Survival Analysis using a 5-STAR Approach in Randomized Clinical Trials

Devan V. Mehrotra* and Rachel Marceau West Biostatistics and Research Decision Sciences

* devan_mehrotra@merck.com

ASA Webinar May 26, 2020

Outline

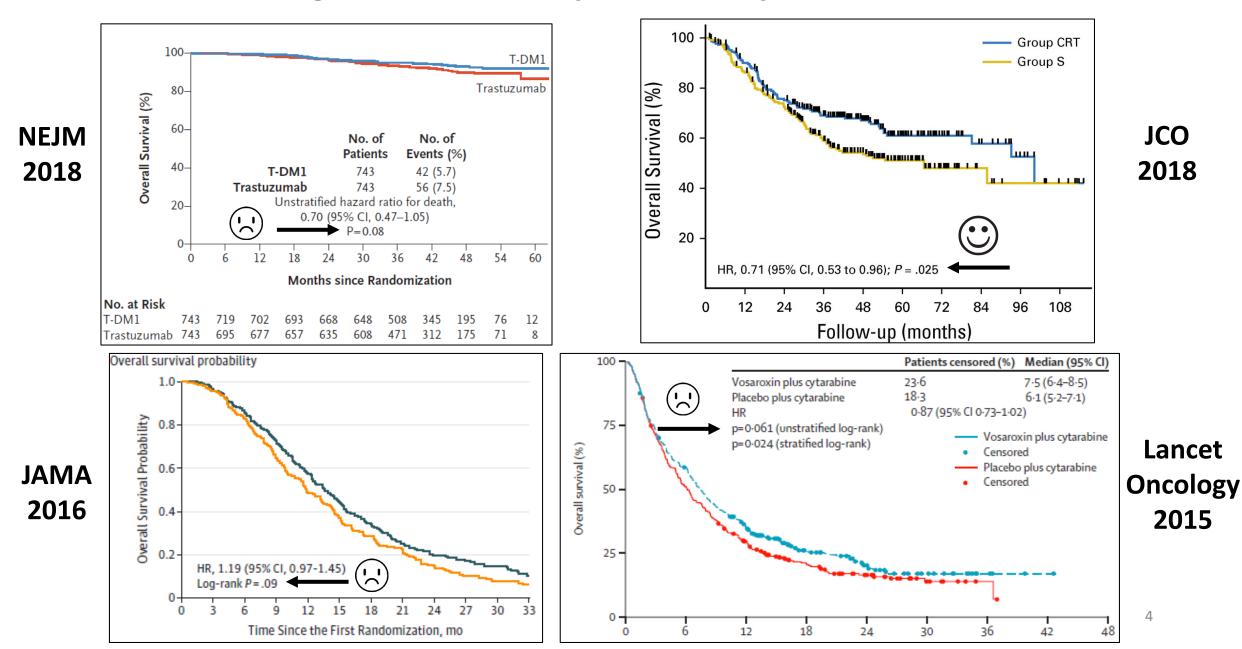
- Introduction
- Motivating example
- Logrank test
- Alternatives to logrank test
- Proposed 5-STAR approach
- Other examples
- Simulation results
- Conclusions

Introduction

- Randomized clinical trial, two treatment arms (A=test, B=control) Random variable T_i = survival time under treatment j
- $S_j(t) = Pr(T_j > t)$ $H_0: S_A(t) = S_B(t)$ for all t
- Statistical deliverables:
 - 1. P-value associated with test of H_0
 - 2. Point estimate and CI for an **interpretable** population level treatment effect parameter (estimand)

Ideally, (1) and (2) should be aligned, per ICH E9/R1 (2019)

Logrank Test – Popular Analysis in RCTs

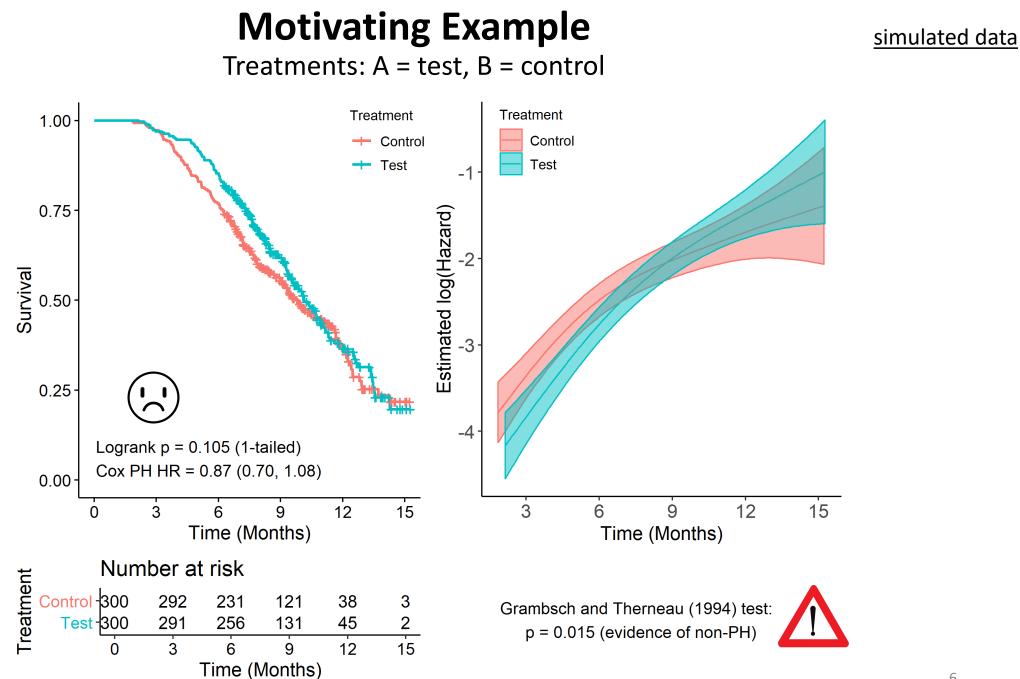


Logrank Test (continued)

