

Building a Bayesian decision-theoretic framework to design biomarker-driven studies in early phase clinical development

Sep 29, 2017 Danni Yu Eli Lilly and Company

ASA webinar

Outline

- Motivation
- Introduction to Bayesian Decision Theory (BDT)
- Building the BDT framework
- Applying the BDT
- Summary

Biomarker work flow

 Traditional approach over unspecified population

 Biomarker-driven approach for precision medicine

Uncertainty and risk for clinical trial design

- ✓ How to select patients for precision medicine?
- ✓ How many patients should be selected for each subtype?
- ✓ How to select the subtype?
- ✓ How to adopt different criteria of clinical benefit in each subtype?
- ✓ How much information that we should have before running the trial?

- Why are some trials so successful with high objective response rate (ORR) while the others are not?
- Are there any pitfalls before and while running the trials?
- Which biomarkers do truly help identify patients while the others might be just ambiguous?

We need a method & tool to filter out unnecessary failures as early as possible.

Bayes decision theory helps the process.

➤ "The relationships (both conceptual and mathematical) between Bayesian analysis and statistical decision theory are so strong that it is somewhat unnatural to learn one without the other.", *J. Berger 1985.*

Clinical trial design as a decision problem. Müller et al. 2017

Outline

- Motivation
- Introduction to Bayesian Decision Theory (BDT)
- Building the BDT framework
- Applying the BDT
- Summary

Basics of decision theory

- It includes three principle phases of problem-solving (*H. Simon 1960*):
 - Intelligence for decision recognition and diagnosis
 - Design for possible actions
 - Choice on courses of action as a goal-directed behavior
- There are two branches of decision theory (*Pratt et.al. 1995, S. O. Hansson 2005,*):
 - A normative decision theory
 - How decision should be made in order to be rational.
 - A descriptive decision theory
 - How decision is actually made.

The two branches of decision theory

Prospective approach: selecting the best arms/cohorts for a trial that optimize the utility or minimize the loss.

Normative decision theory

Retrospective approach: inferring the decision rules according to the data of decision outcomes.

Descriptive decision theory

The four basic elements in a decision tree

A decision tree includes four basic elements.

- Acts: actions being considered by the decision makers
- Events: occurrences taking place outside the control of the decision makers
- Outcomes: results of the occurrence of actions and events
- Payoffs: values of the occurrences considered by the decision makers

- ✓ Acts: taking the raincoat or not
- ✓ Events: rain or no rain
- ✓ Outcome: being dry or wet
- ✓ Payoffs: having a raincoat burden or not

Outline

- Motivation
- Introduction to Bayesian Decision Theory (BDT)
- Building the BDT framework
- Applying the BDT
- Summary

Motivation

- To facilitate decision makers prioritizing the candidate plans of biomarker-driven studies
- To construct the critical variables in a Bayesian theoretic framework
- To implement the methods and do the analysis in an interactive R/shiny app.

Critical variables in the trials with biomarkers

- Tumor incidence or disease prevalence in biomarker or pharmacogenomics (PGx) subtypes, such as
 - 80-85% Chromosomal Instability (CIN), 15-20% Microsatellite Instability (MSI), 20% CpG island methylation (CIMP) in CRC.

- Relative sample proportion or size in different cohorts.
- Dropout rate: whether stop the treatment for a patient due to toxicity.
- Surrogate: biological response based on pharmacogenomics biomarkers.
- Endpoint: clinical benefit such as ORR, PFS, OS, DFS, TTP, QOL, etc...

The prior knowledge in the BDT-framework

Marginal probabilities

- Occurrences of acts
- The chance for a patient to be sampled into the plan

Tumor incidence: P({T,B})
Relative proportion: P(dose)

The conditional variables in BDT-framework

Outcomes in the BDT-framework

Joint probabilities

❖ Outcome P(CB=1, BR, stop=0, dose, {T,B}) P(CB=0, BR, stop=0, dose, {T,B})

Set the payoff values as

- ❖ U=100 if the outcome is {CB=1, BR, stop=0, dose, {T,B}}
- ❖ U= -100 if the outcome is {CB=0, BR, stop=0, dose, {T,B}}

The expected utility of a cohort or arm

- A criterion or reference used to compare plans
- A score summarizing the profit of a plan over all the possible outcomes weighted by their joint probabilities with events and acts

$$E\{U_{d,\{T,B\}}\} = \sum_{i=0}^{1} \sum_{j=0}^{1} C_j P(CB = j | BR = i) P(BR = i | stop = 0, d, \{T,B\}) P(stop = 0 | d) * P(d) P(\{T,B\})$$

$$where C_j \text{ is the payoff value when } CB = j, d \text{ is a selected dose level.}$$

- The default values of positive and negative payoff are 100 and -100. They can be changed according to decision makers' definition.
- After defining the payoff values, the plan with higher U(dose, {T,B}) is expected to be better.

