
INTRODUCTION TO STATISTICAL
APPROACHES TO COMPARATIVE

EFFECTIVENESS RESEARCH

Sharon-Lise Normand

Harvard Medical School & School of Public Health

September 14, 2017

sharon@hcp.med.harvard.edu (HMS) ASA BioPharm Webinar September 14, 2017 1 / 74



WEBINAR DESCRIPTION

Comparative Effectiveness Research (CER) refers to a body of research that generates

and synthesizes evidence on the comparative benefits and harms of alternative

interventions to prevent, diagnose, treat, and monitor clinical conditions, or to improve

the delivery of health care. The evidence from CER is intended to support clinical and

policy decision making at both the individual and the population level. While the growth

of massive health care data sources has given rise to new opportunities for CER, several

statistical challenges have also emerged. This webinar provides an overview of the types

of research questions addressed by CER, reviews the main statistical methodology

currently utilized, and highlights areas where new methodology is required. Inferential

issues in the big data context are identified. Examples from cardiology will illustrate

methodological issues.
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Overview

GOALS

Understand what comparative effectiveness research (CER)
constitutes

Know key features

Identify statistical methodology utilized in contemporary examples of
CER

Highlight methodological challenges
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Overview

OUTLINE

12:00 - 12:30: Introduction
Three examples
What is CER and why important?
Main characteristics of CER

12:30 - 1:45: Methodology
Assumptions and causal parameters
Approaches

General settings
High dimensional settings

Example

1:45- 2:00: Closing Remarks
Research needs
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Overview
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Introduction Example 1

RADIAL VS FEMORAL PCI

Radial artery access permits easier
access and easier closure

Large number of patients undergoing
both procedures

Not particularly well studied and of
growing importance in the U.S.

Marked heterogeneity in predisposition
to bleeding

Significant treatment selection
(healthier patients undergo transradial
procedures)

Does radial artery access cause fewer

complications compared to femoral artery

access?
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Treatment = Radial Artery Access (vs Femoral)
Outcome = Bleeding/Vascular Complication

40,000 PCIs in MA adults

Source = Mass-DAC
Kunz, Rose, et al., 2017
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Introduction Example 2

DRUG ELUTING (DES)VERSUS BARE METAL
(BMS) CORONARY STENTS

DES (approved 2003) and BMS
(approved in 1990s) frequently
implanted to keep treated arteries
clear & supported

DES improves target-vessel
revascularization (TVR) more than
BMS

DES associated with late stent
thrombosis (death)

Have 9000 patients and 500
confounders

Do DES cause fewer revascularizations

compared to BMS?

MASSACHUSETTS, 2011
Stent Type

Characteristic BMS DES

Outcomes, %
1 Year Mortality 10.2 3.3
1 Year TVR 9.0 6.5

Confounders
Age, yrs 66.4 63.7
STEMI, % 35.7 18.2
Cardiomyopathy

or LVSD, % 11.1 8.4
Emergent, % 38.3 20.3
Shock, % 3.8 0.8

Source = Mass-DAC
Spertus and Normand, 2017 (under review)
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Introduction Example 3

SPECIFIC DRUG ELUTING CORONARY STENTS

Rapid proliferation of drug eluting
stents (DES)

U.S. has 2nd highest number of
overall stent insertions per capita

Multiple competing versions supported
by a few manufacturers

Differences include polymer coating,
specific drug, platform type, and
delivery system

Study 21,000+ adults, 10
model-specific DES, 3 manufacturers

Do particular model-specific DES cause fewer revascularizations compared to other
model-specific DES?
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Introduction Example 3

SPECIFIC DRUG ELUTING CORONARY STENTS

Rapid proliferation of drug eluting
stents (DES)

U.S. has 2nd highest number of
overall stent insertions per capita

Multiple competing versions supported
by a few manufacturers

Differences include polymer coating,
specific drug, platform type, and
delivery system

Study 21,000+ adults, 10
model-specific DES, 3 manufacturers

MASSACHUSETTS

% of DES manufacturer of all DES
implanted, by hospital, 2008-2012.

Rose and Normand, 2017 (under review)
Source: Mass-DAC

Do particular model-specific DES cause fewer revascularizations compared to other
model-specific DES?
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Introduction Definitions

WHAT IS CER?

PATIENT CENTERED OUTCOMES RESEARCH INSTITUTE
DEFINITION

Assesses benefits/harms of preventive, diagnostic, therapeutic,
palliative, or health delivery system interventions to inform
decision making using comparisons & outcomes that matter to people;

Includes an individuaĺs preferences, autonomy/needs, focusing on
outcomes that people notice & care about (survival, function,
symptoms, and health related quality of life);

Incorporates a variety of settings/diversity of participants to
address individual differences & barriers to implementation or
dissemination; and

Investigates optimizing outcomes while addressing burden to
individuals, resource availability, & other stakeholder perspectives.

sharon@hcp.med.harvard.edu (HMS) ASA BioPharm Webinar September 14, 2017 12 / 74



Introduction Definitions

TENETS OF CER

1 Directly informs a specific clinical decision from patient perspective
OR a health policy decision from population perspective.

