012. **40**(3): p. 460-6.
- 14. Marsh, N., et al., Securement methods for peripheral venous catheters to prevent failure: a randomised controlled pilot trial. The journal of vascular access, 2015. **16**(3): p. 237-244.

- 15. Bugden, S., et al., Skin Glue Reduces the Failure Rate of Emergency Department-Inserted Peripheral Intravenous Catheters: Randomized Controlled Trial. Ann Emerg Med, 2016. **68**(2): p. 196-201.16.
- 16. Kleidon T., et al. *A pilot randomized controlled trial of novel dressing and securement techniques in 101 paediatric patients.*Journal of Vascular and Interventional Radiology 2017.
- 17. Ullman, AJ., et al. Innovative dressing and securement of tunneled central venous access devices inpediatrics: A pilot randomized control trial. BMC Cancer. 2017.17:595.
- 18. C.M. Rickard, R., BN, Grad Dip Crit Care Nurs, PhD, FACN, FAAHMS a,*,, et al., A four-arm randomised controlled pilot trial of innovative solutions for jugular central venous access device securement in 221 cardiac surgical patients. Journal of Critical Care, 2016.
- 19. Pittiruti, M., et al. Cyanoacrylate Glue and Central Venous Catheter Insertion. AVA 2016 Scientific Meeting. Poster Abstract.
- 20. Biasucci, D. G., et al. Targeting zero catheter-related bloodstream infections in pediatric intensive care unit: a retrospective matched case-control study, J Vas Access, 2017.
- 21. DiPuccio, F., et al. Experimental study on the chemico-physical interaction between a two-component cyanoacrylate glue and the materials of PICCs. J Vas Access, 2017.

- 22. Davis. J. Peripheral Vascular Catheter-related infection: Dwelling on Dwell Time. *Pennsylvania Patient Safety Authority*. (2014). 30-38.
- 23. DeVries, M, Mancos P, Valentine M. Protected Clinical Indication of Peripheral Intravenous Lines: Successful Implementation. (2016). *J Association Vascular Access* 21(2):89-92.