Optimal Promising Zone Designs

Sam Hsiao

Cytel Inc

May 2019

Statistic in Medi		Commentary			
(wileyonlinelibra	ary.com) DOI: 10.1002/sim.6614	Published online in Wiley Online Li	Stat Biosci DOI 10.1007/s12561-017-9188-x	CrossMark	
An objective re-evaluation of adaptive sample size re-estimation: commentary on 'Twenty-five years of confirmatory adaptive designs' Cyrus Mehta ^{a,b*†} and Lingyun Liu ^a			with Adaptive Unblinded Sample	fficiency Considerations for Group Sequential Designs ith Adaptive Unblinded Sample Size Re-assessment ngyun Liu ¹ · Sam Hsiao ¹ · Cyrus R. Mehta ^{1,2} ©	
frequency in con	Syears, adaptive designs have gradually gained acceptinatory clinical trials. Recent surveys of submission of adaptation is unblinded sample size re-estimation. Revised: 12 December 2017 Received: 12 December 2017 Revised: 18 Septer DOI: 10.1002/bimj.201700308 RESEARCH PAPER Optimal promising Samuel 7. Hsiao ¹	is to the regulatory agencies reveal that n. Concerns have nevertheless been re- mber 2018 Accepted: 19 September 2018	Biometrical Jou	ment, based on an analysis	
	 ¹Cytel Corportation, Cambridge, Massachusetts, USA ²Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA Correspondence Cyrus R. Mehta, Cytel Corportation, Cambridge, MA 02139; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Email: mehta@cytel.com 	ysis of interim results are p Elsäßer et al., 2007). Such t the interim test statistic, ter increasing the sample size w	sample size reassessment based on an unblind erhaps the most popular class of adaptive des rials are typically designed by prespecifying a ned the promising zone, along with a decision thin that zone. Mehta and Pocock (2011) provid designs and discussed several procedures for co	igns (see zone for n rule for ded some	

Outline

- Example from oncology trial
- Constrained promising zone design
- Efficiency comparisons with:
 - Optimal adaptive design (Jennison & Turnbull 2015)
 - Constrained optimal design
- Conclusions

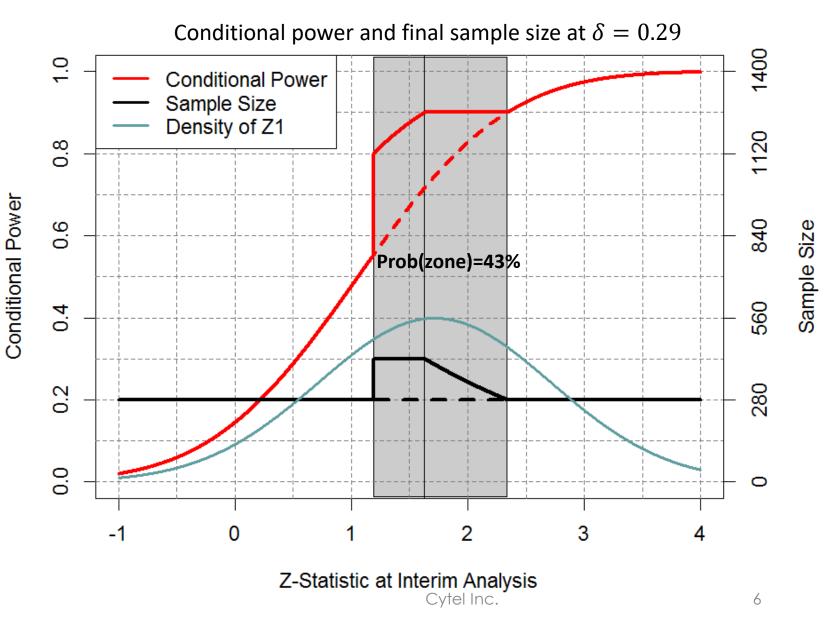
Oncology Trial at a Small Biotech

- Indication Advanced pancreatic cancer
- Endpoint Progression free survival
- Effect size Hypothesized hazard ratio HR=0.67 ($\delta = 0.4$ on log scale), but consider HR=0.75 to be minimally acceptable ($\delta = 0.29$)

