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Learning objectives : to understand

• Basic concept of dynamic treatment regimes (DTR)

• Various methods for inference related to DTR

• Sequential multiple assignment randomized trials (SMART)

• Inverse-probability-weighting

• G-Computation

• Design issues, guidelines and power
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Outline: how the objectives will be achieved

• Define DTR and related framework

• Discuss assumptions related to inference

• Motivate the methods of inference

• Analyze a SMART trial

• Discuss design guidelines 
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Dynamic Treatment Regimes

A general introduction
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Motivation

• Drug Development & Approval Process
• Compare A (new) vs. B (standard)

• A is better (less or equivalent toxicity, better short-term efficacy) than B

• Compare C (new) vs. B (standard)

• C is better (less or equivalent toxicity, better short-term efficacy) than B

• (May be) Compare A vs. C 
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Motivation

• Drug Use
• Patient diagnosed with the disease

• Physician has to make a decision – put patient on A or C

• Observe response to the prescribed treatment over time 

• Stop treatment, continue treatment with/without dose modification, switch 
treatment 
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Motivation

• Decision process
• Not all treatment works for all patients, e.g.

• Treatment A works for patients if the disease is diagnosed early; 

• Treatment C is shown to be less effective in patients with history of diabetes

• Covariate Treatment Interaction
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Motivation

• Decision process
• How long you should keep a patient on a treatment before you stop, modify, 

or switch?

• Depends on

• Adverse events

• Intermediate response markers

• Long-term effects

• Options to switch to
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Motivation

• Decision process
• How to make a decision to stop, modify, or switch? When?

• If a decision to modify treatment is taken, what the modification should be?

• If a decision to switch the treatment is taken, what treatment should be 
switched to?
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Definition

• Dynamic Treatment Regime
• A set of specific rules to make decisions at each decision point of the 

therapy 

• Also known as adaptive treatment regime, adaptive treatment strategy 

• Example: “If the patient is a Caucasian female, age 50 or over, have normal 
HGB levels, (bla bla bla ..), start the patient on therapy A, observe for 4 
weeks (?), if it seems to be working (?), continue A, if not, if PC > 130000 
switch to B, if PC<130000, switch to C, observe for another 4 weeks(?)…… ” 
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Goal

• Dynamic Treatment Regime
• Find the best treatment regime to best manage a disease, or

• Compare several dynamic treatment regimes 
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Problem

• Curse of dimensionality
• Theoretically, infinitely many treatment regimes are possible

“If the patient is a Caucacian female, age 50 or over, have normal HGB levels, 
(bla bla bla ..), start the patient on therapy A, observed for 4 weeks (?), if it 
seems to be working (?), continue A, if not, if PC > 130000 switch to B, if 
PC<130000, switch to C, observe for another 4 weeks(?)…… ” 
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Solution and Issues

• Screen Candidate Regimes from Observational Data
• How?

• Run a clinical trial
• How?

• Combine clinical trials?
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Adaptive Treatment Regime vs. Adaptive Design

• Adaptive Treatment Regimes

“…adaptive as used here refers to a time-varying therapy for 
managing a chronic illness” (Murphy,2005)

• Adaptive Design

“…such as designs in which treatment allocation

probabilities for the present patients depend on 

the responses of past patients” (Murphy,2005)
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Example
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8 Possible Regimes

(1)  Trt with A followed by B1 if response, else B2 (AB1B2)

(2)  Trt with A followed by B1 if response, else B2’ (AB1B2’)

(3)  Trt with A followed by B1’ if response, else B2 (AB1’B2)

(4)  Trt with A followed by B1’ if response, else B2’ (AB1’B2’)

(5)  Trt with A’ followed by B1 if response, else B2 (A’B1B2)

(6)  Trt with A’ followed by B1 if response, else B2’ (A’B1B2’) 

(7)  Trt with A’ followed by B1’ if response, else B2 (A’B1’B2)

(8)  Trt with A’ followed by B1’ if response, else B2’ (A’B1’B2
’)
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What is the objective of  constructing 
Dynamic Treatment Regimes?

A treatment naïve patient walks through the door…

What treatment regime should the patient be assigned to?  