- Logrank test = score test from the Cox proportional hazards (PH) model
- When the hazard functions for A and B are proportional
 - $_{\odot}$ Logrank test is optimal for testing $\rm H_{null}$

$$\circ \quad \theta(t) = \frac{\log\{S_A(t)\}}{\log\{S_B(t)\}} = \theta \text{ for all } t$$

- \circ θ is the time-invariant hazard ratio (HR)
- When the hazard functions for A and B are **not proportional**
 - Logrank test is no longer optimal (potential power loss)
 - The Cox PH model HR estimate can be hard to interpret



Alternatives to the Logrank Test

Weighted logrank tests

- Fleming and Harrington (1991) $G^{\rho,\gamma}$ class: weight(t) = $\widehat{S(t)}^{\rho} (1 \widehat{S(t)})^{\gamma}$
- \circ Z1= G^{0,0} (logrank), Z2= G^{0,1} (late), Z3= G^{1,0} (early), Z4= G^{1,1} (middle)
- MaxCombo test (uses best observed among Z1, Z2, Z3 and Z4)
- $_{\circ}$ $\,$ No clinically interpretable estimand $\,$

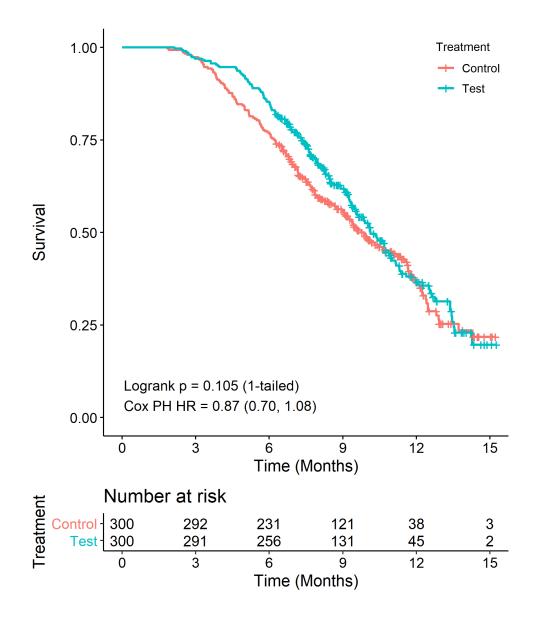
Roychoudhury et al (2019)

• Comparison of weighted Kaplan-Meier curves

• Special case: Restricted Mean Survival Time (RMST) comparison RMST difference: $\delta(\tau) = \int_0^{\tau} [S_A(t) - S_B(t)] dt$

Royston and Parmar (2011); Tian et al (2014); Uno et al (2014)

Motivating Example (continued)



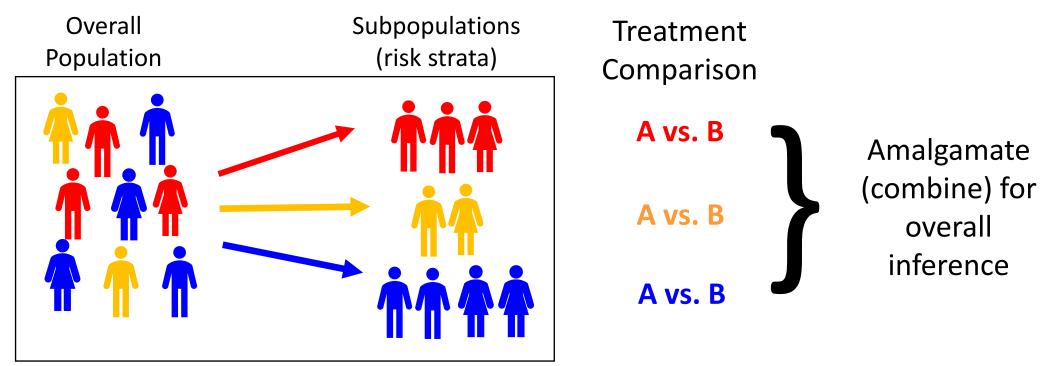
Analysis Method	1-tailed p-value	
Logrank	0.105	
MaxCombo	0.057	
RMST	0.082	

- No treatment effect "signal" using standard approaches
- Correct conclusion for this dataset?
- No ... shown later

Proposed 5-STAR Approach

Detection of a treatment effect should be easier in a clinically **homogeneous** rather than a **heterogeneous** patient population

5-step Stratified Testing and Amalgamation Routine (5-STAR)



Problem Set-Up: Assumptions, Estimand, Null Hypothesis

Assumptions (within each true risk stratum i = 1, 2, ...s)