2 Compares at least two alternatives (one could be usual care or best
practice).

3 Describes results at population and subgroup levels.

4 Measures benefits and harms important to patients.

5 Employs methods and data sources appropriate for the decision of
interest.

6 Conducted in settings that are similar to those in which intervention
will be used in practice.

sharon@hcp.med.harvard.edu (HMS) ASA BioPharm Webinar September 14, 2017 13 / 74



Introduction Definitions

TYPOLOGY OF CER STUDIES

Experimental
Randomized

Cluster
Adaptive
Pragmatic: some discussion in this webinar

Controlled

Observational

Prospective/retrospective: focus of this webinar
Microsimulation modeling

Research Synthesis

Cross-design, network, and meta-analysis
Decision analysis
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Introduction Definitions

OUTLINE

Introduction

Three examples
What is CER and why important?
Main characteristics of CER

Methodology
Assumptions and causal parameters
Approaches

General setting
High-dimensional setting

Examples

Closing Remarks

Research needs
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Methodology

DATA, PARAMETERS, NOTATION

T = 1 new and T = 0 standard treatment(binary)

Y observed outcome

Y1, Y0 potential outcomes under T = 1 and T = 0

X is a set of (baseline) covariates

Data: (Ti, Yi,Xi) , i = 1, · · · ,N

Mean marginal outcome under treatment:

µ1 = EX (E(Y | T = 1,X))

Mean marginal outcome under standard treatment:

µ0 = EX (E(Y | T = 0,X))

Interested in the marginal effect of T on Y

∆ = µ1 − µ0 (Difference) or ∆ =
µ1

µ0
(Ratio)
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Methodology

DATA, PARAMETERS, NOTATION
(T Treatment, Y Outcomes, X Covariates)

Average Treatment Effect (ATE)

E(Y1 − Y0) = EX (E(Y | T = 1,X) − E(Y | T = 0,X)) (1)

Expected outcome change if units randomly assigned to treatment of
comparison group

ATE may contain effect on subjects for whom the treatment was not
intended (food voucher programs)

Average effect of the Treatment on the Treated (ATT)

E(Y1 − Y0 | T = 1) = EX {E(Y | T = 1,X)

− E(Y | T = 0,X) | T = 1)} (2)

Expected outcome for a randomly selected unit from the treatment
group
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Methodology Assumptions

ASSUMPTIONS
(T Treatment, Y Outcomes, X Covariates)

Potential Outcomes assumed to exist

The potential outcomes assumption is fundamental

1 Stable Unit Treatment Value Assumption

2 Ignorability of Treatment Assignment

3 Positivity

4 Constant Treatment Effect

If (1) & (2) are violated, then causal parameters can be estimated
statistically but cannot be interpreted causally
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Methodology Assumptions

ASSUMPTIONS
(T Treatment, Y Outcomes, X Covariates)

Stable Unit Treatment Value Assumption no interference and no
variation in treatment.

1 Potential outcomes for a unit do not depend on the treatment
assignment of other units (no spillover effects)

Yi(T1, T2, · · · , TN) = Yi(Ti) = Yit (3)

Radial artery access: violated if as physician increases skill in radial
artery access, the less likely complications arise, and the more likely the
physician is to use radial access on subsequent subject.

2 Treatments are well-defined and the same for all units

Radial artery access: violated if physicians accessing radial artery use
different methods of applying pressure after removing catheter.
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Methodology Assumptions

ASSUMPTIONS
(T Treatment, Y Outcomes, X Covariates)

Ignorability of Treatment Assignment unconfoundedness of treatment
assignment

1 Within subpopulations defined by X, random treatment assignment

(Y1, Y0) ⊥ T | X (4)

P(T = 1 | Y1, Y0,X) = P(T = 1 | X) (5)

Untestable assumption (sensitivity analysis, multiple comparison
groups, control outcomes)

Radial artery access: violated if a covariate associated with
probability of undergoing radial artery access as well associated with a
complication is omitted
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Methodology Assumptions

SELECTION BIAS
(T Treatment, Y Outcomes, X Covariates)

Suppose U is a vector of unmeasured confounders and

Y1i = X′β1 +U′iα1 (6)

Y0i = X′β0 +U′iα0 (7)

Observed outcome is

Yi = TiY1i + (1 − Ti)Y0i (8)

Substituting (6) and (7) into (8) yields

Yi = X′β0 + Ti

(X′β1 −X′β0︸ ︷︷ ︸
X Observed

+(U′iα1 −U′iα0)︸ ︷︷ ︸
U Unobserved

+U′iα0
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Methodology Assumptions