Let T(XYZ) (larger is better) be the outcome of an individual, had 
he/she received treatment according to regime XYZ 
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If  we knew that

1. E[T(AB1B2)] = 15

2. E[T(AB1B2’)] = 14

3. E[T(AB1’B2)] = 18

4. E[T(AB1’B2’)] = 17

5. E[T(A’B1B2)] = 20

6. E[T(A’B1B2’)] = 19

7. E[T(A’B1’B2)] = 13

8. E[T(A’B1’B2
’)] = 12
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In Reality…

Problems:

E[T(. )]’s are not known 

How can one accurately and efficiently estimate E[T(. )]?
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How to estimate the expected outcome under 
different Regimes?

Three study designs:

1. A clinical trial with 8 arms

2. Combine 5 separate trials

3. SMART (Sequential Multiple Assignment Randomized Trials)
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Design 1: A clinical trial with 8 Treatment Arms

AB1B2

AB1B2’

AB1’B2

AB1’B2’
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Design 2: Combining Existing Trials
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Sequential Multiple Assignment Randomized 

Trials (SMART)[Murphy, 2005; Lavori, 2001]

The SMART designs were adapted to:
- Cancer (Thall et al. 2000, Matthay et al., 2009)

- Alzheimer's Disease (Schneider et al. 2001)

- Depression [STAR*D] (Rush 2004)

- ADHD 

- Drug Abuse

- Alcohol

Design 3: SMART 

https://methodology.psu.edu/ra/adap-inter/projects
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Comparison of  3 Study Designs

Question:

A Trial 
with 8 Trts

Combined 
Trial

SMART

1. Does it serve the 
purpose of finding the 
best strategy?

2. Is it feasible?

3.Can we use standard 
statistical methods to 
analyze data?

Yes Yes

Yes

Yes

Maybe

No

Maybe

No

No
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SMART Designs

Procedure, Assumptions, and Inference
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Sequentially Randomized Designs
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Causal Effect of a Treatment Regimen

• �� ��� 	represents the outcome of the �-th individual 
treated under this regimen ���

• Unless individual i follows one of the following 
treatment paths, �� ��� will not be observed: 

• Received X, responded, and then received Y

• Received X, did not respond, and then received Z 

• 8 such variables can be thought of for each individual
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Counterfactual Variables

• All eight variables 
	�� 
��� , �� 
���

� , �� 
��
�� , �� 
��

��
� , 

�� 

���� , �� 


����
� , �� 


���
�� , �� 


���
��

� � ≡ Ti∗, 
cannot be observed for the same individual �

• These are referred to as counterfactuals (contrary to 
what happens in reality)

• Causal inference focuses on the distribution of these 
counterfactual variables
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The Estimands

� ��� � ��� ��� �

� ∈ 	
, 
��
� ∈ ��, ��

�

� ∈ �, �
�
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Observed data in SMART 

{Ii(A), Ri, RiZ1i, (1-Ri)Z2i, Ti}, i= 1, 2,…,n 

I(A) = Indicator of treatment A

R = Response indicator (1/0)

Z1 = Treatment B1 indicator (1/0)

Z2 = Treatment B2 indicator (1/0)

T = Observed outcome
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Relationship between observed data and 
counterfactuals

Consistency Assumption (CA)

Counterfactual outcome = observed outcome, given the 
observed treatment history is consistent with the 
counterfactual; 

for example,

�� 
��� � �� 
 ����� � 1 � �� �� ��
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Estimation 

• Let us focus on the policy AB1B2

• What would we do if everyone in the sample were treated according to the 
regimen AB1B2 ?

A
B1

B2
No 

Response

Response

Patients
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Answer: One-Sample Problem

�	� 
��� �
∑ !

"
�

∑ ! #$%$&

"
(By CA)

Applies to the 8-arm randomization trial
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• But in SMART, we have not treated everyone with AB1B2

A

B1

B1’
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Responder
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Sample
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• Let C(AB1B2) be the set of patients who were treated 
according to the policy AB1B2

A

B1

B1’

B2

B2’

Non 

Responder

Responder

Sample

π1

π2
πA
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C(AB1B2) = {i: Ii(A)[RiZ1i + (1-Ri)Z2i]=1}

One would define

�̂ 
��� � ∑�� 
 	 ����� � 1 � �� �� ��/)
�

Where 
)� � ∑�� 
 ����� � 1 � �� �� .