	$\delta = 0.29$	$\delta = 0.4$
N = 280	68%	92%
N = 500	90%	99%

N = number of events

- Considerations for Adaptive Design (AD)
 - Difficult to get upfront commitment to power at low effect size
 - Stakeholders expressing **conditional utility**, investment linked to interim milestone, requiring good chance of success at minimally acceptable effect size
 - No early efficacy stopping, need adequate volume of data for regulatory review


Constrained Promising Zone Design (CPZ)

- Two-Stage design with sample size re-assessment (SSR)
- Plan $n_2 = 280$, interim analysis $n_1 = 140$, maximum $n_{max} = 420$
- Given interim statistic z_1 , choose final sample size n_2^* as follows:

Objective: Maximize conditional power $CP_{0.29}(z_1, n_2^*)$ **Constraint 1:** $n_2 \le n_2^* \le n_{max}$ **Constraint 2:** $CP_{0.29}(z_1, n_2^*) \ge 80\%$ **Constraint 3:** $CP_{0.29}(z_1, n_2^*) \le 90\%$

- **Promising zone** consists of z_1 for which all constraints can be satisfied
- No sample size modification outside of promising zone
- Testing uses CHW combination statistic

CPZ Design Conditional Power and SSR Rule

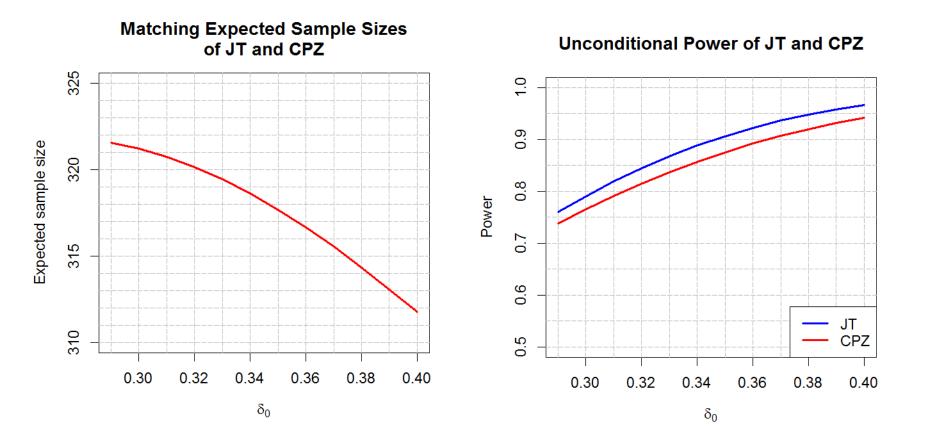
Is the CPZ Design Optimal?

Can <u>un</u>conditional power be improved using a different SSR rule, keeping expected sample size the same?

Jennison Turnbull (JT) Optimal SSR Rule

- Optimize tradeoff between CP and N
- SSR Rule: Choose final sample size n_2^* such that

Objective: Maximize $CP_{\delta_0}(n_2^*, z_1) - \gamma n_2^*$

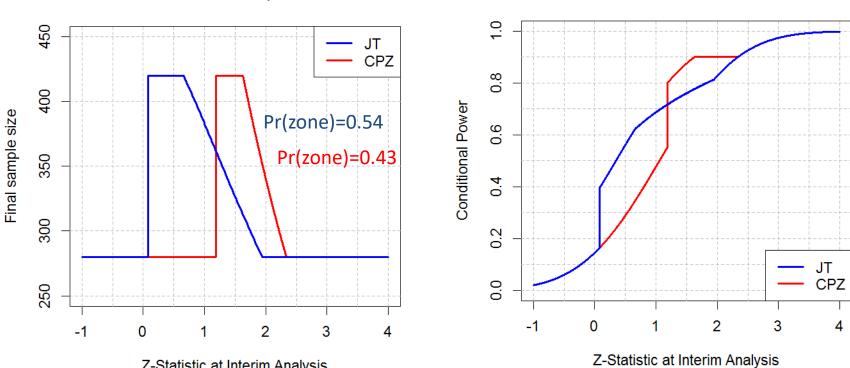

Constraint: $n_2 \le n_2^* \le n_{max}$

where γ is a constant "exchange rate" between CP and N, and δ_0 is effect size at which to optimize

- **Optimality property**: Highest possible unconditional power among SSR rules with matching E(N)
- Benchmarking tool for adaptive designs

Efficiency Comparison with JT Optimal Design

• Method: For each δ , compare unconditional power of CPZ against JT design with γ chosen so expected sample size matches



Cytel Inc.