The expected utilities are the scores providing comparable quantification of candidate arms/cohorts in a plan to help decision makers optimize the outcome of the plan.

Outline

- Motivation
- Introduction to Bayesian Decision Theory (BDT)
- Building the BDT framework
- Applying the BDT
- Summary

The trial evaluation tool in BEACH

Biometrics
Exploratory
Analysis
Creation
House

BEACH is a R/shiny app that provides a automation platform for interactive analyses.

The tool is for trial plan evaluation.

- The tool will be evaluated with the following illustrated information.
 - 1. Changing relative sample proportion over the cohort or arm with different dosage
 - 2. Varying the chance of continuing the treatment without severe toxicity
 - 3. Varying the probability of biological response while it is not correlated with the endpoints
 - 4. Varying the probability of biological response while it is highly correlated with the endpoints
 - 5. Increasing the chance of the biological response while the tumor subtypes have low incidence
- Extension and generalization.
 - It will add the loss values of go/no-go decision rules for Critical Success Factor (CSF) analysis.
 - It will allow decision makers change the critical variables other than dose and surrogate variables.

E1: larger population size, better utility

- Changing the relative proportions between subgroups of dose
 - Changing the proportion of the subgroup with higher promising dose: P(dose2) as 0.1, 0.5, or 0.9
 - P({T1,B1})=0.05, P({T1,B2})=0.1, P({T2,B1})=0.3, P({T2,B2})=0.6
 - P(stop=0|dose1)=0.9, P(stop=0|dose2)=0.1
 - P(BR=1|stop=0, dose1, {T,B})=0.1, P(BR=1|stop=0, dose2, {T,B})=0.75
 - P(CB=1|BR=1)=0.8, P(CB=1|BR=0)=0.1

The expected utility of U(dose2, {T2,B2}) for the higher promising dose increases when the proportion increases.

Note: the toxicity biomarker should be used to identify patients who can tolerate the higher dose when P(stop=0|dose2) is quite low.

E2: less dropouts, better utility

- Varying the possibility of keeping evaluable patients
 - Varying P(stop=0|dose2) as 0.1, 0.5, or 0.9
 - P(stop=0|dose1) as 0.9
 - P({T1,B1})=0.05, P({T1,B2})=0.1, P({T2,B1})=0.3, P({T2,B2})=0.6
 - P(dose2)=0.5, P(dose1)=0.5
 - P(BR=1|stop=0, dose1, {T,B})=0.1, P(BR=1|stop=0, dose2, {T,B})=0.75
 - P(CB=1|BR=1)=0.8, P(CB=1|BR=0)=0.1

The expected utility of U(dose2, {T2,B2}) increases substantially when the chance of stopping the treatment decreases.

Note: the toxicity biomarker should be used to identify patients who can tolerate the higher dose when P(stop=0|dose2) is quite low.

E3: irrelevant surrogate, worse utility

- Varying the chance of biological response (surrogate variables) non-correlated with clinical benefit.
 - Varying P(BR=1|stop=0, dose2, {T,B}) as 0.1, 0.5, 0.9
 - P(BR=1|stop=0, dose1, {T,B})=0.1
 - P(stop=0|dose2)=0.5 P(stop=0|dose1)=0.5
 - P({T1,B1})=0.05, P({T1,B2})=0.1, P({T2,B1})=0.3, P({T2,B2})=0.6
 - P(dose2)=0.5, P(dose1)=0.5
 - P(CB=1|BR=1)=0.5, P(CB=1|BR=0)=0.5

The expected utility of U(dose2, {T2,B2}) is always 0 when the clinical benefit and biological response are independent and P(CB=1)=0.5

E4: correlated surrogate, better utility

- Varying the chance of having biological response (surrogate) while the dependence of CB over BR is high
 - Varying P(BR=1|stop=0, dose2, {T,B}) as 0.1, 0.5, 0.9
 - P(BR=1|stop=0, dose1, {T,B})=0.1
 - P(stop=0|dose2)=0.5 P(stop=0|dose1)=0.5
 - P({T1,B1})=0.05, P({T1,B2})=0.1, P({T2,B1})=0.3, P({T2,B2})=0.6
 - ightharpoonup P(dose2)=0.5, P(dose1)=0.5
 - > P(CB=1|BR=1)=0.8, P(CB=1|BR=0)=0.5

The expected utility of U(dose2, {T2,B2}) is substantially increased with higher biological response rate when P(CB=1|BR=1) is high.