Naïve estimator 38



This estimator would be biased as it ignores the second 

randomization, except when 

the probability of responders being randomized to ��is 

the same as the probability of non-responders being 

randomized to �.

Naïve estimator 39



Sequential Randomization Assumption (SRA)

Treatment assignment at each stage does not depend on 
counterfactual, given the treatment and covariate history prior to 
randomization;

For example,

P[Ii(A)=1|Vi, Ti* ] = P[Ii(A)=1|Vi]

P[Zji=1|Ri, Vi, Ti* ] = P[Zji=1|Ri,Vi], j = 1, 2

Unbiased Estimation 40



Sequential Randomization Assumption (SRA)

SRA is conveniently satisfied in sequentially randomized 
trials, since patients are randomized at each stage with 
known probabilities;

Let,

P[Ii(A)=1|Vi, Ti* ] = P[Ii(A)=1|Vi] = πA

P[Zji=1|Ri, Vi, Ti* ] = P[Zji=1|Ri,Vi] = πj, j = 1, 2

Unbiased estimator 41



Inverse-Probability-Weighting

Motivation

• There are two types of patients in the set C(AB1B2) who 
were treated according to the regimen AB1B2

Responders who received B1

and

Non-responders who received B2
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Suppose πA = π1 = π2 = 1/2

A patient who received 
� was 
equally eligible to receive A

A responder who received ��
� was 

equally eligible to receive B1

A non-responder who received �
�

was equally eligible to receive B2

A

A’

Sample

B2

B2’

Non 

Responder

B1

B1’
Responder

Inverse Probability Weighting 44
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Thus a patient who received A in C(AB1B2) is 
representative of another patient who received 
�

A responder who received B1 in C(AB1B2) is representative 
of another patient who received ��

� and

A non-responder who received B2 in C(AB1B2) is 
representative of another patient who received �

�

Inverse Probability Weighting 45



We define weights as follows 

Every patient who received A in C(AB1B2) receives a weight of 2  
[=1/(1/2)=1/πA]

Also, 

A responder who received B1 in C(AB1B2) receives a weight of 2 
[=1/(1/2)=1/π1]

A non-responder who received B2 in C(AB1B2) receives a weight of 
2 [=1/(1/2)=1/π2]

While everyone else receives a weight of zero (since they received 
treatment inconsistent with regimen AB1B2.

Inverse Probability Weighting 46



Note that, under CA and SRA 

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ){ } ( )
2121i

21i

A

i

21i21i

A

i

21iii

2

2i

i

1

1i

i21i

A

i

21iii21i

2

2i

i

1

1i

i

A

i

21i

2

2i

i

1

1i

i

A

i

i

2

2i

i

1

1i

i

A

i

T

T
π

(A)I
TT

π

(A)I

T,R (A),I
π

Z
)R-(1  

π

Z
RT

π

(A)I

T,R (A),IT
π

Z
)R-(1  

π

Z
R

π

(A)I

T
π

Z
)R-(1  

π

Z
R

π

(A)I

T
π

Z
)R-(1  

π

Z
R

π

(A)I

BABBABE

BABEBABEBABE

BABEBABE

BABBABEE

BABE

E

µ==





















=









=





















+=































+=

















+=

















+

Inverse Probability Weighting 47



Therefore,

is an unbiased estimator of 
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A variant of IPW Estimator
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Compare treatment regimens

Wald test of contrasts of regime means are possible, but 
requires covariance between estimators (which may not 
be independent of each other)
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Covariance between two estimators

Consider two estimators
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The two estimators use information from the 
common set of patients (responders who received 
B1. We expect the two estimators to be correlated.
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G-Estimation (Robins, 1990; Murphy, 2003)

• Weighted average of outcomes from the two stages, without 
modeling the probability of treatment 