- Patients are prognostically homogeneous, i.e., survival times $\{T_{ij}; risk stratum i, treatment j\}$ are independently and identically distributed
- $\log(T_{iA})$ is distributed as $\log(T_{iB}) + \Delta_i \Leftrightarrow S_{iA}(t) = S_{iB}(e^{\Delta_i}t)$ $\gamma_i = e^{\Delta_i}$ is the **time ratio** in risk stratum *i*

Estimand (overall average treatment effect parameter)

• $\overline{\Delta} = \sum_{i=1}^{s} f_i \Delta_i$ (f_i = proportion of stratum *i* patients in the overall population) $\overline{\gamma} = e^{\overline{\Delta}}$ is the true **'average' time ratio**

Null Hypothesis

• $H_0^*: \bigcap_{i=1}^s [S_{iA}(t) = S_{iB}(t) \text{ for all } t] \Leftrightarrow H_0^*: \Delta_i = 0 \text{ (i.e.}, \gamma_i = 1) \text{ for all } i$ <u>Note</u>: $H_0^* \Rightarrow H_0: S_A(t) = S_B(t) \text{ for all } t \text{ (on slide 3)}$

Problem Set-Up: What About Hazard Ratios?

- If $Y_{iA} \sim Y_{iB} + \Delta_i \Leftrightarrow S_{iA}(t) = S_{iB}(e^{\Delta_i}t)$, will the treatment hazard functions be proportional? Yes, but only in a special case!
- Proportional hazards will hold in risk stratum *i* if (and only if) $T_{iB} \sim \text{Weibull}$ In this special case, $log[h_{iA}(t)] = log[h_{iB}(t)] + \beta_i \Leftrightarrow S_{iA}(t) = [S_{iB}(t)]^{\theta_i}$ $\theta_i = e^{\beta_i}$ is the **hazard ratio**
- Supplemental estimand: 'average' hazard ratio $\bar{\theta} = e^{\bar{\beta}}$, where $\bar{\beta} = \sum_{i=1}^{s} f_i \beta_i$

Survival times from many RCTs are well-described by a mixture of Weibull distributions

A flexible parametric survival model for fitting time to event data in clinical trials Jason Liao, Frank Liu. *Pharmaceutical Statistics*. 2019;18:555–567 [Weibull mixtures]

Waloddi Weibull 1887-1979

Step 1: Pre-specify baseline covariates that might influence survival time

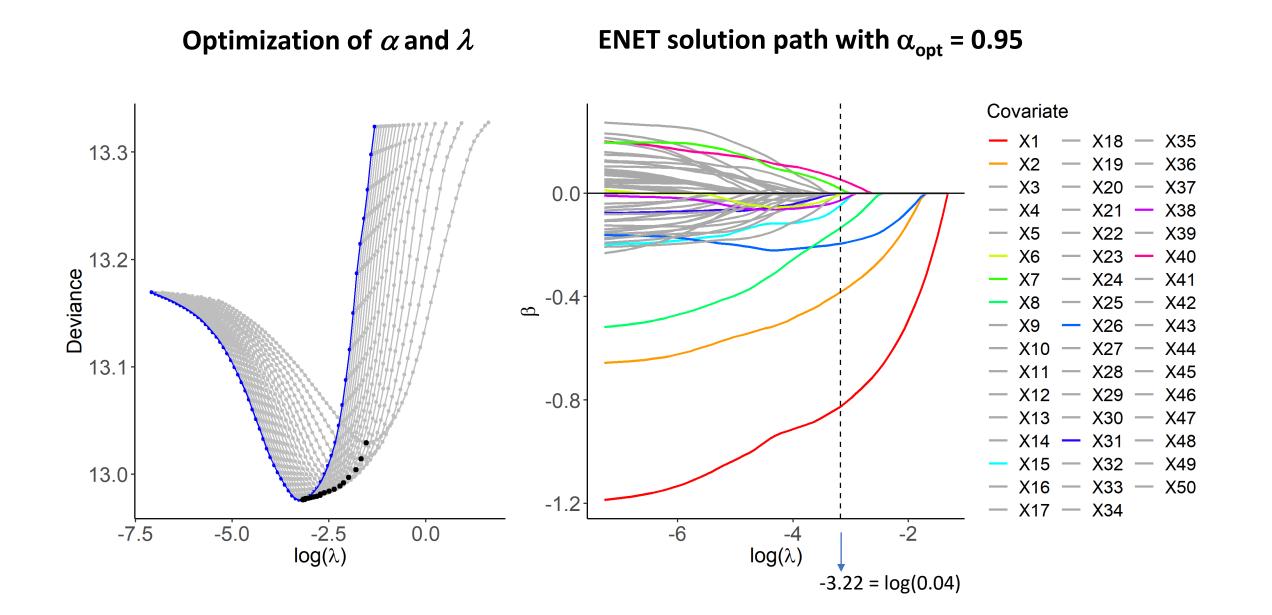
X1, X2, ... X50 (includes binary and continuous covariates)

Step 2: Filter out "noise" covariates using Elastic Net Cox regression

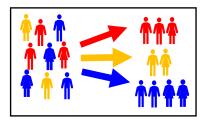
$$\max_{\beta_1\dots\beta_p} \left\{ \frac{2}{N} logL(y_1\dots y_N; x_1\dots x_p, \beta_1\dots \beta_p) - \lambda \left[\alpha \sum_{k=1}^p |\beta_k| + \left(\frac{1-\alpha}{2}\right) \sum_{k=1}^p \beta_k^2 \right] \right\}$$

