On the Use of Co-data in Clinical Trials

Satrajit Roychoudhury

Pfizer Inc.

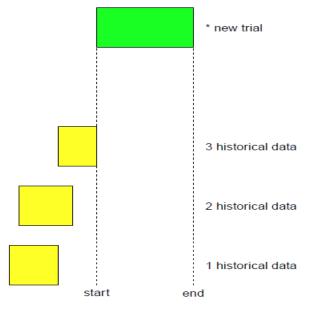
3rd Annual Boston Pharmaceutical Symposium,

Cambridge, MA

May 3, 2019

Acknowledgement

- Joint work with:
 - Beat Neuenschwander and Heinz Schmidli Novartis Pharma AG

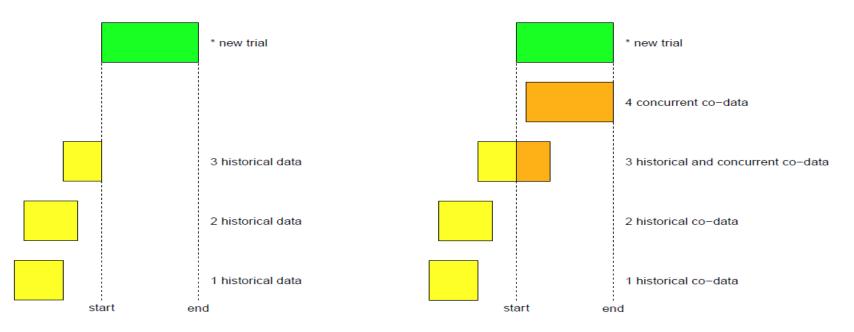


Co-data Approaches in Clinical Trial

- Two recent developments
 - look at the data frequently \rightarrow adaptive trials
 - look at more data \rightarrow trials with historical data
- In this talk:
 - we follow the maxim: more data lead to better decisions
 - we extend the historical data framework to
 - co-data: any relevant complementary/contextual data
 - co-data can be historical or concurrent
- Prospective planning and proper statistical methodology is the key

Historical Co-Data

- your (the actual) trial
- + 3 trials with historical co-data
- trial 3 is ongoing...



Historical and Concurrent Co-Data

- your (the actual trial
- + 3 trials with historical co-data...
- trial 3 is ongoing...

- ...trial 3 is ongoing...
- and trial 4 hasn't started yet
- \rightarrow concurrent *co-data*

Statistical Methodology: Hierarchical model

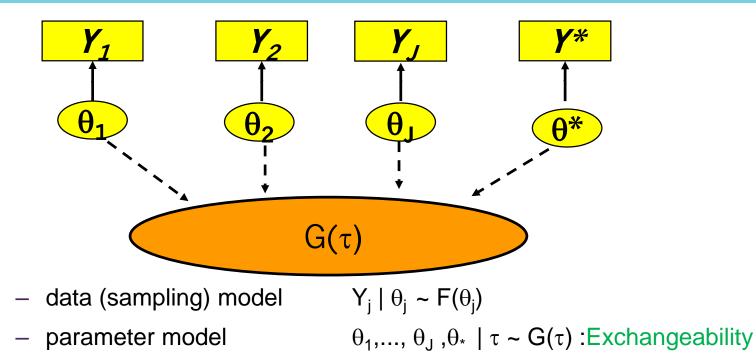
- Most clinical literature uses two extreme models
 - **No pooling:** Separate inference for each tumor type (stratified analysis) *"Low power for small sample size situations"*
 - **Complete pooling:** grouping in the data is irrelevant, i.e. imposing restriction that all tumor type effects are same "optimistic borrowing"
- Bayesian hierarchical modeling is a specific methodology may be used to combine information of different strata.
- Exchangeable/Hierarchical model lies between these two extreme cases
 - "Shrinkage": the estimates are pulled towards a common mean

Notable Work

- Full exchangeability of strata parameters is the key assumption for Bayesian hierarchical model discussed in literature:
 - Thall et al. 2003, Chugh et al. 2009, Berry et. al 2013
- General class of nonparametric priors (random partitioning, Polya tree priors etc.) were discussed by
 - Leon-Novelo 2013, Mueller and Mitra 2013
- We propose Tailored exchangeability model based on *meta analytic* approaches
 - borrowing information across similar strata, while avoiding too optimistic borrowing for extreme strata
 - Neuenschwander, Roychoudhury and Schmidli 2016