µGCOMP(AB1B2) = 
∑ Ii(A)Ri,
!-%

∑ Ii(A),
!-%

	.
∑ Ii(A)RiZ1iYi
,
!-%

∑ Ii(A)RiZ1i
,
!-%

	 + 

∑ Ii(A)(1−Ri),
!-%

∑ Ii(A),
!-%

	.
∑ Ii(A)(1−Ri)Z1iYi
,
!-%

∑ Ii(A)(1−Ri)Z1i
,
!-%
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Other topics

•Augmented IPW Estimator[Lunceford et al., 2002; Wahed 
and Tsiatis, 2004]

•How would the analysis change if the outcome is survival and 
censoring is present? Log-Rank Test, IPCW estimators [Wahed 
and Tsiatis, 2004, 2006; Feng and Wahed 2008, 2009; Wahed, 
2010; Wahed and Thall, 2013; Kidwell and Wahed, 2013]

•How to account for those patients who do not provide 
consent to the second stage treatment? (Open question)

•Competing Risks?[Yavuz et al., 2016]

•Adjustment for covariates [Tang and Wahed, 2011, 2013]

•Missing data[Open question]
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SMART Data Analysis

Example from Bembom and Van der Laan (2007), JNCI



The Prostate Cancer Trial:

• Overall Success: two consecutive successful responses 

• Overall Failure: two cumulative unsuccessful responses

• Stopping Rules: Stop trial when either an overall success or an 
overall failure has occurred. 
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The Prostate Cancer Trial: 57



The Prostate Cancer Trial:

• 3 ways to get overall Patient Success 
� SS, FSS, SFSS    (2 consecutive successes)

• 4 ways to get overall patient failure
�FF, FSF, SFF, SFSF.  (2 cumulative failures)
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Goal of the Analysis:

• We will use
• G computation Algorithm

• Inverse Probability of Treatment Weighting. 
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G-comp of the Cancer data:

• 12 different dynamic regimes, ab, where a, b € {CVD, KA/VE, TEC, 
TEE}, a ≠ b.

• For example, the regime CVD-KA/VE dictates to “start with CVD 
and follow with KA/VE if two consecutive successes were not 
achieved with CVD.”
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G-comp of the Cancer data:

First-Line Therapy                          Salvage Therapy                 Estimated 

Overall Success rate   

Regimen No. S P Regimen No. S P P(95% CI)

CVD 26 4 0.15 KA/VE 10 5 0.50 0.58 (0.28, 0.86)

TEC 6 1 0.17 0.29 (0.06, 0.63)

TEE 6 0 0.00 0.15 (0.04, 0.31)

KA/VE 28 7 0.25 CVD 7 0 0.00 0.25 (0.10, 0.42)

TEC 8 0 0.00 0.25 (0.10, 0.42)

TEE 6 0 0.00 0.25 (0.10, 0.42)
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G-comp of the Cancer data:

• Explaining the estimate for CVD-TEC regime

• Need only the distribution of overall success given treatment and 
covariate history. 
o 15% experienced overall success on CVD

o Of the 85% who failed and where randomized to TEC, 17% experienced 
overall success. 

G-computation estimate of overall success =

0.15 + (0.85)(0.17) = 0.29
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G-comp of the Cancer data:

First-Line Therapy                          Salvage Therapy                 Estimated 

Overall Success rate   

Regimen No. S P Regimen No. S P P(95% CI)

TEC 30 14 0.47 CVD 5 1 0.20 0.57(0.33, 0.85)

KA/VE 4 0 0.00 0.47 (0.28, 0.65)

TEE 7 0 0.00 0.47 (0.28, 0.65)

TEE 24 10 0.42 CVD 4 1 0.25 0.56 (0.28, 1.00)

KA/VE 4 0 0.00 0.42 (0.22, 0.61)

TEC 6 1 0.17 0.51 (0.28, 0.78)
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IPTW of the Cancer Data:

• P(receive any 1st line trt)=1/4=0.25
• IPTW weight = 1/(1/4) =4

• P(receive any salvage trt) = 1/3=0.33
• IPTW weight =1/(1/3) = 3

• We can improve upon the IPTW performance by using empirical 
proportions rather than the known randomization probabilities. 