- *L*(.) = Cox partial likelihood function
- Zou and Hastie (2005), Park and Hastie (2007)
- Pooled survival times (i.e., without patient-level treatment unblinding)
- 10-fold cross-validation to optimize λ within a pre-specified α grid

10 covariates kept after elastic net filtering: X1, X2, X6, X7, X8, X15, X26, X31, X38, X40



- **Step 3:** Form risk strata using **Conditional Inference Tree** algorithm (Hothorn et al; 2006) **without patient-level treatment unblinding**
 - **3A** Form preliminary risk strata Input: covariates which passed step 2

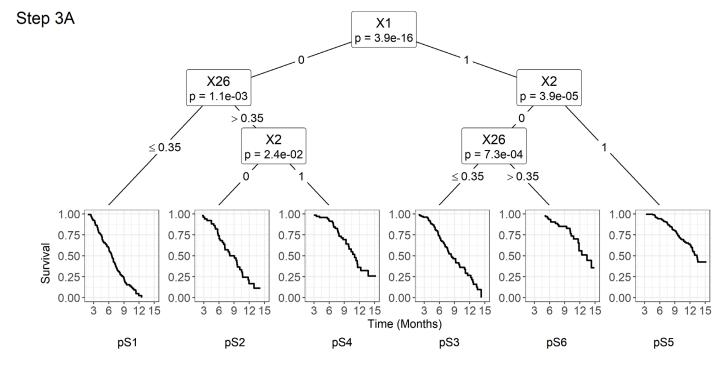


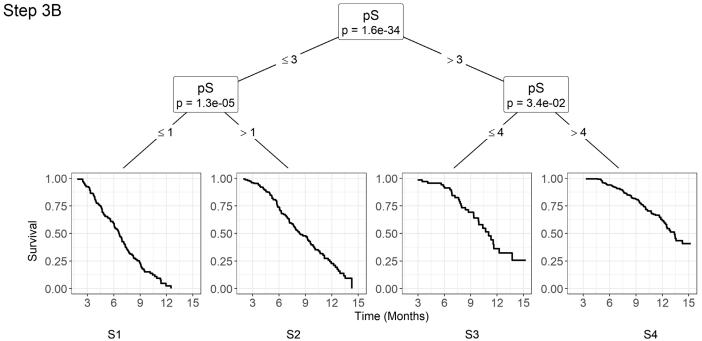
3B Re-run CTree with *ordered* risk stratum membership from step 3A as a covariate (final risk strata)

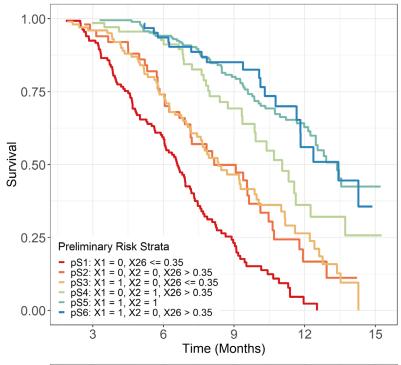
Preliminary Strata:
pS1: X1 = 0, X26 ≤ 0.35
<i>pS2: X1 = 0, X2 = 0, X26 > 0.35</i>
$pS3: X1 = 1, X2 = 0, X26 \le 0.35$
<i>pS4: X1 = 0, X2 = 1, X26 > 0.35</i>
pS5: X1 = 1, X2 = 1
<i>pS6: X1 = 1, X2 = 0, X26 > 0.35</i>

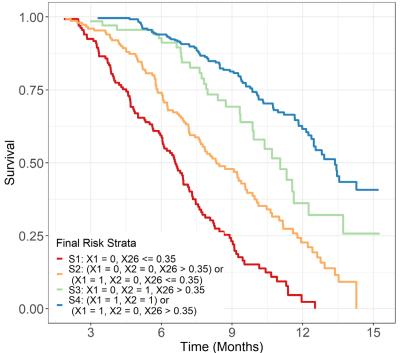
Final Strata:

 $\begin{array}{l} S1: \ X1 = 0, \ X26 \leq 0.35 \\ S2: \ X2 = 0, \ \left\{ (X1 = 0, \ X26 > 0.35) \ or \ (X1 = 1, \ X26 \leq 0.35) \right\} \\ S3: \ X1 = 0, \ X2 = 1, \ X26 > 0.35 \\ S4: \ X1 = 1, \ \left\{ (X2 = 1) \ or \ (X2 = 0, \ X26 > 0.35) \right\} \end{array}$