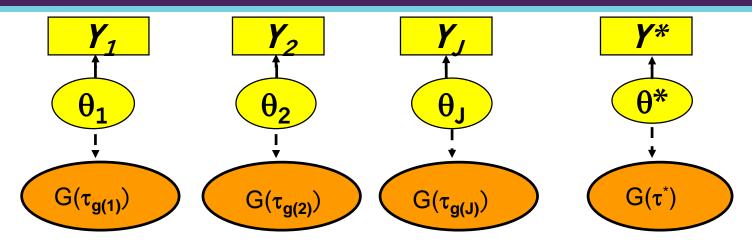
Meta-Analytic (MA) Approaches

- Two MA approaches
 - Meta-Analytic-Predictive (MAP) is prospective
 - At design stage of current trial, perform meta-analysis of *co-data* and obtain distribution of θ_{\star}

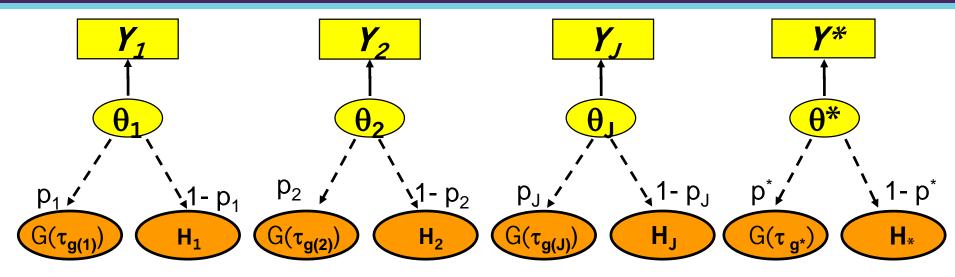

MAP Prior: $\theta_* | Y_1, \dots Y_C$

- Combine MAP prior with current trial data Y, (Bayesian analysis)
- Meta-Analytic-Combined (MAC) is retrospective
 - Perform a meta-analysis of all co-data and current trial data
 - Parameter of interest: the parameter in the actual trial

$\theta_* \mid \mathbf{Y}_1, \dots \mathbf{Y}_C, \mathbf{Y}_*$



A Meta-Analytic Framework for Co-Data


- too restrictive if relevance of *co-data* differs

Flexible Meta-analytic Approach for Co-data

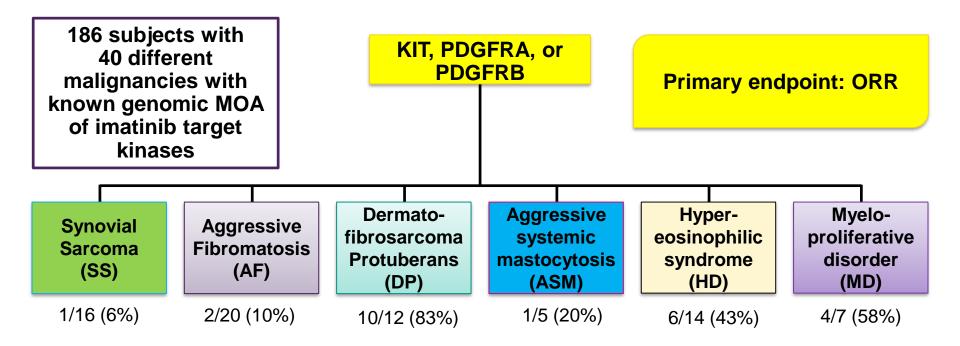
- Extension: $\theta_j \sim G(\tau_{g(j)}) g(j) \in \{1, ..., G\}, j = 1, ...J,_*$ Differential discounting
- For example:
 - G=2 for observational and randomized *co-data*
 - note: the larger G, the less information for between-trial sd $\tau_1,..., \tau_G$