64



IPTW of the Cancer Data:

• P(receive 1st line CVD trt)= 26/108 [IPTW weight = 108/26]

• P(receive KA/VE as salvage after CVD)=10/22 [IPTW Weight = 22/10]

For 4pts with overall 1st line success, weight them by 108/26

For remaining 5 with overall success on salvage trt, upweight them by an 
additional 22/10

Then normalize to the original observed sample size

Rule                                                                                                                         Estimated

Overall

No       S1     S2       F           S1           S2           F                     success rate

d(CVD,KA/VE) 14 4 5 5 2.2 5.9 5.9 0.58 (0.28, 0.86)
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IPTW of the Cancer Data:

• 4*(108/26)= 16.61  [1st line success]

• Normalize to observed sample size of 14
• 16.61*(14/108)=2.2

• 5* (108/26)*(22/10) = 45.69  [Salvage success]

• Normalize to observed sample size of 14
• 45.69 * (14/108) =5.9

• Then estimated # of total failures= 14- (2.2+5.9) = 5.9

• Est overall success rate = (2.2+5.9)/14= 0.58
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IPTW vs. G-computation

• Identical estimates if IPTW uses the empirical estimates rather 
than randomization estimates and G-comp does not rely on 
simplifying assumptions

• IPTW unlike G-comp is guaranteed to provide valid estimates in 
the absence of any additional assumptions. 

67



Conclusion: Which regime is best?

First Line                      Estimated 

Therapy           Overall Success rate 

Regimen No. S P

CVD 26 4 0.15

KA/VE 28 7 0.25

TEC 30 14 0.47

TEE 24 10 0.42

• TEC and TEE are good first line 
therapies.

• CVD is the worst first line 
therapy.

• Practical implication: consider 
TEC or TEE instead of CVD as 
the first line therapy for 
treatment naïve patients. 
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Conclusion: Which regime is best?

• Salvage Success rates are 
in general low except for 
KA/VE after CVD. 

• The choice of salvage 
therapies after failure 
with a 1st line therapy 
other than CVD is 
unimportant 
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Design Issues

Guidelines, Sample size, and power
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Design principals – limiting number of DTRs

• Wallace and Moodie (2014) suggested limiting the number of  DTRs 
because of the dangers of creating high dimensional problems and 
impracticable sample sizes

• At each critical decision point, restrict the class of interventions 
based on ethical, feasible, or scientific considerations

• Use a low dimension summary instead of all intermediate 
outcomes to restrict class of next treatments
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Design principals – clear adaption rules

• Use a well justified intermediate outcome and tailoring variables 
• How do you define responders and non-responders?

• Can others use this definition?

• If not available, a non-restricted SMART may be considered

• Specify when to assess response status 
• Too soon: may not see the initial treatment effects yet

• Too late: condition may deteriorate so much that you can not rescue it
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Design principals – primary and secondary 
hypotheses

• Choose a primary hypothesis 

• Scientifically important

• Aids in developing DTR

• Power to address this hypothesis

• Choose secondary hypotheses 

• Further develop DTRs

• Trial may not be powered to address these hypotheses

• Collect intermediate outcomes that might be useful in ascertaining for 
whom each intervention works best (individualization/tailoring variables)

• Information that may later enter into DTR
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SMART in Psychiatry

• Recently SMART has drawn great attention in psychiatry

• A SMART design is uniquely suited to address questions about when 
to deliver which intervention to treat patients and achieve 
optimal long-term outcomes

• We discuss two SMART applications in Psychiatric research
• to illustrate the above design principals 

• to discuss some practical issues

74



Perinatal weight intervention

• To date, perinatal interventions have not produced lasting 
improvements in weight or health at one year postpartum

• Interventions to minimize excessive gestational weight gain (GWG) have had 
limited impact

• Efforts to prevent postpartum weight retention have been only modestly 
successful

• Lifestyle interventions designed to address the full perinatal 
period can maximize maternal health in the first postpartum year
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Rationale for SMART