E5: low incidence needs high ORR

- When the biological response is much higher in biomarker tumor subtypes with low incidence
 - P(BR=1|stop=0, dose2, {T1,B1})=0.9 P(BR=1|stop=0, dose2, {T1,B2})=0.7 P(BR=1|stop=0, dose2, {T2,B1})=0.1 P(BR=1|stop=0, dose2, {T2,B2})=0.05
 - P(BR=1|stop=0, dose1, {T1,B1})=0.7 P(BR=1|stop=0, dose1, {T1,B2})=0.5 P(BR=1|stop=0, dose1, {T2,B1})=0.3 P(BR=1|stop=0, dose1, {T2,B2})=0.1
 - ightharpoonup P(stop=0|dose1)=0.5, P(stop=0|dose1)=0.5
 - $P(\{T1,B1\})=0.05, P(\{T1,B2\})=0.1$ $P(\{T2,B1\})=0.3, P(\{T2,B2\})=0.6$
 - P(dose2)=0.5, P(dose1)=0.5
 - Arr P(CB=1|BR=1)=0.8, P(CB=1|BR=0)=0.5

When biological response and P(CB=1|BR=1) have relatively high values in the biomarker subtypes with relatively low incidence, the expected utility for the subtypes may also be relatively high.

Extension and generalization

Given the tumor type or indication T_i , the biomarker B_j , and the number of responders θ_{ij} , it is defined that

$$\theta_{ij} = \sum_{k=1}^{n_{ij}} X_{ijk} \sim Binomial(\pi, n_{ij}), \text{ where}$$

The prior $\pi \sim Beta(1 + \alpha_{ij}, 2 - \alpha_{ij})$

where α_{ij} can be assumed either the disease prevalence or a flat prior so that π ~Uniform(0,1).

The posterior
$$\pi_{ij}^* = p | \overrightarrow{X_{ij}} \sim Beta(1 + \alpha_{ij} + \sum_{k=1}^{n_{ij}} x_{ijk}) + 2 - \alpha_{ij} + n_{ij} - \sum_{k=1}^{n_{ij}} x_{ijk})$$

The posterior $\theta_{ij}|\overrightarrow{X_{ij}}\sim \text{Binomial}(\pi_{ij}^*, n_{ij})$

The loss function given the decision rule δ_{ij} is defined as (*J. O. Berger 1985*):

$$L(\theta_{ij}, A_0) = \begin{cases} \theta_{ij} - \delta_{ij}, & if \theta_{ij} > \delta_{ij} \\ 0, & if \theta_{ij} \leq \delta_{ij} \end{cases} \text{ and } L(\theta_{ij}, A_1) = \begin{cases} 0, & if \theta_{ij} > \delta_{ij} \\ \delta_{ij} - \theta_{ij}, & if \theta_{ij} \leq \delta_{ij} \end{cases}$$

The expect loss is

$$E[L(\theta_{ij}, A_0)] = \sum_{\delta_{ij}+1}^{n_{ij}} (\theta_{ij} - \delta_{ij}) P(\theta_{ij} | \overrightarrow{X_{ij}}) \quad and \quad E[L(\theta_{ij}, A_1)] = \sum_{0}^{\delta_{ij}} (\delta_{ij} - \theta_{ij}) P(\theta_{ij} | \overrightarrow{X_{ij}})$$

For the continues response variables

 Assuming the continues response variable (i.e. time-to-event) follows a lognormal distribution

$$X \sim Lognormal(\mu_0, \sigma_0^2)$$

 Considering the conjugate prior as a Normal distribution with known variance. The posterior distribution is

$$\mu|X \sim Lognormal(\frac{\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{k=1}^{n} \ln(x_k)}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}, \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2})$$

Adding the benchmark reference

- While X is a discrete variable following a Binomial distribution,
 - the distribution ω of the difference such as in the response rate $\pi_{trt} \pi_{ref}$ is estimated by sampling π_{trt} from the Beta posterior distributions,

$$\pi_{ij}^* = p | \overrightarrow{X_{ij}} \sim Beta(1 + \alpha_{ij} + \sum_{k=1}^{n_{ij}} x_{ijk}, 2 - \alpha_{ij} + n_{ij} - \sum_{k=1}^{n_{ij}} x_{ijk}).$$