A Robust Meta-analytic Approach for Co-data

- Robustification: $\theta_j \sim p_j G(\tau_{g(j)}) + (1 p_j) H_j : g(j) \in \{1, ..., G\}, j = 1, ..., J_{,*}$
- Allows for nonexchangeable parameters to add robustness

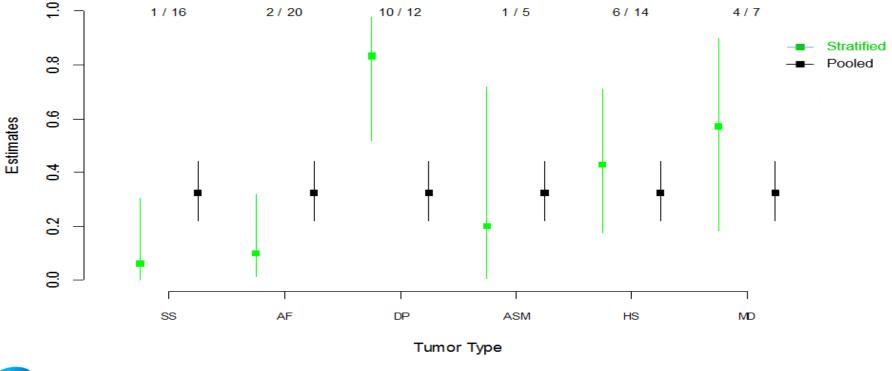
Prior distributions for $\boldsymbol{\tau}$

- Since the number of trials (J) is usually small, priors matter
- Recommendations (Spiegelhalter 2004, Gelman 2006)
 - use priors that put most of their probability mass on plausible values
 - example: log-odds scale, $\sigma\approx$ 2, half-normal priors with scale 1 and 0.5
 - $\tau \sim$ Half-Normal(1): $(0.03, 2.24)_{95\%}$ very small to very large heterogeneity
 - $\tau \sim$ Half-Normal(0.5): (0.01,1.12)_{95%} very small to large heterogeneity



Weight of Co-Data: Effective Sample Sizes

- Various variance-based approximations to express amount of information of the prior or posterior distribution as an equivalent effective sample size (ESS)
 - Malec (2001), Pennello (2008), Morita (2008), N et al (2010)
 - Two-variances approach
 - analysis of interest for θ_{*}: variance var_{*} and unknown ESS_{*}
 - simpler analysis: variance *var_o* and known (!) *ESS_o*; e.g. complete pooling
 - assumption: sample sizes approximately proportional to precisions

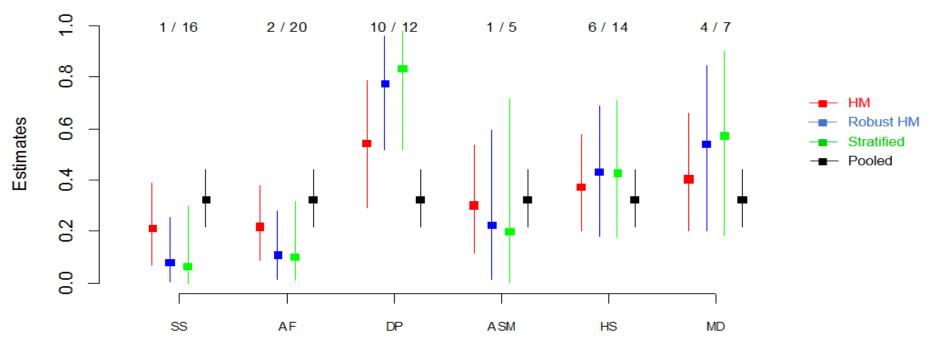

$$ESS_* = ESS_0 \times (var_0 / var_*)$$

Blumenthal. Innovative trial designs to accelerate the availability of highly effective anti-cancer therapies: an FDA perspective, AACR 2014

Stratified and Pooled Analysis

GLOBAL PRODUCT DEVELOPMENT

Pfizer Confidential


MAC and Robust MAC Model

- Data: n_i = Number of patients and r_i = Number of responder for strata j
- Likelihood/sampling model: $r_i \sim Bin(n_i, \pi_i)$
- **Model:** $\theta_j = \log(\pi_j / 1 \pi_j)$

For each stratum j two possibilities are considered:

- With probability $p_j : \theta_j \sim N(\mu, \tau^2)$
- With probability 1- $p_j : \theta_j \sim N(m_J, v_J)$
- $p_j = 0 \Rightarrow MAC \text{ or } HM$
- For this example we assume $p_i = 0.5$

MAC and Robust MAC Analysis

Tumor Type

Example 1: Phase III Interim Analyses

- Two phase III trials A and B running in parallel
 - endpoint: survival
 - 379 events (n): α =2.5%, 90% power for log-hazard ratio θ_A = log(0.75)
 - interim analysis when at least 150 deaths occurred in both trials
- Two historical trials
 - a small proof-of-concept trial, and a randomized phase II trial
- Interim decisions
 - based on probability of success (PoS): stop phase III trial if PoS < 10% (e.g.)
- Co-data analysis with the standard NNHM
 - $Y_{j} \mid \theta_{j} \sim \mathsf{N}(\theta_{j}, 4/n_{j}), \theta_{1}, ..., \theta_{J}, \theta_{*} \mid \mu, \tau \sim \mathsf{N}(\mu, \tau^{2}), \mu \sim \mathsf{N}(0.4), \tau \sim \mathsf{HN}(0.5)$

Stratified Analyses: Estimates and Probability of Success (PoS)

Study	deaths	HR $(95\%\text{-int})$	$\log(\text{HR})$ (sd)	pr(HR < 1)	PoS
		stratified ana	lyses		
1. Proof-of-concept	8	0.70(0.18, 2.80)	-0.36(0.71)	0.69	
2. Phase II	85	0.75(0.49, 1.15)	-0.29(0.22)	0.91	
3. Phase III study A	162	0.83(0.61, 1.13)	-0.19 (0.16)	0.88	0.45
4. Phase III study B	150	0.78(0.57, 1.07)	-0.25 (0.16)	0.94	0.64

- PoS calculation requires two components
 - parameter uncertainty at interim: posterior of θ_i
 - conditional power, for example for trial 3, n=379, n_I=162, σ =2

$$CP_3(\theta_3) = \Phi[z_\alpha \sqrt{n/(n-n_I)} - y_3 n_I / (\sigma \sqrt{n-n_I}) - \theta_3 \sqrt{n-n_I} / \sigma]$$

• PoS is then the expected (over posterior) conditional power

CONTRACTION OF CONTRACT OF CONTRACTO OF CONTRACT

Pfizer Confidential

Co-data Analyses: Estimates and Probability of Success (PoS)

Study	deaths	HR $(95\%\text{-int})$	$\log(\text{HR})$ (sd)	pr(HR < 1)	PoS
		stratified ana	lyses		
1. Proof-of-concept	8	0.70(0.18, 2.80)	-0.36(0.71)	0.69	
2. Phase II	85	0.75(0.49, 1.15)	-0.29 (0.22)	0.91	
3. Phase III study A	162	0.83(0.61, 1.13)	-0.19(0.16)	0.88	0.45
4. Phase III study B	150	0.78(0.57, 1.07)	-0.25 (0.16)	0.94	0.64
		co-data ana	lysis		
3. Phase III study A	162	0.80(0.63, 1.04)	-0.22 (0.13)	0.95	0.51
4. Phase III study B	150	0.79(0.61, 1.01)	-0.24 (0.13)	0.97	0.65

Co-data analysis

- improves precisions for log-hazard ratios
- PoS do not change much

Effective Sample Sizes (ESS)

Study	deaths	HR $(95\%\text{-int})$	$\log(\text{HR})$ (sd)	pr(HR < 1)	PoS	ESS	
	stratified analyses						
1. Proof-of-concept	8	0.70(0.18, 2.80)	-0.36(0.71)	0.69		8	
2. Phase II	85	0.75(0.49, 1.15)	-0.29(0.22)	0.91		85	
3. Phase III study A	162	0.83(0.61, 1.13)	-0.19(0.16)	0.88	0.45	162	
4. Phase III study B	150	0.78(0.57, 1.07)	-0.25 (0.16)	0.94	0.64	150	
		co-data anal	lysis				
3. Phase III study A	162	0.80(0.63, 1.04)	-0.22(0.13)	0.95	0.51	254	
4. Phase III study B	150	0.79(0.61, 1.01)	-0.24 (0.13)	0.97	0.65	252	