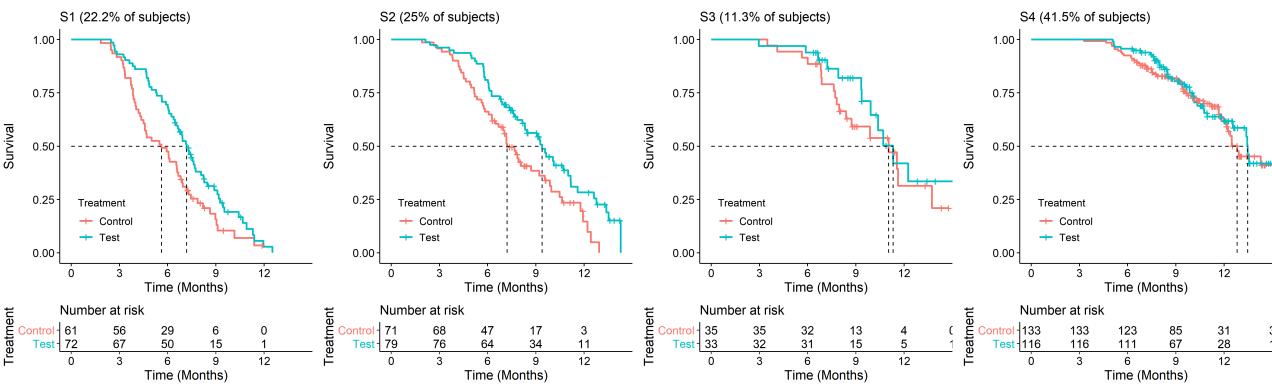








Step 4: Estimate treatment effect within each formed risk stratum



Treatment effect in formed risk stratum *q*

Primary: $\delta_q = E[log(T_{qA})] - E[log(T_{qB})], \gamma_q = exp(\delta_q)$ (Time Ratio; TR) Supplemental: $\beta_q = log[-logS_{qA}(t)/-logS_{qB}(t)]$ assuming PH; $\theta_q = exp(q)$ (Hazard Ratio; HR)

TR: 1.25 (1.06, 1.47)
HR: 0.62 (0.45, 0.85)

·
TR : 1.22 (1.05, 1.43)
HR : 0.59 (0.42, 0.82)

L
TR : 1.14 (0.89, 1.47)
HR : 0.71 (0.38, 1.31)

TR : 1.05 (0.90, 1.22)
HR : 0.90 (0.63, 1.30)

Step 4: primary analysis within formed risk stratum q (=1,2, ... c)

Analysis model: $log(T_{qjk}) = \mu_q + \delta_q I_{qk} + \sigma_q \epsilon_{qjk}$ for formed strat q, trt j, subj k

 I_{qk} =1[0] for treatment A[B], $\delta_q = E[log(T_{qAk})] - E[log(T_{qBk})]$

Three parametric fits (T_{iik} ~ Weibull, log-normal, log-logistic) \rightarrow model averaging Obtain $\hat{\delta}_{a.m}$, $V_{a.m} = V(\hat{\delta}_{a.m})$, $AIC_{a.m}$ from parametric model fit m $W_{q,m} = \frac{e^{-0.5AIC_{q,m}}}{\sum_{m=1}^{M} e^{-0.5AIC_{q,m}}}$ $\hat{\delta}_{q} = \sum_{m=1}^{M} w_{q,m} \hat{\delta}_{q,m}$ $V_{q} = \left[\sum_{m=1}^{M} w_{q,m} \sqrt{V_{q,m} + (\hat{\delta}_{q,m} - \hat{\delta}_{q})^{2}}\right]^{2}$ 95% CI for Time Ratio (TR) in formed risk stratum q: $\exp\{\hat{\delta}_q \mp 1.96\sqrt{V_q}\}$

Step 5: Amalgamate (combine) stratum-level results for overall inference

 $n_q =$ number of subjects in formed risk stratum q

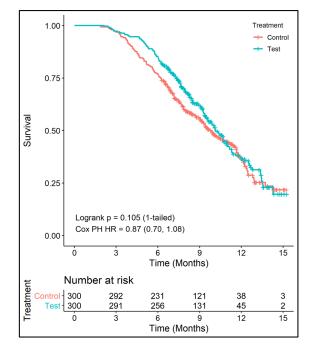
$$Z_I = \frac{\sum_{q=1}^{c} n_q \widehat{\delta}_q}{\sqrt{\sum_{q=1}^{c} n_q^2 V_q}} \sim N(0,1) \text{ under } H_0^* \text{ (asymptotically)}$$

$$Z_{II} = \frac{\sum_{q=1}^{c} n_q(\hat{\delta}_q / \sqrt{V_q})}{\sqrt{\sum_{q=1}^{c} n_q^2}} \sim N(0,1) \text{ under } H_0^* \text{ (asymptotically)}$$

$$Z_* = max(Z_I, Z_{II})$$

Exact distribution: $f(z_*) = 2\phi(z_*)\Phi\left(\frac{1-\rho}{\sqrt{1-\rho^2}}z_*\right), \rho = corr(Z_I, Z_{II})$

Other details in the manuscript

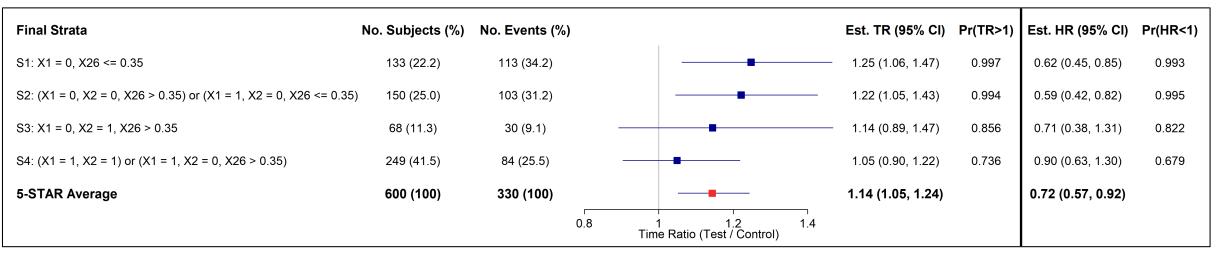


Analysis	1-tailed	
Method	p-value	
Logrank	0.105	
MaxCombo	0.057	
RMST	0.082	
5-STAR [TR]	0.001	
5-STAR [HR]	0.004	