• There are key questions regarding 
• the optimal timing of interventions for women who vary in pre-pregnancy 

weight status and GWG, and

• how best to address their differing needs during pregnancy and the first 
postpartum year

• A SMART is designed to identify optimal intervention sequences

• It is uniquely suited to address questions about when to deliver 
intervention during the perinatal period
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SMART weight

• Women overweight or obese before pregnancy remain at health risk in the 
postpartum period, regardless of GWG

• Pregnant women (N=300), stratified by prenatal weight category (OV/OB), are 
enrolled at entry into prenatal care and randomly assigned to 

• Health and Behaviors in Transition [HABITpre] or

• Treatment As Usual [TAUpre]

• At delivery, all women again are randomized to 
• HABITpost or 

• TAUpost

• The outcomes are weight, cardiometabolic health, depressive symptoms and 
stress, that are measured at baseline, delivery, 6- and 12-months postpartum
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Non-restricted SMART

• We considered to use whether women met the IOM GWG guideline 
as a tailoring variable

• However, there was no strong rationale for this being a tailoring 
variable

• No sufficient data to suggest different interventions for those who have and 
have not met the GWG goal

• Thus, we have proposed a non-restricted SMART
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Specific aim 1

• To determine the combination of prenatal and postpartum 
lifestyle interventions that improves weight and secondary 
outcomes at 12-months postpartum

• H1: HABITpre →	HABITpost will lead to better outcomes than 

HABITpre →	TAUpost or TAUpre →	HABITpost

• H2: TAUpre →	HABITpost will lead to better outcomes than 

HABITpre →	TAUpost or TAUpre →	TAUpost
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Specific aim 2

• To evaluate the impact of combinations of interventions by GWG 
on maternal weight and health outcomes

• H3: Among women who gain excessive GWG, those who are assigned to 
HABITpost will have improved outcomes compared to those in TAUpost

• H4: Among women who receive HABITpost, women who meet GWG goals 
will have improved outcomes compared to those who exceed GWG goals
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Advantages of this SMART design

• This non-restricted SMART enables us
• to test if GWG can be used as a tailoring variable

• to examine the impact of pre-pregnancy weight status on the optimal 
strategies of interventions

• e.g., if the strategy of HABITpre followed by HABITpost, regardless of GWG, 
optimizes outcomes for obese women, and if TAUpre then HABITpost is 
helpful for overweight women only when GWG is excessive

• It will provide data to develop DTRs which can be tested in a more 
definitive SMART study
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Sample size calculation

• Power calculations were 
performed for primary 
aims:

• H1: Rows 1, 2 vs. 3, 4, 5, 6

• H2: Rows 5, 6 vs. 3, 4, 7, 8

• H3: Rows 2, 6 vs. 4, 8

• H4: Rows 1, 5 vs. 2, 6 

Row PREGNANCY GWG POSTPARTUM

1 HABITpre Meet HABITpost

2 HABITpre Exceed HABITpost

3 HABITpre Meet TAUpost

4 HABITpre Exceed TAUpost

5 TAUpre Meet HABITpost

6 TAUpre Exceed HABITpost

7 TAUpre Meet TAUpost

8 TAUpre Exceed TAUpost
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Creating randomization lists

• Three hundred participants will be randomized with equal 
probability to one of the two initial interventions, TAUpre and 
HABITpre, stratified by their initial weight status (OV/OB)

• Participants will be further randomized with equal probability to 
one of the two postpartum weight interventions, TAUpost and 
HABITpost, no matter whether they have met the IOM guideline 
for GWG
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Four randomization lists

• Without attrition, a quarter of subjects are expected to follow one 
of the four treatment sequences:

• HABITpre →	TAUpost

• HABITpre →	HABITpost

• TAUpre →	TAUpost

• TAUpre →	HABITpost

• We could create a randomization list of four treatment sequences, 
stratified by initial weight status
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Pros and cons

• The advantage of this approach is that now the randomization is 
just as straightforward as a typical stratified RCT

• However, attrition is common in practice

• Attrition may affect a particular treatment sequence 
disproportionately
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Hypothetical example

• Assume 30 assigned to TAUpre→TAUpost will drop out, and only 10 
will drop out from any of the other three treatment sequences