SELECTION BIAS (T Treatment, Y Outcomes, X Observed Covariates,

U Unmeasured Covariates)

Yi = X′β0 + Ti

(X′β1 −X′β0︸ ︷︷ ︸
X Observed

+(U′iα1 −U′iα0)︸ ︷︷ ︸
U Unobserved

+U′iα0

(U,X) ⊥ T randomization

U ⊥ T | X ignorable treatment assignment

U 6⊥ T | X hidden bias

Different terminology:

No unmeasured confounders = no omitted variables = overt bias =
ignorable treatment assignment

hidden bias = residual confounding = omitted variables =
non-ignorable treatment assignment
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Methodology Assumptions

ASSUMPTIONS
(T Treatment, Y Outcomes, X Covariates)

Positivity

1 Requires units at every combination of observed covariates so that
probability bounded away from zero

1 > P(T = 1 | X) > 0 (9)

Structural violations when units associated with specific covariate
values cannot possibly get the treatment

Practical violations due to finite sample size**

Statistically testable

Radial artery access: examine covariate balance and covariate
overlap
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Methodology Assumptions

CAUSAL ASSUMPTIONS (T Treatment, Y Outcomes, X

Covariates)

Constant Treatment Effect

1 Observable treatment effect for any
two units having the same values of
X should be similar

E(Y1 − Y0 | T = 1,X) =

E(Y1 − Y0 | T = 0,X)

If not violated, the ATE may be
interpreted both marginally and
conditionally

Radial vs Femoral access:
between-subject differences in
bleeding complications vary due to
subject-specific idiosyncrasies

Radial Artery Access: women may
have a bigger benefit than men

 
Source:  American 
Journal of Cardiology, 
2007, 99(9):1216-1221 

Men 

Women Major Bleeding 
Complications 

Minor Bleeding 
Complications 

Men 

Women 

Women 
Men 

Men 

Heterogeneity is different from subgroup effects
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Methodology Approaches

APPROACHES
(T Treatment, Y Outcomes, X Covariates)

Joint Distribution

P(Y, T ,X) = P(Y | T ,X)× P(T | X)× P(X)

= QY × ΠT ×QX (10)

1 Treatment effect depends only on QY and QX

EX (E(Y | T = 1,X)) − EX (E(Y | T = 0,X)) (11)

2 ΠT is the propensity score (nuisance)

ΠT = P(T = 1 | X)

X could be very high-dimensional
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Methodology Approaches

APPROACHES: 3 TYPES (considered today) (T Treatment, Y

Outcomes, ΠT = P(T | X))

1 Model only the treatment assignment mechanism via regression

2 Model only the outcome via regression

3 Model both the treatment assignment mechanism and outcome

WLOG: Causal Parameter: ∆ = E(Y1 − Y0) (ATE)
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Methodology Approaches

TREATMENT ASSIGNMENT ONLY (T Treatment, Y

Outcomes, ΠT = P(T | X))

Weight by the Inverse Probability of Treatment (IPTW)

Horvitz-Thompson (1952):

∆̂IPTW-HT =
1

N

N∑
i=1

TiYi
ΠTi

−
1

N

N∑
i=1

(1 − Ti)Yi
1 − ΠTi

Rosenbaum and others (Rosenbaum, Rubin; 1984):

∆̂IPTW-R =

(
N∑
i=1

Ti
ΠTi

)−1 N∑
i=1

TiYi
ΠTi

−

(
N∑
i=1

1 − Ti
1 − ΠTi

)−1 N∑
i=1

(1 − Ti)Yi
1 − ΠTi
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Methodology Approaches

OUTCOME MODEL ONLY (T Treatment, Y Outcomes,

ΠT = P(T | X))

Regression modeling

Multiple regression modeling (standard statistical text books)

Parametric g-computation (Snowden, Rose, Mortimer; 2011)

∆̂G-comp =
1

N

N∑
i=1

{
Ê(Y | Ti = 1,Xi)

− Ê(Y | Ti = 0,Xi)
}

Ê(Y | Ti = t,Xi) is the regression of Y on X in treatment group t
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Methodology Approaches

TREATMENT AND OUTCOME MODELS (T

Treatment, Y Outcomes, ΠT = P(T | X))

Weight by the IPTW and estimate a regression

Augmented IPTW (Robins, Rotnitzky, Zhao; 1994): ∆̂A-IPTW

1

N

N∑
i=1

{I(Ti = 1) − I(Ti = 0)}

ΠTi
(Yi − Ê(Y | Ti,Xi))

+
1

N

N∑
i=1

(
Ê(Y | Ti = 1,Xi) − Ê(Y | Ti = 0,Xi)