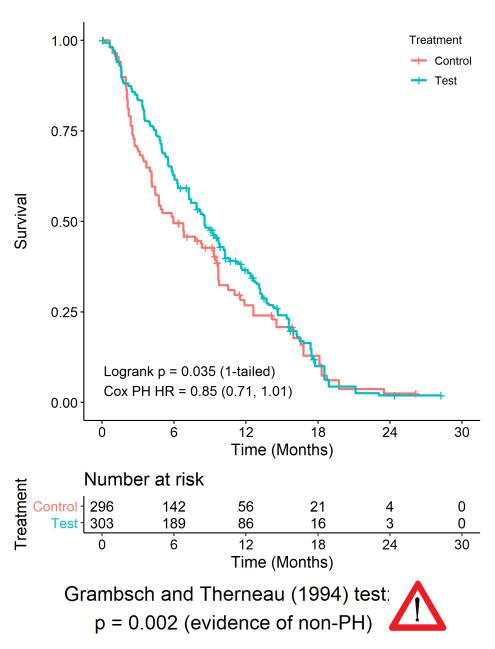
Primary

Supplemental

Detailed results for each identified risk stratum



Example #2 (oncology, N=599)



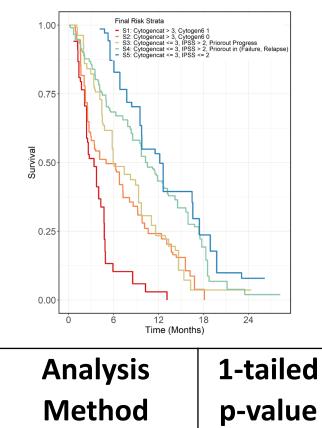
No pre-specified strata

Analysis	1-tailed					
Method	p-value					
Logrank	0.035					
MaxCombo	0.004					
RMST	0.014					

5-STAR

Step 1: 14 covariates in candidate set

Step 2: 7 covariates advance to step 3Step 3: 5 risk strata formed based on 4 covariates (below)