Efficiency Comparison with JT Optimal Design

Comparison at $\delta = 0.29$ •

SSR Rule Comparison

CP Comparison at δ = 0.29

Z-Statistic at Interim Analysis


te

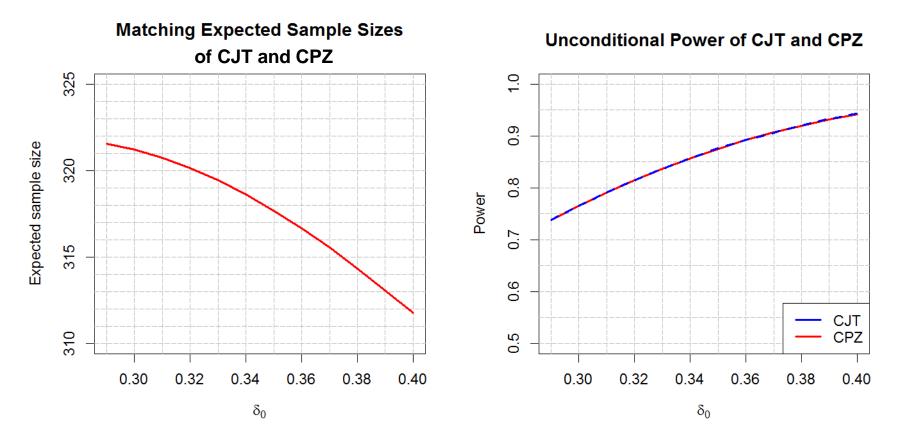
10

Efficiency Comparison with JT Optimal Design

Conclusions

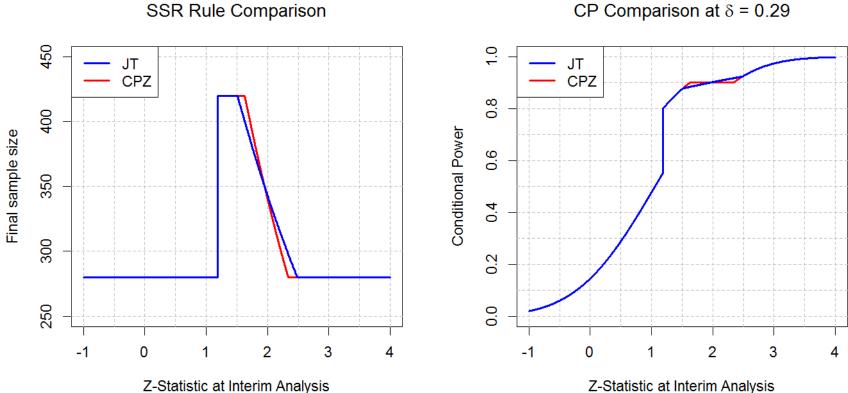
- JT Optimal Design gains 2-3% unconditional power
- Requirement of high CP at lowest meaningful θ is not met by JT Design

Constrained JT Rule (CJT)


- Impose an additional CP constraint on the JT SSR rule.
- **Constrained SSR Rule:** Final sample size n_2^* determined by:

Objective: Maximize $CP_{\delta_0}(z_1, n_2^*) - \gamma n_2^*$ **Constraint 1:** $n_2 \le n_2^* \le n_{max}$ **Constraint 2:** $CP_{0.29}(z_1, n_2^*) \ge 80\%$

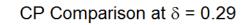
• **Optimality property**: Highest unconditional power among promising zone designs satisfying same constraints and matching E(N)