)
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Methodology Approaches

TREATMENT AND OUTCOME MODELS
(T Treatment, Y Outcomes, ΠT = P(T | X))

Targeted Maximum Likelihood (van der Laan, Rose; 2011), ∆̂TMLE:

1

N

N∑
i=1

(E∗(Y | T = 1,Xi) − E
∗(Y | T = 0,Xi))

E∗(Y | T = t,X) = E0(Y | T = t,X) + εtH
∗(T ,X)

H∗(T ,X) =
T

ΠT
−

1 − T

1 − ΠT

E∗: targeted estimate of regression of Y on (T ,X) obtained by
moving the initial estimate E0 by fluctuations defined by εtH

∗(T ,X)

Key idea: no need to maximize entire likelihood (Y, T ,X) because
causal parameter only depends on QY and QX
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Methodology Approaches

SUMMARY

Approach
(R function) Strengths Weaknesses
IPTW Simple Large variance estimates
(matching) Weight trimming bias

Regression Parametric Extrapolation
(glm) Simple if violate positivity

Functional form

G-Comp Parametric Extrapolation
Simple if violate positivity

Functional form

A-IPTW Double robust Finite sample inefficient
(twang) Asymptotic efficiency

TMLE Double robust
(tmle) Asymptotic efficiency

Finite sample efficiency
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Methodology High-dimensional settings

WHAT ARE BIG DATA?

Experimental units (units of primary interest): patients, physicians,
hospitals, mental health centers, health plans

(Number of experimental units)/(number of unknown parameters)
= n/k

≈measure of how much information is available to estimate each
unknown parameter
Estimating the association of age on patient satisfaction (y) following
surgery for a cohort of 100 surgical patients

y = β0 + β1 × age + error (12)

100/2 = 50 → ≈50 independent pieces of of information to estimate
each unknown parameter

Big data: k > n or sparsity
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Methodology High-dimensional settings

MAIN PROBLEM

Theory based on what
happens when n gets
large while k is fixed

Sparsity - not enough
data to estimate all
parameters of interest

Suppose k = 15
binary-valued
comorbidities (e.g.,
schizophrenia, substance
use disorder, etc.)

Number of unique
comorbidity patterns
> 32,000
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Methodology High-dimensional settings

OTHER CHALLENGES

Overfitting - a model is so specific, it reproduces idiosyncrasies of
the particular data from which the model parameters were estimated

Will perform poorly in new data sets

Parametric assumptions - with many covariates, unlikely to get the
functional form correct

Only linear terms, splines, interactions, etc.?

Uncertainty about subpopulations experiencing heterogeneous effects
(many potential subpopulations)

Selective inference - we only see results based on some selected
feature (e.g., statistically significant) of the data

What inferential approaches are available?
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Methodology High-dimensional settings

DIMENSION REDUCTION TECHNIQUES

1 Limit number of confounders based on perceived clinical relevance &
estimate a single model

Most frequently utilized
Implicitly a causal inference tool

2 Sparseness: assume a small number of variables represent the
underlying data structure

LASSO (least absolute shrinkage and selection operator); find β̂

minimizes
∑
i(Yi −X′iβ)

2 + λ
∑k
j=1 |βj|

λ = penalty for too many variables (large λ penalizes more complex
models) selected by minimizing squared leave-one-out errors
Sparse additive models (SpAM): minimize∑
i(Yi −

∑k
j=1 fj(Xij))

2 + λ
∑k
j=1

√
f2
j (Xij) +

∑k
j=1 µjfj
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Methodology High-dimensional settings

DIMENSION REDUCTION TECHNIQUES

3 Denseness: shrink estimates to a common mean & permit a small
number of variables to have distinct coefficients

Kernel Regularized least squares (Gelman et al, 2008)
Key idea: information is encoded in the similarity between
observations (small distances) such that more similar observations
should have more similar outcomes

Gaussian Kernel k(xi, xj) = exp−
||xi − xj||

2

σ2

4 Denseness and sparseness: shrink estimates to a common mean
and to zero so two penalty terms; Elastic Net (Zou and Hastie,
JRSSB 2005)

5 Ensemble Techniques: combine a large number of models to obtain
a stronger model (usually for prediction)

Bagging: averages the models in the ensemble (random forests)
Boosting: iteratively learns from weaker models (generalized boosting)
Stacking/SuperLearner: ensemble strong, diverse models
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Methodology High-dimensional settings

DIMENSION REDUCTION FOR COMPARATIVE
EFFECTIVENESS

High-dimensional propensity score (Schneeweiss et al., 2009)

Binary treatment, binary outcome, binary confounders
Rank confounders for inclusion
No accounting for uncertainty in variable selection

Target maximum likelihood (TMLE package in R)