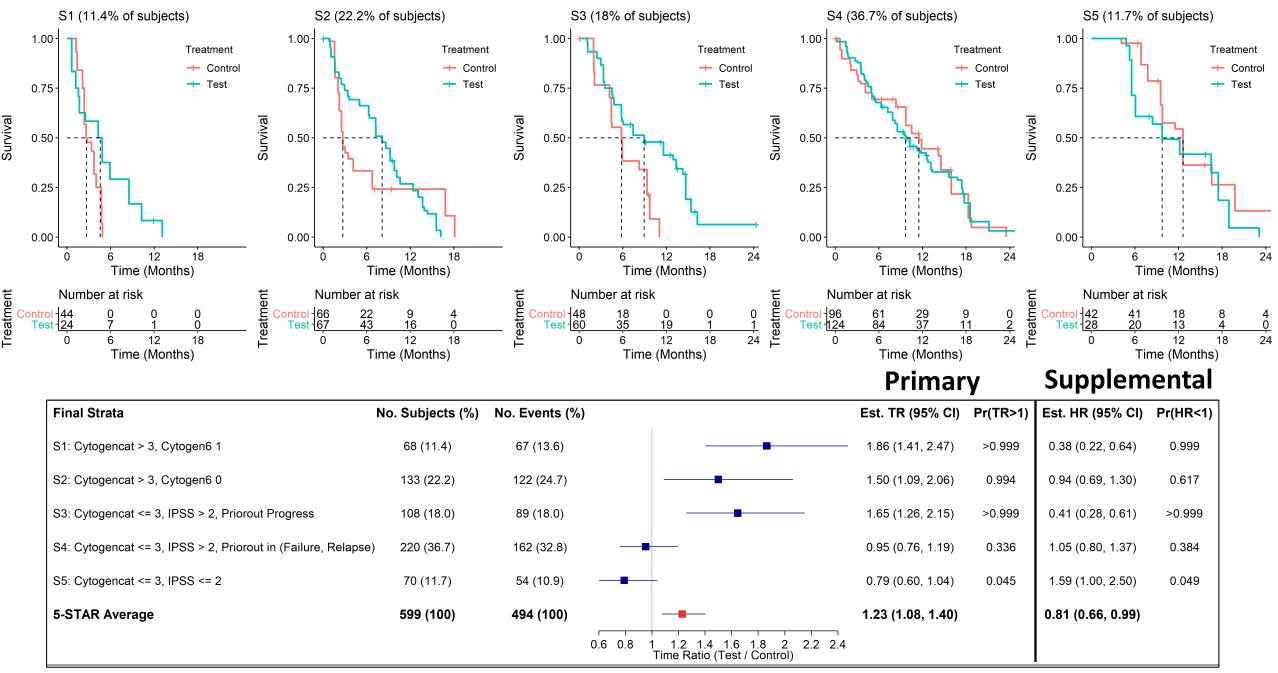
0.001

0.018

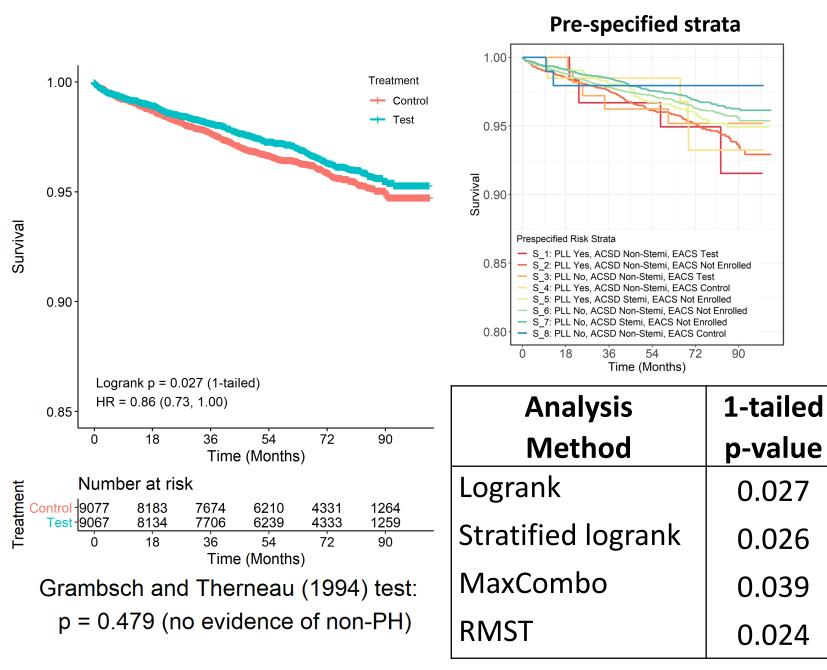
5-STAR [TR]

5-STAR [HR]

Example #2 (continued)



Example #3 (cardiovascular; N=18,144)