Co-data analysis:

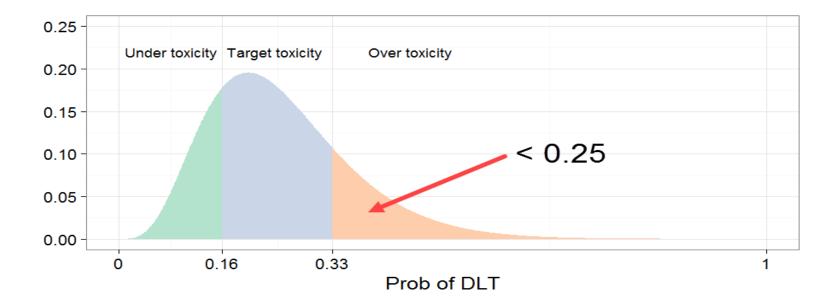
- improves precisions for log-hazard ratios
- ESS is $\approx 60\%$ larger compared to stratified analyses

Probability of Regulatory Success

- Successful regulatory submission requires both Phase III trials to be positive:
- Probability of regulatory success (*PoRS*) $PoRS = \int CP_3(\theta_3) CP_4(\theta_4) p(\theta_3, \theta_4| \text{interim data}) d\theta_3 \theta_4$

Analysis	<i>PoS</i> of Trial A	PoS of Trial B	PoRS
Full exchangeability	0.51	0.65	0.36
Differential heterogeneity	0.49	0.64	0.34
Exchangeability-nonexchangeability mixture (50-50)	0.49	0.65	0.34

Phase I Combination Trials


- Combination therapies are now popular in Oncology
- Phase I Oncology Trial objectives:
 - Safety and tolerability of patients
 - Find maximum tolerable dose (MTD) or recommended phase II dose
 - data: binary dose-limiting toxicity (DLT) data
- There is no longer one MTD but a many
 - critical to determine the MTD boundary and the set of acceptable doses.
- Overall risk assessment is key
 - Model based approaches: summarize the risk at each dose pair
 - actual decisions use additional information (e.g. efficacy, PK, biomarkers, later cycle AE) to select "best" dose pair(s) for next cohort

Practical Model based Approach for Combination Studies

- Parsimony
 - small number of parameters due to small number of tested dose combinations
- Interpretability
 - easily interpretable parameters for
 - single agent 1 toxicity
 - single agent 2 toxicity
 - interaction
- Continuity
 - if the dose of one compound is 0, the model simplifies to the single-agent model

er GLOBAL PRODUCT DEVELOPMENT

Escalation with Overdose Criterion (EWOC)

Dose escalation happens when the following condition is satisfied:

• $Pr(\pi_{ij} > 0.33 | data) < 25\%$

Co-data for Phase I Combination Trial (1/3)

	1) historical co-data at the start of the AB t				
	agent 1	l trial A	agent 2	trial B	
	3-0	0/3	0-33.3	0/3	
 two historical single- 	4.5-0	0/3	0-50	0/3	
6	6-0	0/6	0-100	0/4	
agent trials:	8-0	2/3	0-200	0/9	
A for agent 1, ongoing			0-400	0/15	
			0-800	2/20	
<i>B</i> for agent 2			0-1120	4/17	

.

Co-data for Phase I Combination Trial (2/3)

	1) historical co-data at the start of the AB trial					B trial	
				agent 1 trial A ag		agent 2	trial B
				3-0	0/3	0-33.3	0/3
				4.5-0	0/3	0-50	0/3
				6-0	0/6	0-100	0/4
				8-0	2/3	0-200	0/9
						0-400	0/15
						0-800	2/20
						0-1120	4/17
 after 3 cohorts of 			2) data after 3	6 cohorts	of AB ti	rial	
actual trial AB:	AB ti	rial		agent 1	trial A		
	3-400	0/3		3-0	0/3		
concurrent co-data	3-800	1/3		4.5-0	0/6		
from trial A	6-400	1/3		6-0	0/11		
				8-0	2/3		