No need to maximize entire likelihood (van der Laan, Rose, 2011)
Semi-parametric

2-Step Approach:
Estimate propensity score model then a parametric outcome model
(Kaplan and Chen, 2012))
Saarela et al., 2015: marginal model specification coupled with inverse
probability of treatment weighting 2-step procedure
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Methodology High-dimensional settings

DIMENSION REDUCTION FOR COMPARATIVE
EFFECTIVENESS

Bayesian model average + adjustment for confounding

Binary treatment & outcomes (Zigler and Dominici, 2014)
Parametric assumptions for outcome equation
Could use Bayesian regularization instead: Discrete mixtures or
shrinkage priors

Model propensity score as a latent variable jointly with outcome
model (McCandless et al. 2009)
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Methodology High-dimensional settings

MODEL AVERAGING & ADJUSTMENT
(T Treatment, Y Outcomes, X Covariates)

Joint estimation of propensity score models and outcome models

Assumed strongly ignorable treatment assignment

g(Ti) = γ0 +

p∑
j=1

(
αXj
)
γjXij

Yi = βα
Y

0 + βα
Y

T Ti +

p∑
j=1

(
αYj
)
βα

Y

j Xij + ε
Y
i

αYj and αXj = ”inclusion” probabilities

Confounders: large values of both αYj & αXj
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Methodology High-dimensional settings

BAYESIAN COMPUTATIONAL APPROACH

WANT: ∆ = E(Y1) - E(Y0)
Common two-step approach

1 Step 1: estimate propensity score model via regularization; single
estimated score for each individual, π̂(DES = 1 | confounders)

2 Step 2: use estimated score to compute ∆̂ via matching, weighting, or
stratification

New two-step approach

1 Step 1: same as above except get distribution of score for each
individual

2 Step 2: for each draw for each individual of the propensity score,

calculate the weighted risk difference ∆̂
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Methodology High-dimensional settings

REGULARIZATION VIA SHRINKAGE
(T Binary Treatment, Y Binary Outcome, X Confounders, k Large)

Ti ∼ Bern(π(Xi))

π(Xi) = logit−1

(
β0 +

k∑
j=1

βjXij

)

Priors for βj:

Typically centered at 0

Normal, double-exponential, Student-t

Horseshoe prior (Carvahlo et al., 2010)

βj ∼ N(0, λ2
jτ

2)

λj, τ ∼ Cauchy+(0, 1)

Mimics Bayesian Model Averaging
(with heavy-tailed discrete mixtures)

τ = global scale parameter

λj local scale parameter

Source:  Carvalho CM, Polson NG, Scott JG. Handling Sparsity via the Horseshoe.  
Proceedings of the 12th International Conference on Artificial Intelligence and 
Statistics, 2009.
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Methodology High-dimensional settings

MODELS (T Binary Treatment, Y Binary Outcome, X Confounders)

Step 1: Treatment Model

Ti ∼ Bern(π(Xi))

π(Xi) = logit−1

(
β0 +

k∑
j=1

βjXij

)

π(Xi) = propensity score

Priors required for βj

Regularize via distribution: shrinkage
priors (continuous priors centered on
0)

Step 2: Outcome Model

YT | nT ,pT ,π(X) ∼ Binomial(nT ,pT )

pT | αT0,αT1 ∼ Beta(αT0,αT1)

nT = number of subjects receiving
treatment T
pT = probability of outcome under
treatment T
Independent samples in treatment groups

A-posteriori

pT | Y,π(X) ∼ Beta(aT ,bT )
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Methodology High-dimensional settings

MODEL (T Binary Treatment, Y Binary Outcome, X Confounders, k Large)

Posterior Distribution: pT | Y,π(X) ∼ Beta (aT ,bT )
T = 1 (treated)

a1 = α11 + γ1

(
n∑
i=1

TiYi
π̂i

)
︸ ︷︷ ︸

weight

b1 = α10 + γ1

(
n∑
i=1

Ti(1 − Yi)

π̂i

)
︸ ︷︷ ︸

weight

γ∗ are renormalization terms
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Methodology High-dimensional settings

MODEL (T Binary Treatment, Y Binary Outcome, X Confounders, k Large)

Posterior Distribution: pT | Y,π(X) ∼ Beta (aT ,bT )

a1 = α11 + γ1

(
n∑
i=1

TiYi

π̂i

)
︸ ︷︷ ︸

weight

b1 = α10 + γ1

(
n∑
i=1

Ti(1 − Yi)

π̂i

)
︸ ︷︷ ︸

weight

a0 = α00 + γ0

(
n∑
i=1

(1 − Ti)Yi
1 − π̂i

)
︸ ︷︷ ︸

weight

b0 = α01 + γ0

(
n∑
i=1

(1 − Ti)(1 − Yi)

1 − π̂i

)
︸ ︷︷ ︸

weight

γ∗ are renormalization terms
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Methodology High-dimensional settings

COMMENTS

Uses Bayesian computational procedures but is not Bayesian

Incorporates uncertainty from
propensity score estimation

Maintains separation between
treatment and outcome

Outcome model does not assume a
parametric function of treatment

Simple diagnostic tools to assess
balancing properties

Key Principles

Reflect all uncertainty in estimates

Adopt a design-based approach

Avoid strong parametric specifications-
likely in settings with many
confounders to get model very wrong

Adhere to causal inference
assumptions
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Methodology High-dimensional settings

DOES UNCERTAINTY IN STEP 1 MATTER?