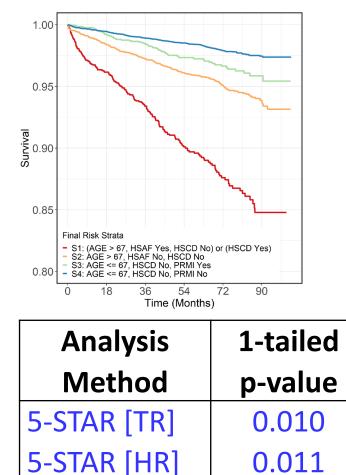


5-STAR

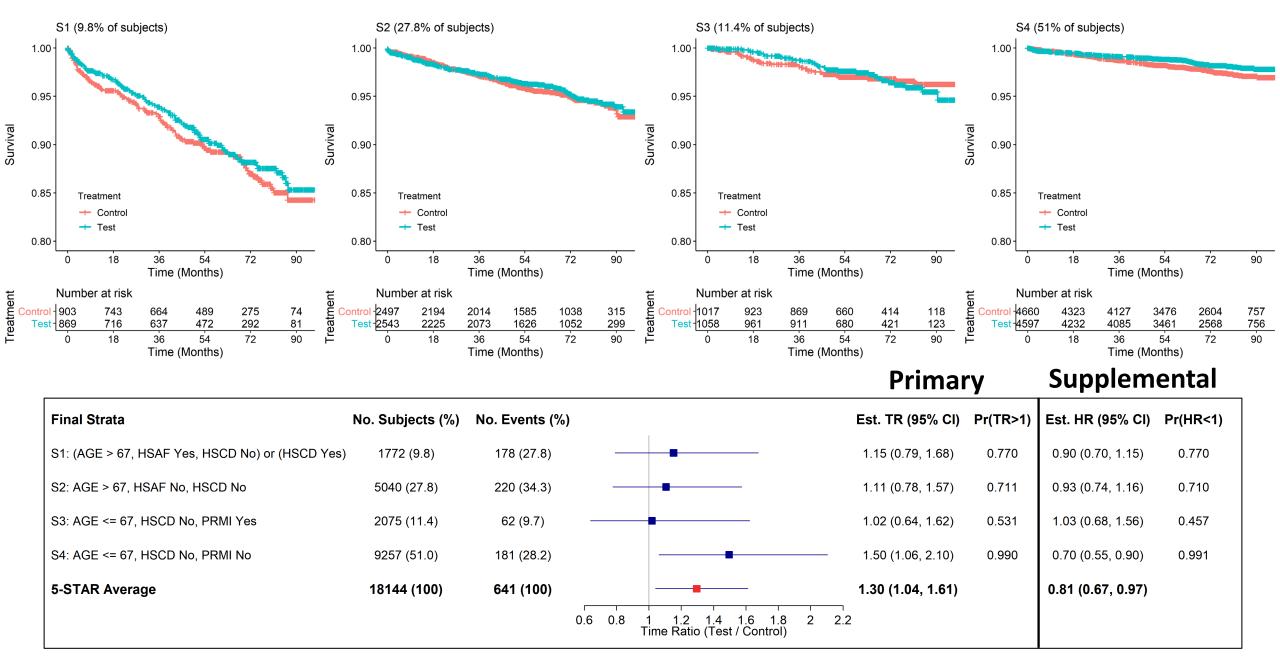
Step 1: 46 covariates in candidate set

Step 2: 21 covariates advance to step 3

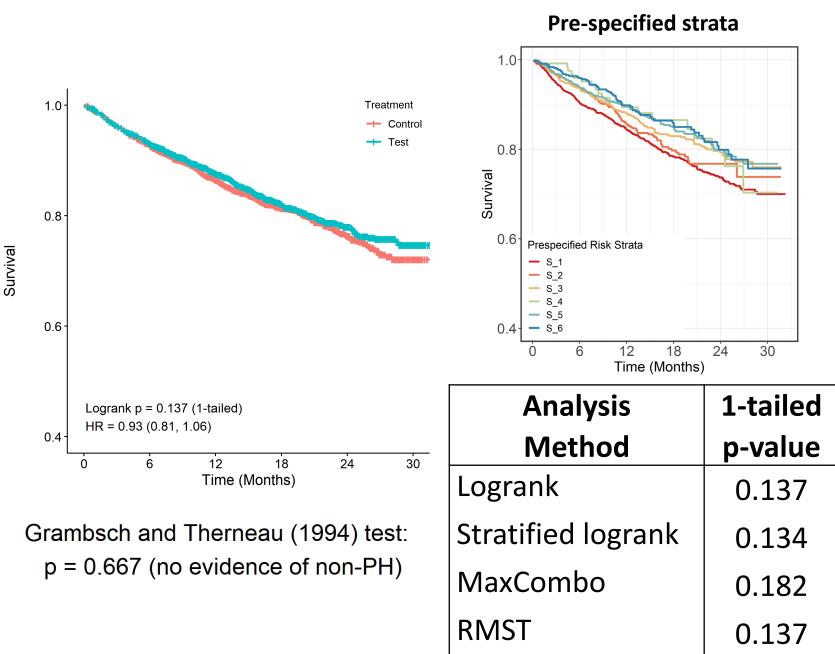
Step 3: 4 risk strata formed based on 4 covariates: age (≤/> 67 yrs), HSAF (yes/no), HSCD (yes/no), PRMI (yes/no)



Example #3 (continued)



Example #4 (real data)

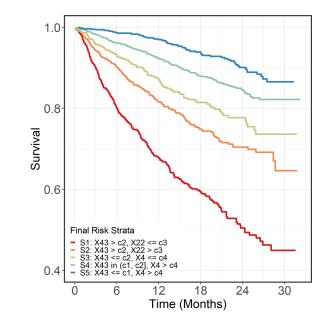


5-STAR

Step 1: 65 covariates in candidate set

Step 2: 27 covariates advance to step 3

Step 3: 5 risk strata formed based on 3 covariates: X43 (<=c1/c1-c2/>c2), X22 (<=c3/>c3), X4 (<=c4/>c4)



Analysis	1-tailed
Method	p-value
5-STAR [TR]	0.023
5-STAR [HR]	0.018

Simulation Study

	N=300/trt, target number of events = 330 Truth: 4 risk strata based on (X1, X2, X26>0.4)*				Simulation Scenarios								
					Null hr=1,tr=1		Alt 1 Equal HRs		Alt 2 Increasing HRs		Alt 3 Decreasing HRs		
	Risk Stratum	X1	X2	X26	Median surv. (trt B; control)	HR	TR	HR	TR	HR	TR	HR	TR
	C1 //	0	0	≤ 0.4	6.0 months	1	1	0.70	1.15	0.42	1.42	0.95	1.02
	S1 (highest risk)	0	1	≤ 0.4									1.02
	60	0	0	> 0.4	9.4 months	1	1	0.70	1.13	0.70	1.13	0.86	1.05
	S2	1	0	≤ 0.4	8.4 months								1.05
	62	0	1	> 0.4	10.8 months	1	1	0.70	1.11	0.86	1.04		
	S3	1	1	≤ 0.4								0.70	1.11
	6A (1)	1	0	> 0.4	13.2 months	1	1	0 -0	4.00	0.05	4.04		
	S4 (lowest risk)	1	1	> 0.4				0.70	1.09	0.95	1.01	0.42	1.24

 $\bar{\beta} = \sum_{i=1}^{S} f_i \beta_i = \log(0.7)$ in scenarios 1-3, true stratum-averaged HR = $\exp(\bar{\beta})$ = 0.7; HR=hazard ratio, TR=time ratio Prevalence: $f_i = 0.25$ for all strata; * among X1-X50 ($|corr| \le 0.45$); Weibull distributions in each trt by stratum cell

Simulation Results

20,000 simulated trials

		Power (%)						
Analysis Method	Type I Error (target α=2.5%)	Alt 1 Equal HRs	Alt 2 Inc. HRs	Alt 3 Dec. HRs				
Logrank	2.56	71	82	50				
Stratified logrank*	2.49	77	90	48				
MaxCombo	2.60	67	83	54				
RMST	2.51	71	84	48				
5-STAR [TR]	2.49	84	93	67				
5-STAR [HR]	2.52	84	90	73				

* analysis based on 2 (of 3) correct and 1 incorrect stratification factors TR = time ratio, HR = hazard ratio

Conclusions

- Our proposed **5-STAR** approach for survival analysis in RCTs:
 - Boosts power by separating patients into unbiased risk strata and combining stratum-level treatment comparisons for overall inference
 - Does not require a PH assumption within risk strata or overall
 - Delivers "transparency" in overall inference thru stratum-level results
 - Is a promising alternative to current survival analysis methods
 - Is easy to implement (R package) https://github.com/rmarceauwest/fiveSTAR