• The timing of dropout is important
• If all dropouts occur after the second stage randomization, this 

disproportional attrition cannot be avoided

• It is also informative

• Now let us assume all dropouts occur during pregnancy
• It is unlikely that 30 will drop out from TAUpre →	TAUpost, and 10 will drop 

out from TAUpre →	HABITpost during pregnancy
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Two separate randomization lists

• Under this extreme situation, it is advantageous to first randomize 
subjects to TAUpre and HABITpre, and then to further randomize 
remaining subjects to TAUpost and HABITpost

• We will have 55 subjects going through TAUpre →	TAUpost using 
two randomization lists

• That is, 110 remained are further assigned to TAUpost compared to 

• 45 going with a randomization list of four treatment sequences (i.e., 
75 are assigned to this sequence and 45 remain after attrition
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Comparisons of the two approaches

• For a non-restricted SMART with equal probability assignment at 
both stages, a simple randomization list of all treatment 
sequences is attractive for its simplicity

• A 2-stage rand. strategy is more robust against extreme cases

• Performing all randomizations upfront is disadvantageous if there 
are important first-stage intermediate outcomes that might be 
strongly predictive of second-stage primary outcomes (Nahum-
Shani et al., 2013)
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Comparisons of the two approaches

• Another implication of the two randomization approaches is how to 
perform the intent-to-treat analysis

• If a subject is assigned to a treatment sequence (e.g. TAUpre →	TAUpost) 
upfront, she will be included in the analysis for that treatment sequence 
regardless of her completion status

• In the 2-stage randomization, if a subject is assigned to TAUpre and 
drops out of study during pregnancy, the treatment of this subject is 
consistent with both TAUpre →	TAUpost and TAUpre →	HABITpost
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A smoking cessation SMART study

• To identify how to further improve quit rates at one-year in 
weight-concerned smokers being given an effective weight-
concerns CBT plus bupropion treatment

• Very dependent smokers trying to quit are more successful with 
varenicline if it is used in combination with bupropion

• Engaging in a moderate exercise regimen may independently 
enhance ability to quit

• We propose a non-restrictive SMART to test the efficacy of adding 
varenicline, exercise, or both to augment initial quit rates and 
improve long-term maintenance of abstinence

91



SMART smoking 92



Alternative study designs

• One may consider a 2X2 factorial design

• Proposed 2-stage randomization is similar to this simpler factorial design

• The multiple stage randomization can lead to the development of empirically-
based adaptive interventions for long-term abstinence
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Literature

• Chapter 5 of Adaptive Treatment Strategies in Practice: Planning Trials and 
Analyzing Data edited by Michael R. Kosorok, Erica E. M. Moodie (Continuous 
and binary outcomes)

• Dawson and Lavori (2010). Continuous outcome

• Feng and Wahed(2008, 2009), Li and Murphy (2011). Survival outcome, limited

• Murphy(2005) . Continuous outcome, limited

• Oetting et al. (2008). Cont. outcome, limited

• Ogbagaber, Karp, and Wahed (2015). Continuous Outcome
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Sample sizes and power calculation

• Consider the general 2-stage SMART
• For the ease of notation, relabel treatments

A�

	A

B�

		C�

					B

C

Non 

Responder

Responder

Responder

Non 

Responder

Sample

B�

		C�

					B

C
= Randomization
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Continuous outcome

• The mean under DTR 
3�456 , 7, 8, 9 � 1,2, is

�346 � � 	� 
3�456

• Conditioning on �3 , �346 can be expressed as

�346 � +3�#;$< � 1 � +3 �#;=>,

Where �#;$< � � � 
3�4 , �#;=> � � � 
356 and +3is the 

probability of response to induction treatment 
3
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Estimation

• The observed data 
�3� 
3 , �� , ���4� �4 , 1 � �� �6�

� 56 , �� , 7, 8, 9 � 1,2 , � � 1,… , )
• �3 is the observed response status

• �3� 
3 , �4� �4 and Z6�
� 56 are the indicator functions for treatments, i.e., 

�3� 
3 � 1 if the �-th patient was assigned to 
3, and 0, otherwise

• A consistent estimator for the strategy mean �346

�̂346
ABC �	

∑ D346� 	��
"
�

∑ D346�
"
�

Where D346� � �3�		
E!F<!