500 simulations, n = 1000, k= 100 (18 βj 6= 0), P(Yi = 1) ≈ 0.10

95% CI Coverage

∆̂ Bias Width 95% CI

Integrated Propensity Score
Student-t3(0, 2.5) -.011 .220 95.2%
Horseshoe Priors .016 .110 93.0%
Bayesian Additive Regression Trees .011 .123 96.8%

Mean Propensity Score
Student-t3(0, 2.5) -.001 .095 79.2%
Horseshoe Priors .018 .092 86.0%
BART .015 .093 87.2%
Other Methods
Naive Estimate .030 .092 73.0%
IPW -.001 .151 92.8%
TMLE .006 .075 81.4%

Bottom Line: useful to integrate over the propensity score distribution for
large k
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Methodology Examples

TWO EXAMPLES

1 General setting: radial or femoral artery access for PCI

2 High-dimensional setting: drug eluting versus bare metal coronary
stents
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Methodology Artery Access for PCI

RADIAL VS FEMORAL PCI

Radial artery access permits
easier access and easier
closure

Large number of patients
undergoing both procedures

Not particularly well studied
and of growing importance in
the U.S.

Marked heterogeneity in
predisposition to bleeding

Significant treatment
selection (healthier patients
undergo transradial
procedures)

Does radial artery access cause fewer complications compared to
femoral artery access?
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Methodology Artery Access for PCI

RADIAL VS FEMORAL ARTERY ACCESS

Registry with data on 40,126 patients PCI patient, 12.9% undergo
PCI via radial artery (versus femoral artery)

Outcome: in-hospital bleeding or vascular complications

Unadjusted Difference (Radial - Femoral): −2.30-2.04%−1.80
 
 

 
 
 
 
 
 
 
 
 
 

 All Subjects 
Intervention 

Radial Femoral 
No. of Procedures 5192 35022 
Mean Age [SD] 63 [12] 65 [12] 
Female 25.3 29.8 
Race   

White 89.6 89.4 
Black 3.3 3.2 
Hispanic 4.3 3.5 
Asian 1.8 1.7 
Native American 0.02 0.07 
Other 1.0 2.2 

Health Insurance   
Government 46.0 50.3 
Commercial 4.8 13.4 
Other 49.2 36.3 

Comorbidities   
Diabetes 33.1 32.7 
Prior CHF 9.4 12.7 
Prior PCI 32.0 34.3 
Prior myocardial 
infarction (MI) 28.7 30.1 

Prior bypass surgery 8.4 15.7 
Hypertension 79.6 80.7 
Peripheral vascular 
disease 12.1 12.8 

Smoker 24.8 23.1 
Lung disease 13.7 14.4 

 All Subjects 
Intervention 

Radial Femoral 
No. of Procedures 5192 35022 
Cardiac Presentation   

Multi-vessel Disease 10.3 10.9 
Number of Vessels > 
70% stenosis 1.49 1.58 

Left main Disease 3.7 7.2 
ST-elevated MI 38.9 42.6 
Shock 0.44 1.8 

Drugs Prior to Procedure   
Heparin (unfractionated) 87.3 61.7 
Heparin (low weight 
molecular) 3.83 4.27 

Thrombin 25.5 54.9 
G2B3A inhibitors 26.7 26.8 
Platelet Aggregate 
inhibitors 85.8 86.6 

Intra-Aortic Balloon Pump  0.10 0.55 
In-Hospital Complication, % 0.69 2.73 
Mean Difference, % (95% CI) -2.04 (-2.30, -1.80) 
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Methodology Artery Access for PCI

ASSESSING VALIDITY OF POSITIVITY
ASSUMPTION
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Thrombin

Insurance: Commercial

Prior CABG

Age

Left Main Disease

Shock

# of Vessels > 70% stenosis

Prior CHF

Female

Insurance: Government

STEMI

Race: Other

Prior PCI

Prior MI

Hypertension

Peripheral Vascular Disease

Multi−Vessel Disease

Low Molecular Weight Heparin

Platelet Aggregate Inhibitors

Lung Disease

G2B3A Inhibitors

Race: White

Diabetes

Race: Black

Smoker

Race: Hispanic

Aspirin

Insurance: Other

Fractionated Heparin

Larger in Femoral Larger in Radial

Mean(Radial)-Mean(Femoral)
Filled circles = Matched

−5 −4 −3 −2 −1 0
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Linear Propensity Score (log odds)