Co-data for Phase I Combination Trial (3/3)

		1) historical co-data at the start of the AB trial					
				agent	1 trial A	agent 2	trial B
				3-0	0/3	0-33.3	0/3
				4.5-0	0/3	0-50	0/3
				6-0	0/6	0 - 100	0/4
				8-0	2/3	0-200	0/9
						0-400	0/15
						0-800	2/20
						0-1120	4/17
2) data after 3 cohorts of AB trial							
AB t	rial			agent	1 trial A		
3-400	0/3			3-0	0/3		
3 - 800	1/3			4.5-0	0/6		
6-400	1/3			6-0	0/11		
				8-0	2/3		
		3) data	at end	of AB	trial		
AB t	rial	IIT-tr	ial				
3-400	0/3	3-400	0/3				
3-800	2/6	3-800	5/7				
		4.5 - 400	0/3				
4.5 - 600	2/10						
6-400	3/10	6-400	0/6				
		6-600	2/3				
Pfiz	er Confident	ial					28

at end of AB trial:
 co-data from *IIT* combination trial

fizer GLOBAL PRODUCT DEVELOPMENT

Phase I Trial for Combination Treatment in Cancer

$$log(odds(\pi_{1,d_{1}})) = log(\alpha_{1}) + \beta_{1} log(d_{1})$$

$$log(odds(\pi_{2,d_{2}})) = log(\alpha_{2}) + \beta_{2} log(d_{2})$$

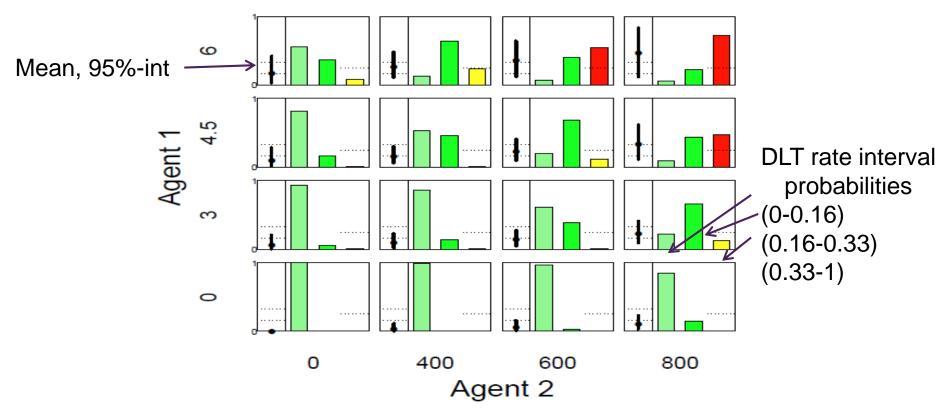
$$\pi_{12,d_{1},d_{2}}^{0} = \pi_{1,d_{1}} + \pi_{1,d_{2}} - \pi_{1,d_{1}} \pi_{2,d_{2}}$$

$$odds(\pi_{12,d_{1},d_{2}}) = odds(\pi_{12,d_{1},d_{2}}^{0}) exp(\eta d_{1} d_{2})$$

$$(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} > 0)$$

- (note: reference/scaling doses dropped in formulas)
- if no dose-dependent interaction desired: simply use $exp(\eta)$
- typically $\eta > 0$, but not necessarily

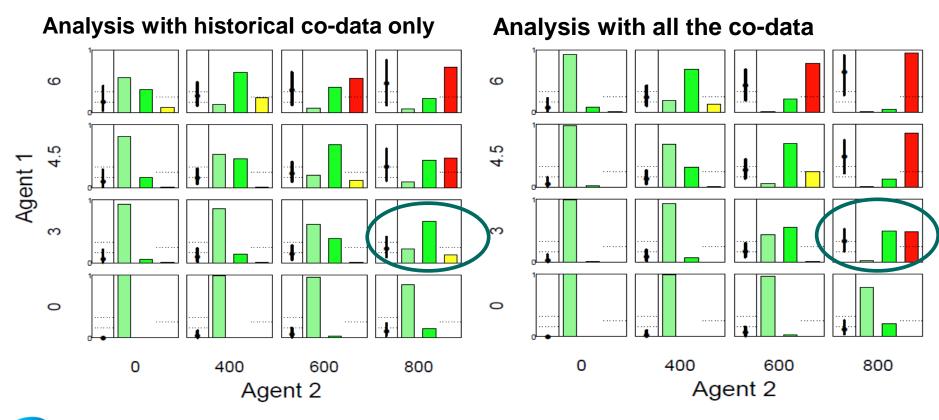
Robust Co-Data Model for Drug Combination Studies