- $P(\pi_{trt} \pi_{ref} \ge \gamma | ...)$ is then obtained from ω and it replaces $P(\pi_{trt} | ...)$ in the utility functions.
- While X is a continues variable following a Lognormal distribution,
 - the distribution ω of the difference such as in the time-to-event $\mu_{trt} \mu_{ref}$ is estimated by sampling μ_{trt} from its own Lognormal posterior distributions,

$$\mu|X \sim Lognormal\left(\frac{\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{k=1}^n \ln(x_k)}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}, \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right).$$

- $P(\mu_{trt} - \mu_{ref} \ge \tau | ...)$ is then obtained from ω and it replaces $P(\mu_{trt} | ...)$ in the utility functions.

The analysis tool for the BDT-framework

Live Demo (~ 30 min)

- https://github.com/DanniYuGithub/BEACH
- library(shiny); runGitHub("BEACH", "DanniYuGithub");

■ README.md

Biometric Exploratory Analysis Creation House (BEACH) is a shiny app that provides automation platform for users.

Before running BEACH, please make sure your computer is connected to internet and the following packages are installed.

dep.packages <- c("shiny", "DT", "haven", "xtable", "rtf", "plyr", "sas7bdat", "WriteXLS", "SASxport", "rJava"); na.packages <- dep.packages[!dep.packages %in% installed.packages()] if (length(na.packages)>0) install.packages(na.packages);

if(!"sas7bdat.parso" %in% installed.packages()) devtools::install_github('BioStatMatt/sas7bdat.parso', force=TRUE)

Please set up your default internet browser as google chrome Then, in your R console, please run the following code to run BEACH locally.

library(shiny); runGitHub("BEACH", "DanniYuGithub");

To install the package from R cran, please check the link https://cran.r-project.org/web/packages/BEACH/index.html library(shiny); library(DT); library(BEACH); runBEACH()

Outline

- Motivation
- Introduction to Bayesian Decision Theory (BDT)
- Building the BDT framework
- Applying the BDT
- Summary

Summary

- The Bayesian Decision Theoretic (BDT) framework is proposed as a guidance and methodology for decision makers to prioritize clinical trial plans.
- A R/shiny app tool structured in BEACH automation platform is provided for implementing the proposed analyses.
 - The tool implements the proposed method under the BDT framework.
 - It is extended to critical success factor analysis with expected loss.
 - It is generalized as enabling user-defined variables under the framework.

Acknowledgement

- Sponsors
 - Pandu Kulkarni and Yanping Wang
- Other thought leaders sharing insightful ideas and discussions
 - Michael Man about biomarker-driven studies and Critical Success Factor (CSF) analysis
 - Karen Price and Michael David Sonksen about Bayes' theorem
 - Christopher Kaiser about designing early phase clinical trials

Selected Reference

- 1. Simon, Herbert A. "The new science of management decision." (1960).
- 2. Berger, James O. Statistical decision theory and Bayesian analysis. Springer Science & Business Media, 1985.
- 3. JW Pratt, John Winsor, Howard Raiffa, and Robert Schlaifer. Introduction to statistical decision theory. MIT press, 1995.
- 4. Hansson, Sven Ove. "Decision theory: A brief introduction." (2005).
- 5. Khan, Anis A., Itay Perlstein, and Rajesh Krishna. "The use of clinical utility assessments in early clinical development." *The AAPS journal* 11.1 (2009): 33-38.
- 6. Food and Drug Administration. "Considerations for the design of early-phase clinical trials of cellular and gene therapy products." (2013).
- 7. Day, Roger S. "Planning clinically relevant biomarker validation studies using the "number needed to treat" concept." Journal of translational medicine 14.1 (2016): 117.
- 8. Morita, Satoshi, and Peter Müller. "Bayesian population finding with biomarkers in a randomized clinical trial." Biometrics (2017).
- 9. Wilhelm-Benartzi, Charlotte S., et al. "Challenges and methodology in the incorporation of biomarkers in cancer clinical trials." Critical reviews in oncology/hematology 110 (2017): 49-61.
- 10. Peterson, Martin. An introduction to decision theory. Cambridge University Press, 2017.
- 11. Müller, Peter, Yanxun Xu, and Peter F. Thall. "Clinical trial design as a decision problem." Applied Stochastic Models in Business and Industry(2017).