B<
�

G�HE!I	F>!
J

K>
�
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Variance

• )	 �̂346
ABC � �346 �

�

L
∑ M346� � NOG1I� is asymptotically distributed 

PG0, R346
 I, where M346� � 83D346�	G�� � �346I is the influence func

• 83 is the limit of )/∑�3�

• R346
 �

	S3�
T;

B<
	 	R#;$<

 � 1 � +3

�#;$< 	� �#;=>	



�

																						
�HT;

K>
	 R#;=>

 � +3
 �#;$< � �#;=>



	�

• Covarinaces between estimators can be calculated as functions of 
sub-population means and variances and sample sizes.
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Overall sample size

• Suppose we want to test

• UV: ���� � ��� � ��� � �� � ��� � �� � �� � �

• UV: 5	� � 0	where 5 is a contrast matrix. 

• Under UV,

)	�̂ 5 5	ΣY	5 
H�
5	�̂	

follows a central chi-square distribution with 7 d.f.
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Overall sample size cont.

• �̂ � �̂���, �̂��, �̂��, �̂�, �̂��, �̂�, �̂�, �̂
 

• 5 �	

1 -1 0 0 0 0 0 0

1 0 -1 0 0 0 0 0

1 0 0 -1 0 0 0 0

1 0 0 0 -1 0 0 0

1 0 0 0 0 -1 0 0

1 0 0 0 0 0 -1 0

1 0 0 0 0 0 0 -1
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Overall sample size cont.

• The variance term ΣY �
ΣY� 0

0 ΣY
, where

ΣY� �

RZ���
 RZ���,��

RZ���,�� RZ��
 			

RZ���,�� RZ���,�
RZ��,�� RZ��,�

RZ���,�� RZ��,��
RZ���,�	 RZ�,��

			
RZ��
 RZ��,�

RZ�,�� RZ�


ΣY �	

RZ��
 RZ��,�

RZ��,� RZ�
 			

RZ��,� RZ��,
RZ�,� RZ�,

RZ��,� RZ�,�
RZ��,	 RZ,�

			
RZ�
 RZ�,

RZ,� RZ
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Overall sample size cont.

• Under the alternative hypothesis, it follows a non-central chi-
squared distribution with 7 d.f. and a non-centrality parameter [

[ � )	� 5 	5	Σ	5 H�5	�

• The sample size formula is given by

) �	
[

� 5 5	Σ	5 H�5	�
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Pairwise comparison

• The sample size required to detect a difference between each 
pairwise comparison

• Bonferroni correction, 
\

]
, ^ is the total number of pairwise 

comparisons

) � 	

_;<>
& `_

;J<J>J
& H	_

;<>,;J<J>J	
�F

%a
b
&c

`F %ad �^	

f;<>	Hf;J<J>J
& 7, 8, 9 � 1,2
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Simulation study

• Design Parameters:

•

• Subgroup means: �#;$% � �#;=& � 15, �#;=% � 20, �#;$& � 22;	subgroup 

variances: R#;$<
 � 6, R#;=>	

 � 8, for 7, 8, 9 � 1,2.

• UV: ���� � ��� � ��� � �� � ��� � �� � �� � �

• Alternatives values: 
���� � 17.5, ��� � 15, ��� � 21, �� � 18.5, ��� � 17.5, �� �
15, �� � 21, � � 18.5

• l� � 0.5

105



Simulation study 106

Scenario mn mo pn	 Power Sample EP

1 0.5 0.5 0.5 0.8 70 0.84

0.5 0.5 0.7 0.8 79 0.85

0.5 0.5 0.5 0.9 89 0.92

0.5 0.5 0.8 0.9 120 0.92

2 0.2 0.5 0.5 0.8 83 0.82

0.2 0.5 0.7 0.8 92 0.83

0.2 0.5 0.5 0.9 106 0.90

0.2 0.5 0.8 0.9 134 0.92