• Let us assume
$$\theta_{1j} = (\log(\alpha_{1j}), \log(\beta_{1j}))$$
 and $\theta_{2j} = (\log(\alpha_{2j}), \log(\beta_{2j}))$

•
$$\theta_{1j} \sim p_{1j}BVN(\mu_1,\Gamma_1) + (1-p_{1j})BVN(m_{1j},S_{1j})$$

• $\theta_{2j} \sim p_{2j}BVN(\mu_2,\Gamma_2) + (1-p_{2j})BVN(m_{2j},S_{2j})$
• $\eta_j \sim p_{\eta j}N(\mu_\eta,\tau_\eta^2) + (1-p_{\eta j})N(m_{\eta j},S_{\eta j}^2)$
Exchangeable part Non-exchangeable part

Pfizer Confidential


OBAL PRODUCT DEVELOPMENT

Risk-Benefit Plot

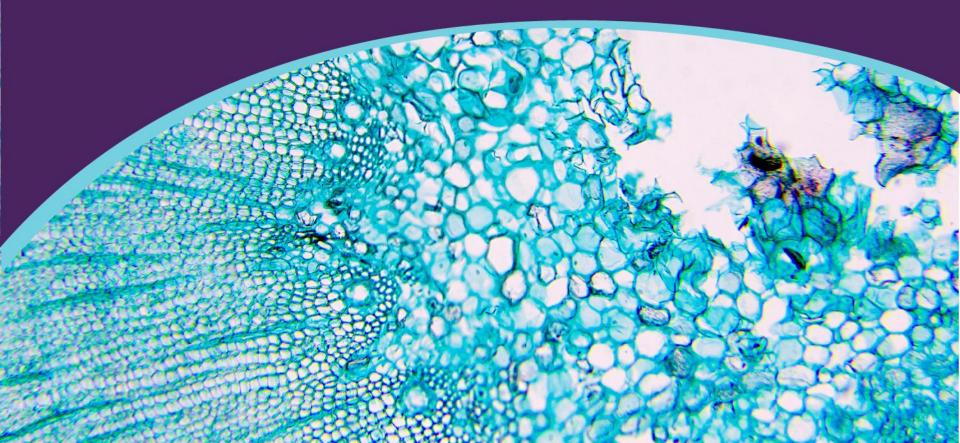
Co-data Analysis

GLOBAL PRODUCT DEVELOPMENT

Information gain from co-data: effective sample sizes (ESS)

dose combination	n	1) without <i>co-data</i>	2) with historical co -data	3) with all <i>co-data</i>
		ESS	6 after 3 cohorts of AB trial	
3-800	3	7	11	11
4.5-600	3	7	9	9
6-400	3	6	8	8
			ESS at end of AB trial	
3-800	6	16	23	26
4.5-600	10	26	26	31
6-400	10	19	20	24

Use of Co-data: Planned vs Unplanned


- Clear specification of statistical analysis method before trial begins
- Proper choice of evidence is necessary
 - prior to start of trial
 - choice must be "science" based not "result" based
 - avoiding publication bias
 - inter-disciplinary collaboration

Conclusion

- Making better use of data which includes co-data is one contribution to innovation in medical product development
- Many applications with co-data
 - pediatric trials (adult data), non-inferiority trials (placebo, active control data), health-technology assessments, basket trials
- Methodology (meta-analytic) fairly well developed
- Co-data use: mainly for early phase trials or trial adaptations
 - what about using *co-data* for primary analysis in confirmatory trials?
 - not commonly used, but the mindset changes...
 - recent example in epilepsy (historical controls) Katz (2006), French (2010), Wechsler (2014)

Thank You