D
en

si
ty

Radial
Femoral

0.007 0.018 0.047 0.119 0.269 0.5

Propensity Score (probability)

Matched Subjects, Π̂Ti

*Source: Kunz, Rose, et al., in Methods in Comparative Effectiveness Research, Eds: C Gatonis, S. Morton, Chapman &
Hall/CRC Biostatistics Series, 2017
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Methodology Artery Access for PCI

RADIAL VS FEMORAL PCI

−2.2 −2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0

Complication Risk Difference (%)

S−IPTW

Stratification

HT−IPTW

A−IPTW

TMLE

Multiple regression

G−Computation

Matching

Favors Radial Artery Access

NNT = 464951

Assumptions

SUTVA: practice makes perfect
(physician random effect)

Ignorability:

Omitted confounder: odds of
radial > 2.5× femoral to
change findings

Known Subgroups:

Women: -2.67% (se = 0.43%)
Men: -1.00% (se = 0.58%)

Source: Kunz, Rose, et al., in Methods in Comparative Effectiveness Research, Eds: C Gatonis, S. Morton, Chapman &
Hall/CRC Biostatistics Series, 2017
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Methodology DES vs BMS

DRUG ELUTING (DES)VERSUS BARE METAL
(BMS) CORONARY STENTS*

DES (approved 2003) and BMS
(approved in 1990s) frequently
implanted to keep treated arteries
clear & supported

DES improves target-vessel
revascularization (TVR) more than
BMS

DES associated with late stent
thrombosis (death)

Have 9000 patients and 500
confounders

Do DES cause fewer revascularizations

compared to BMS?

MASSACHUSETTS, 2011
Stent Type

Characteristic BMS DES

Outcomes, %
1 Year Mortality 10.2 3.3
1 Year TVR 9.0 6.5

Confounders
Age, yrs 66.4 63.7
STEMI, % 35.7 18.2
Cardiomyopathy

or LVSD, % 11.1 8.4
Emergent, % 38.3 20.3
Shock, % 3.8 0.8

Source = Mass-DAC
Spertus and Normand, 2017 (under review)
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Methodology DES vs BMS

DRUG ELUTING (DES)VERSUS BARE METAL
(BMS) CORONARY STENTS

Have 8718 patients and 495 confounders

Clinical data collected prospectively using systemized tool, merged with willing
data including all 5-digit present on admission ICD-9 codes occurring in > 10
patients

Confounders: patient characteristics (age, sex, race, weight, etc.), morbidities
(diabetes, heart failure, etc.), extent of blockage, ejection fraction, number of
diseased vessels, etc., and billing codes.

Outcomes: 1-year target vessel revascularization (PCI on same vessel or any
CABG surgery)

Falsifiability outcome: 30-day mortality

Treatment: 65% DES vs 35% BMS
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Methodology DES vs BMS

MODELS (T Binary Treatment, Y Binary Outcome, X Confounders)

Step 1: Treatment Model

Ti ∼ Bern(π(Xi))

π(Xi) = logit−1

(
β0 +

k∑
j=1

βjXij

)

π(Xi) = propensity score

Priors for βj: t3(0, 2.5) or Horseshoe

Bayesian additive regression trees
(BART)

IPTW

Step 2: Outcome Model

YT | nT ,pT ,π(X) ∼ Binomial(nT ,pT )

pT | αT0,αT1 ∼ Beta(αT0,αT1)

nT = number of subjects receiving
treatment T
pT = probability of outcome under
treatment T
Independent samples in treatment groups

A-posteriori

pT | Y,π(X) ∼ Beta(aT ,bT )
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Methodology DES vs BMS

WEIGHTED STANDARDIZED MEAN
DIFFERENCES IN CONFOUNDERS
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Methodology DES vs BMS

CAUSAL ESTIMATES

Mortality Weight
Approach % 1-Year TVR % 30-Day % 1-Year Mean (Max)
Naive -2.4 (-3.6,-1.3) -3.4 (-4.1, -2.6) -6.9 (-8.0, -2.6) NA
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Methodology DES vs BMS

CAUSAL ESTIMATES

Mortality Weight
Approach % 1-Year TVR % 30-Day % 1-Year Mean (Max)
Naive -2.4 (-3.6,-1.3) -3.4 (-4.1, -2.6) -6.9 (-8.0, -2.6) NA

IPTW -3.3 (-5.5, -1.1) 2.0 (54.9)
BART -4.1 (-5.7,-2.6) 2.0 (28.2)
Horseshoe -3.9 (-5.2, -2.6) 2.0 (29.6)
t3(0, 2.5) -3.3 (-5.5, -1.1) 2.3 (100.6)
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Methodology DES vs BMS