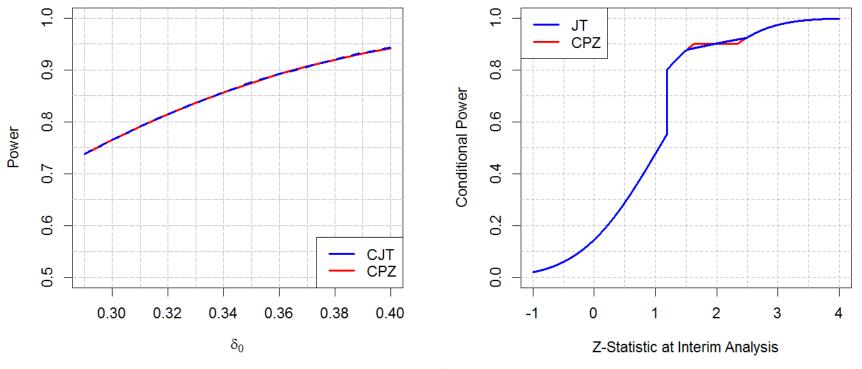

Comparison of CPZ and CJT

• Method: For each δ , compare unconditional power of AD against constrained JT Design with γ chosen so expected sample size matches AD

Comparison of CPZ and CJT

Comparison at $\delta = 0.29$ •

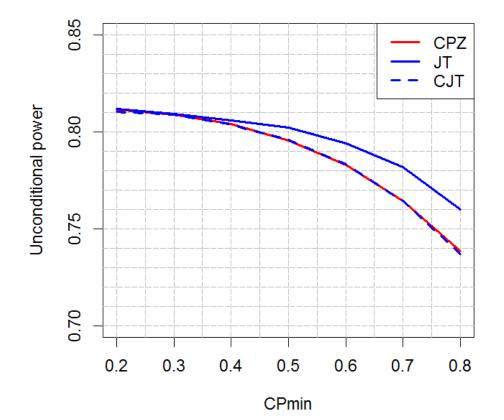



Comparison of CPZ and CJT

Conclusions

- Equally efficient in terms of unconditional power
- Similar conditional power profiles

Unconditional Power of CJT and CPZ


cyterine.

Using a Smaller CP Constraint

Objective: Maximize conditional power $CP_{0.29}(z_1, n_2^*)$ **Constraint 1:** $n_2 \le n_2^* \le n_{max}$ **Constraint 2:** $CP_{0.29}(z_1, n_2^*) \ge 80\%$ **70%, 60%, 50%,... Constraint 3:** $CP_{0.29}(z_1, n_2^*) \le 90\%$

Using a Smaller CP Constraint

Comparison of unconditional power at $\delta = 0.29$

Comparison with Group Sequential Designs

- Discussed in Mehta & Liu 2016, and Liu et al.
 2017.
- Relative efficiency depends on aggressiveness of SSR rule, final test statistic, number and timing of interim looks.
- Compare apples to apples

Conclusions

- We considered a constrained promising zone design for an oncology trial
 - Maximize CP
 - Require sufficiently high CP to justify sample size increase
- Provide method for objective efficiency comparison
- 2-3% loss of unconditional power compared to optimal JT design which has wider SSR zone and recommends increasing N at lower z_1 values
- No loss of efficiency compared to optimal constrained JT design which requires $CP_{0.29}(z_1, n_2^*) > 80\%$
- Thus CPZ is optimal among designs with same CP and sample size constraints
- **Sponsor's utility** will determine whether a CP constraint makes sense, at the cost some efficiency loss compared to JT

References

- Liu, Lingyun, Sam Hsiao, and Cyrus R. Mehta. 2017. "Efficiency Considerations for Group Sequential Designs with Adaptive Unblinded Sample Size Re-Assessment." *Statistics in Biosciences*
- Mehta, Cyrus, and Lingyun Liu. 2016. "An Objective Re-Evaluation of Adaptive Sample Size Re-Estimation: Commentary on 'Twenty-Five Years of Confirmatory Adaptive Designs.'" *Statistics in Medicine* 35: 350–58.
- Hsiao SK, Liu L, Mehta CR. 2018. Optimal promising zone designs. *Biometrical Journal.*
- Jennison, Christopher, and Bruce W. Turnbull. 2015. "Adaptive Sample Size Modification in Clinical Trials: Start Small Then Ask for More?" *Statistics in Medicine* 34 (29): 3793–3810.