CAUSAL ESTIMATES

Mortality Weight
Approach % 1-Year TVR % 30-Day % 1-Year Mean (Max)
Naive -2.4 (-3.6,-1.3) -3.4 (-4.1, -2.6) -6.9 (-8.0, -2.6) NA

IPTW -3.3 (-5.5, -1.1) -1.0 (-2.0, 1.8) -2.9 (-4.9, -0.3) 2.0 (54.9)
BART -4.1 (-5.7,-2.6) -1.3 (-2.1, -0.6) -3.3 (-4.5, -2.1) 2.0 (28.2)
Horseshoe -3.9 (-5.2, -2.6) -1.2 (-2.0, -0.5) -3.2 (-4.5, -2.0) 2.0 (29.6)
t3(0, 2.5) -3.3 (-5.5, -1.1) -0.3 (-1.7, 2.5) -2.1 (-4.2, 0.9) 2.3 (100.6)
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Closing Remarks

OUTLINE

Introduction

Three examples
What is CER and why important?
Main characteristics of CER

Methodology

Assumptions and causal parameters
Approaches

Typical setting
High-dimensional data

Examples

Closing Remarks

Research needs
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Closing Remarks

METHODOLOGICAL NEEDS FOR CER

1 Pragmatic trials

2 Missing data

3 Non-constant treatment effect
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Closing Remarks Pragmatic Trials

PRAGMATIC TRIALS

Compare > 2 medical interventions directly relevant to clinical care.

Features:

Broad eligibility criteria
Medical management consistent with usual care (no blinding, no extra
office visits)
Measure all outcomes important to patients (patient self-assessments)

Problems:

High rates of non-adherence can bias non-inferiority/equivalence trial
towards equivalence
High rates of loss to follow-up problematic
Require larger sample sizes because:

Comparing two active treatments (vs active and placebo)
Small treatment effects in heterogeneous populations

Bias: unblinded treatment assignments, unblinded clinical assessments,
and patient self-assessments
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Closing Remarks Pragmatic Trials

MITIGATING LIMITATIONS OF PRAGMATIC
TRIALS

Design Strategies:

Include objective (survival, test results) in addition to subjective
(patient self-assessments)
Baseline measure of self-assessments

Analytical Strategies
ITT tends towards making the two drugs similar (D’Agostino,
Massaro, Sullivan; 2003)

Use of instrumental variables to estimate the ITT effect and the Per
Protocol effect

Measurement error in self-assessments
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Closing Remarks Missing Data

MISSING DATA
(T Treatment, Y Outcomes, ΠT = P(T | X))

Let R = 1 if outcome is observed and 0 if missing & assume ignorable
missingness:

P(Y,R, T ,X) = P(Y | R = 1, T ,X)× P(R | T ,X)× P(T | X)× P(X)

= QY ×ΛR × ΠT ×QX

1 Treatment effect still depends only on QY and QX:
EX (E(Y | T = 1,X)) − EX (E(Y | T = 0,X))

2 ΠT is the propensity score (nuisance): ΠT = P(T = 1 | X)

3 ΛR describes missing mechanism (nuisance): ΛR = P(R | T ,X)
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Closing Remarks Missing Data

ESTIMATORS
(T Treatment, Y Outcomes, R Missingness, ΠT = P(T | X))

Can be used in conjunction with the estimators described previously:

Horvitz-Thompson (1952):

IPTWHT =
1

N

N∑
i=1

TiYi
ΛRiΠTi

−
1

N

N∑
i=1

(1 − Ti)Yi
ΛRi(1 − ΠTi)

ΛR = P(R | T ,X)

Need more empirical studies of these approaches
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Closing Remarks Non-constant Effects

NON-CONSTANT TREATMENT EFFECTS

1 Unknown which subgroups and have all measured confounders

Stratification on propensity score (weak)
Extend approach of Zigler and Dominici (2014)

2 Unknown which subgroups and do not have all measured
confounders

If heterogeneity present, then different instruments will lead to different
treatment effect estimates (seemingly contradictory results)
See A Basu (Statistics in Biosciences CER issue) when unmeasured
confounders moderate treatment effects

sharon@hcp.med.harvard.edu (HMS) ASA BioPharm Webinar September 14, 2017 67 / 74



Closing Remarks Non-constant Effects

WHAT WAS NOT DISCUSSED TODAY

Approaches when ignorability of treatment assignment is unlikely

Instrumental variables
Bounding inferences using external information about size of residual
confounding

Exploratory and confirmatory approaches to non-constant treatment
effects

Average effect of treatment on the treated

Mathematical modeling

Decision trees, Markov models, individual microsimulation, dynamic
transmission models, discrete event, agent-based simulation

THANK YOU
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